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Abstract. The vast streams of data created by camera networks renfdarsimn
ble browsing all data, relying only on human resources. faton is required
for detecting and tracking multiple targets by using miétigooperating cameras.
In order to effectively track multiple targets, autonomeutive camera networks
require adequate scheduling and control methodologidsediting algorithms
assign visual targets to cameras. Control methodologiepreeise orientation
and zoom references of the cameras. We take an approach drasefbrma-
tion theory to solve the scheduling and control problemshEzbservable target
in the environment corresponds to a source of informationmMiaich an obser-
vation corresponds to a reduction of the uncertainty anduah, a gain in the
information. In this work we focus on the effect of obsereatfunctions within
the information gain. Observation functions are shown 1p bgoiding extreme
zoom levels while keeping smooth information gains.
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1 Introduction

The increased need for surveillance in public places arehtdechnological advances
in embedded video compression and communications have cwdera networks
ubiquitous. However, at the moment, there are still missingable algorithms that
are capable of automatically processing so much data @ty so many cameras
having few staff members.

One of the issues associated with this problem is the decwmiowhich control
action to send to the pan-tilt-zoom cameras (PTZ) in ordsutizessfully carry on the
desired surveillance tasks. In simple words, the cooperatioblem of controlling a
network of PTZ cameras for the purpose of active surveilan@ dynamic scenario is
that one wants to maintain high zoom levels without losirghkron the targets in the
scene.

The first autonomous surveillance systems were composediitipra static cam-
eras, working together to solve some practical tasks oféstesuch as tracking mov-
ing objects. The need for considering overlapping and wiekelsi (resulting in low-
resolution images) of views of deployed cameras has ledetddéiployment of pan-tilt-
zoom cameras in modern surveillance systems.
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A number of new architectures appeared, such as master-sdawera configura-
tions, and cooperative smart networks [11]. In the magdeesconfiguration, static
cameras are used for event detection in order to direct tdecBera to the target of in-
terest. In contrast, with more complex architecture, btaticand PTZ camera streams
are used for event analysis. This way, the global state aktegstems is composed of
both the individual state of each target and the camera $telb@th architectures, there
is a need for efficient and reliable target tracking methodigls and, in more complex
cooperative architectures, there is also a need for camanagement methodologies,
in order to compute the optimal configuration of the netwarloider to coordinately
maximize the coverage of tracked visual targets in the scene

1.1 Related Work

The surveillance problem in active camera networks canyideti into two main com-
ponents. The detection and tracking of visual targets @rast in the scene and the
computation of a scheduling policy to control each of the esas’ degree of freedom,
in order to take into account the dynamics of the scene.

There are many generic methodologies used for target trgckihe commonly
taken approach, based on the Bayes filter [1], [11], [10],hiaracterized at each it-
eration by the update of the state estimate based on thectgéditate given by the
motion model of the target and the observations given bye¢hs@. Another approach
is taken in [7], [6], [3] and [2], where, contrary to the resive approach, the trajec-
tory is estimated in batches, making available both pasfande observations for the
estimation of the trajectory at a given time instance.

Regarding camera scheduling, Staragylal. [12] proposed a complete system for
tracking multiple targets using cooperative cameras. Tmdlicts in behaviors are re-
solved using a central processor, which combines the iddalidesired behaviors in a
single behavior, which reflects the best compromise beta#erf them.

The Multi-armed bandit algorithm is introduced in [13], [@hd [8], primarily not
being a camera management system, but a decision methgdotagpordinately allo-
catingresources to projects, e.g. robots that can travel to certain locations in order to
discover events or network packets that can be routed towsughannels in order to
maximize the throughput. This framework can be used to mibhdeproblem of cam-
era management, as well. Each camera is considered as acesod each target as a
project. The objective is to allocate cameras (resourcegytiets (projects) in order to
maximize some measure of reward over time.

Another approach, based on the information theory framkewisrapplied to the
problem of camera managementin [11] and [10]. This apprisaeased on the previous
work on automatic zoom selection in [5], in which the camexeameters (i.e. the target-
camera assignment) are chosen based on the mutual infomgaiin between the state
estimate and the estimate given an observation. In thisoappr the Extended Kalman
Filter is used as the selected tracking algorithm.

