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Abstract. This work studies the influence of the percentage of positive instances
on positive bags on the performance of multiple instance learning algarithm
using support vector machines. There are several studies thatoatte per-
formance of different types of multiple instance learning algorithms irecffit
datasets and the performance of these algorithms with the superviseihdear
counterparts. Nonetheless, none of them study the influence of haling &
high percentage of positive instances on the data that the classifiersirgea
learn. Therefore, we have created a new image dataset with diffezerentages

of positive instances from a dataset for pedestrian detection. Expeghnesults

of the performance of mi-SVM and MI-SVM algorithms on an image arnimta
task are presented. The results show that higher percentages ofepositances
increase the overall accuracy of classifiers based on the maximumaagn
formulation.
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1 Introduction

In supervised learning, the classifier is provided with &trey set that consists of in-
stances and the corresponding labels. The training setrisitbed to obtain a classifier
that can predict the labels for novel instances [4]. Norlei® the correspondence re-
guirement between instances and labels is difficult or evehipitive for some applica-
tions like object detection. Annotating whole images iseraand faster than annotating
and identifying relevant image regions.

Multiple instance learning appeared as a more flexible pgmadssuming that there
is some ambiguity in how the labels are assigned. Namely,ultipte instance learn-
ing, the instances are grouped into bags and the labels signed to the bags instead
of being assigned to each of the instances. The labels ardéaamed using a multiple
instance learning assumption like the weighted colleaissumption [10] or the stan-
dard multiple instance learning assumption. The standarliipte instance learning
assumption is the one that is considered in this work, andsstéor a binary classifi-
cation problem: a bag is positive if at least one of the instarin that bag is positive,
a bag is negative if all the instances in that bag are negafiverefore, the true input
labels are not known during training, i.e., the true inpbtla are latent variables. Note
also that a positive bag can contain negative instances.
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In order to understand better the multiple instance legrpioblem, let us consider
an example adapted from [7]. Consider that we have a classeoml we know some
professors that have access to that classroom, and otherdontot have access. Each
professor has a key chain with a few keys that can be diffexteat, for example, by
color. The goal is to predict if a given key or a given key challows to open the door
of the classroom. Using the multiple instance learning &awrk, the bags will corre-
spond to the key chains that are labeled as positive or wegatcording to the access
that the professor has to the classroom. The instanceseakeys contained in the key
chains. Using the assumption, we know that keys on key cHeins professors that
do not have access to the classroom do not open the door. fBhalye this problem
we have to find the key that is common in all positive key chaihee consider the
color as a feature, the keys colors that appear in negatiwehans could be ruled out.
Hopefully, there is one key color that remains and this wolirespond to the key that
opens the door to the classroom. If the classifier can cdyrigtgntify this key, it can
predict if a key or key chain is able to give access to the obass. From this simple
example, we can see that multiple instance learning algostcan have several formu-
lations because they can aim at designing classifiers foerodiscriminating bags or
instances.

The performance of multiple instance learning algorithragehbeen compared be-