The aforementioned approach is the one adopted in this Wmkever, it is note-
worthy that the design choice of the observation functigrstill an open and ongoing
challenge with the family of the information theory apprbes. In the following sec-
tions, we will present our particular approach.
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1.2 Problem Formulation

A set of pan-tilt-zoom cameras is supposed to track and @uaitrbjectories of as many
targets as possible. The targets are circulating in the@mwvient.

We use an Information Theory framework in which the optimattcol policy a*
for each camera is defined by the following maximization peob

a" = argmad (x;0) = argmaxa(x) — Ha(x|0), Q)
a a

wherel (x;0) denotes the mutual information gain between the state atgtiend the
observation, antH,(x|0) is the conditional entropy of the state estimate given the ob
servation, given that some conteWwas sent to the camera.

Each target has an assigned Extended Kalman Filter, witmtit®on model depen-
dent on the targets being tracked and the pinhole cameralmdtien a target is in
the field of view of a camera, a new observation is availabkk itmvalue is used to
update the EKF. In this scenario, there is a reduction of tiettainty in the target’s
state and, as such, a positive information gain. On the dthed, when a target is not
in the camera’s field of view, the observation will not cobtitie to the reduction of the
state uncertainty. In other words, the entrépix) = H(x|o) and the information gain
will be zero. This way, by maximizing the mutual informatigain, the cameras will
effectively be in configurations in which more targets aresent in the field of view.

The aforementioned problem boils down to how to complie|o) before making
an actual observation. This entropy can be computed bydakio account that the
tracking is being made by using an EKF. In the Kalman Filt&xd(ao in the Extended
Kalman Filter), the assumption is that the state distrdufollows a Gaussian distri-
bution with the meam (the state estimate) and covariafcéJnder this property (x)
andH (x|o) are both differential entropies of Gaussian distributetiaddes, given by

H() = 5(1+og(2m) + 3og(|=]), @

wherek is the dimension ok andZ is the covariance matrix gi(x).

The first result consists in that the entropy depends onlyhercovariance matrix
and thus the problem of computihffx) andH (x|o) can be reduced to computing the
covariance of the state estimd@eand the state estimate after the observa#gon.

The equations of the Extended Kalman Filter show that themfsionz is only
incorporated in the innovation equation and later used endtate update equation.
Therefore, the update covariance maffjx can be computed prior to any observation.
The same applies to the conditional entrépix|o), as well.

In the most general case, the optimization can be achievea lexhaustive search
procedure over the parameter space of the camera. Howeeestrtucture of the sensor
can be considered in order to find better optimization sjiate
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2 System Overview

The surveillance system consists of a set of active pazéditm cameras which acquire
images to be processed by a central controller. The coetrislresponsible for image
processing tasks and for keeping track of each of the tang@ting in the environment.

Each camera feeds the controller with new image frames siediitesponding state.
The controller is responsible for processing the image atrd&ing target observations
by fusing the available information and updating the tagsgédte estimates (see Fig 1).

The result of the update is then fed to the decision contrallbich is responsible
for computing a new control policy for each camera.

The detection of new targets can be made both by carefulbeplatatic cameras,
or by the same active cameras used in the tracking proceedaftar approach is the
one followed in [10], however, this topic will not be addredsn this work.
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Fig. 1. System architecture

3 Scheduling Cameras

Using the Information Theoretic approach proposed in [10§, camera scheduling
problem is modeled as an information gathering problem.eg&@h camera, a choice
on the pan-tilt-zoom parameters is made based on the infanmgain in the state
distribution of all targets given possible observationise Dptimal pan-tilt-zoom con-
figuration is the one which maximizes the information giix 0) between the state
estimate and the observation. In other words, it is the omd¢lads to a greater increase
in the certainty of the state estimate.
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3.1 Single Camera Scenario

In a single camera scenario, a single camera is responsittf@éking and maintaining
the trajectories of various targets which move freely astbe environment.

Each target is tracked using an Extended Kalman Filter (EK##) the motion
model depending on the kind of target being tracked (e.gegteidn or vehicle) and the
pinhole camera model as the observation modelhiCet denote the sensor model and
Hy denote its Jacobian around the predicted state. Convéinénginhole camera model
in projective coordinates

) % U= fxya) _ p11(§)+p12(¥)+p1a(§)+p1ah
u y f3(x¥.2) ~ pa1(F)+pa2(f)+pas(E)+prah
V] = Psya 7 = (3)
W fa(xy,2) _ Paa(§)+ pzz(éH st(éH p24h
h

V= =
h fa(x¥.2) — pau(§)+ps2(f)+paa(f)+pugh’

where fi(x,y,2) is the internal product between th& row of the projective matrix
and the real world position in projective coordinates angsth is the value of the
projective matrix in thé™" row andj™ column.

By taking into account the structure of the sensor modelJ#wbiarH (x,y,2) €
R?*3 can be easily computed. Lgtbe theit" state variable of the sdi,y,z}, andg;
theith observation variable from the setv, then the partial derivative in the position
(i, ) of the matrix is given by

g_;; (Xa Y, Z) f3 (Xa Y, Z) - Z_;? (Xa Y, Z) fi (Xa Y, Z)
f3(Xa Y, Z)Z

The decision on which pan-tilt-zoom command to send to eaafeca is done by
maximizing the mutual information galiix; o) for all targets, with being the target
state estimate at timteando; the observation made.

Using the definitions of mutual information galifix; o) and conditional entropy
H (x|o) [4], the cost function can be expanded

29 B
a_xj(xvyv Z) -

(4)

a" = argmad (x; 0) = argmadt,(x) — Ha(x|0) (5)
= argmaxa(x) + / p(o)/ p(x|o) log p(x|o)dxdo (6)
=arg ma>Ha(x)+/p(0)(?o/ p(x|o) log p(x|o)dx

)
+ [ pe)00 [ p(xio)logp(xjo)ox:
v
where distributiorp(o) denotes the probability of making an observation of thedtarg
Its domain of integration can be divided into two subdomainsvhich denotes all
the camera configurations in which the target is visible wnahich represents all the
configurations in which the target is not visible.
Without further assumptions, this problem is hard to soNewever, recalling the
EKF structure, predict and update steps, one obtains tl@violg properties: (i) The
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probability distributionp(x|o) corresponds to the state distribution after the update
step. In other wordsp(x|o) ~ 4" (Xqx, Fk)- (i) All state variables are gaussian dis-
tributed. This means all differential entropies can be cotep in closed form ac-
cording to equation (2). (iii) When there is no observatidrthe target, the update
step is skipped. This means that the state is independent thie observation and
P(x|0) = p(X) ~ A (Xqk—1,Aqe—1). Applying these properties into equation (7), the
objective function is simplified:

a* = argmaxHa(x) + w(@)H (x") + (1 — w(a))H(x7)), (8)

where

w(a) = /V p(o)do 9)

represents the observation function, which depends onctiena.

Note that all the state variables are Gaussian distributddlay definition, the dif-
ferential entropy for Gaussian distributed variables dejgenly on the variable covari-
ance matrix. By observing the EKF equations, it can be semrthle observationy is
only used in the innovation equation and in the state updpataten. This enables the
computation ofP* without having an observation. Using the definition of diéfietial
entropy for a multivariate gaussian distribution (2) witle tovariance update equation
in the Extended Kalman filter, the cost functional can be $ifred

a* = argminw(a)(log|P*| —log|P~|) (10)
a

= argminw(a) log(l — KxHg). (11)

The choice of the optimal configuration is made by optimizhrgsum of the mutual
information gaind (x; o) for all targets. Despite the elegance of this cost function,
the general case its evaluation is intractable becausetires the exhaustive search
over the configuration space of the camera. For each parotiin configuration of
the camera, the observation model must be linearized andvamiEKF update must
be performed to obtain the new Jacobian matfixandKy. In order to overcome that
problem, in this work each target is modeled as a circle ptegkinto the ground plane.
The visible regiorv of each camera, in the camera coordinates, is also modelza as
ellipse around the center of the image. The terfa) in equation (11) is computed by
projecting the target ellipse onto the image plane and caimgpits intersection with
the visible regiorv of the camera.

3.2 Multiple Camera Scenario

In a multiple camera scenario, multiple cameras can haveraéisons of the same
target. The incorporation of these observations is domgussequential Kalman Filter.
In this variation, a single prediction step is made and ed&d®evation is used to make
an update so that the update from the observatioises the estimated position and
covariance of the update from the observatienl.
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Each observation contributes to the covariance matrix withctor of (I — KcHe),
wherekK; is the Kalman gain from the observation of came@ndH; is the Jacobian
of the observation model for camera

The mutual information gain of a target for multiple obsdimas

1(x; 01,...,0c) O zclog|l — w(a)KcHg|, (12)

is then obtained by combining equation (10) with the new davee matrix update

Pt = <|1(| - KCHC)> P (13)

3.3 Observation function

The observation functiom(a), equation (11), is a central component of the target track-
ing methodology as it effects on the convexity of the infotimragain.

The observation function can be just a flag indicating wheghgoint representing
the target location, in world coordinates, is visible or mathe image:

1, P(Xgnds @) € Eing
w(a) = {O, Xc(‘;therwise (14)
where Xgng is @ point in the ground plane representing the target posit’(-; a)
is the projection operator on a set of points, which is defingdctiona, i.e. in (3)
the projection matrixPs, 4 is modified by actiora andEjnyg is the ellipse in the image
plane concentric with the image rectangle. However, thigolation function does not
perform a smooth regularization of the cost function, mgldifficult to design iterative
optimization algorithms.

By changing the model of the target from a single point in gplane into a
surface in the ground plane, one obtains a smoother optimizéunction. Modeling
the shape of the target as a rectangle, taking into accoantis¢ible part normalized
by the area of the imaged shape not truncated by the field of @fehe camera, the
observation function takes the form

_ A(Z(Rynd; @) N Eing)
A(Z(Rgng; @))

w(a) (15)

whereA() indicates area of a convex hull of points &Rglq is a rectangle in the ground

plane. Alternatively, modeling the target as an ellipsehmnground plane, the function

becomes

A(@(Egnd; a) N Eirrg)
A(Z (Egnd; @)

w(@) = (16)

whereEgyqq is an ellipsis in the ground plane.
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Fig. 2. Field of view of the cameras at rest orientation and typicasl toajectories.

4 Experimental Results

The experiments described in this section are based in aalireality environment
simulating a parking lot (see Fig. 2(a-f)). A number of bysesh the dimension of
2x10x2m, cross the scene according to predefined trajeststiown in Fig. 2(g-i).
These trajectories are generated using the car nxadebs(0)sin(6)V, y=sin(6)cos(¢)V,
6= %(“’)V and@ = ws, whereV is the linear velocity of the bus anglis the steering
angle, both set using a joystick interface. Tracking is@ened using five pan-tilt-zoom
cameras located at fixed positions on the sides of the paltdraod in the entrance.

In order to evaluate the geometry of the cost function usiffgrént observation
functions, the cost function was evaluated from a set ofeafuom the pan-tilt-zoom
space for a camera. This was achieved by placing a target kea libcation in front
of the camera and making an observation. The camera modétsaddcobian were
computed for the new pan-tilt-zoom configuration and, alait the new observation,
used to update an existing EKF. The resulting Kalman gairtia@dinearized observa-
tion model were obtained and used in the cost function (11).
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Figures 3(a) show the cost function evolution with both thern level and the pan-
tilt values using the observation function (14). Figurels)3how the same evolution
as in the previous case, but now using the observation fum¢fi6). The termw(a)
defined as in (11) changes the cost minimum from extreme saftieoom, pan and/or
tilt to within-range, central, values.
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0
il 0.5 1 15 2 1, 15 .-l -0.5
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(a) Observation function indicating target in or out of thediof view.
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Field of view [rad] tit [rad] pan [rad]

(b) Observation function accounting imaged target size.

Fig. 3. Effect of the observation function into the cost functiamchse (a) the observation func-
tion w(a) is defined by (14) and therefore just indicates the target imub the field of view. In
case (b)w(a) is defined by (16) and thus takes in account the imaged sizeedfirget and the
field of view. Two plots for each one of the cases, cost vs zdeift) @nd cost vs pan and tilt
(right).

The second set of figures was generated in a similar way frenfatmer ones,
however sampling the whole camera parameters space. Fgsinews slices of the
cost function in the camera parameter space (pan-tilt-2osing different observation
functions as described in Section 3.3. Each row represditscizoom configuration,
with lower rows representing configurations with higherdief view (less zoom).

In column (a) of Fig. 4, is used(a) defined in (11). In column (b) is considered the
samew(a) however, in this experiment, there are two targets in theesde different
locations and with different state estimate covarianaesolumns (c) and (d) the term
w(a) is the one defined by (15) and (16), respectively.
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Fig. 4. Cost function slices at fixed field-of-view (zoom). Each r@presents a different zoom
level (field of view, top row 6[degk: 0.1 [rad], bottom row 75[degk 1.3 [rad]). Colder colors
represent lower cost functions. Configurations in whichtétrget was not visible were assigned
high cost. In cases (a,c,d) one camera observes one targetsé (b) one camera observes two
targets. The observation functien(a) is defined by (14) in cases (a) and (b), and is defined by
(15) or (16) in cases (c) or (d), respectively.

Figure 4(a) shows that the cost function is generally loweardnfigurations which
make the target appear in the image plane with higher résolubat is, when the cam-
era is at its highest zoom or when the camera has the targeteoést in the corner of
the image. This result comes from the influence of the observanodel (in particu-
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lar, its Jacobian) used in the EKF in the cost function. WHiis is a good result in
the sense resolution is maximized, uncontrolled zoom dredarget is not the desired
behavior, since a minimum movement can make the targetpisagrom the camera
field of view. Termew(a), as defined in (15) or (16), acts a regularizing factor, manag
ing the optimal zoom level to observe the target at constamtzlevel and preventing

observations just using the "corner of the eye™.

800 10
w(a) as eqlb
—w(a) as eqlp

600 100x magn of cov matrices %
<
<

400

200y

y [dm]
sqrt max eig P [dm]

PN W M O N o ©

200 © . start

2

6 260 460 600 860 1600 12‘00 20 4‘0 éO 50 160

X [dm] t[s]

Fig. 5. Scheduling experiment. Uncertainty at the ground plarf§) @ad uncertainty along time
(right), for observation functions defined in (15) or (16).

In the last experiment four cameras are active and fourtsi(gases) enter the scene
sequentially, separated by approximately 10sec, follgvdifferent trajectories. The
proposed scheduling methodology is tested with two altermabservation functions,
(15) or (16). The pan, tilt and zoom parameters are estinfatedl cameras in a round-
robin manner (Fig. 1). Each search of the parameters is biaséelder-Mead simplex
direct search and is limited in the number of iterations.

Figure 5 shows the tracking of the first bus along the first @008he plot in the left
shows the uncertainty of the EKF of the first bus, on the grqulade, as ellipses cor-
responding to a 50% confidence level. Covariances are madni€io< for readability.
The second plot, Fig. 5(right), shows the square root of tagimum eigenvalue of the
covariance matrix, along time, for both observation fumsi. Results show that (16)
allows for lower and smoother in time localization uncertgiin presence of distrac-
tors, as the other buses entering the fields of view of the @ndue to its smoother
nature allowing for more effective searches of the panatitt zoom parameters.

5 Conclusionsand Future Work

The results show the influence of the target modeling in tis¢ ftmction proposed by
[10]. By modeling the buses as ellipses projected onto thargt plane and the visible
region of the camera as an ellipse in the image plane, théfuwostions gain a defined
structure, which simplifies the design of fast algorithmsearch for the optimal policy.
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When a single target is present inside the range of the acéineera, the optimal
command is to zoom on the target, according to the cost famciihe regulator term
controls the optimal zoom on the target, independently @ftéinget location.

In a multi-target scenario, the overlapping cost functicers make the optimal com-
mand to keep both targets inside the camera’s field of view.

The challenges to be addressed in the future include thgratten with policies for
exploration of unobserved regions, making the system iedéent of the need to have
carefully placed static cameras.
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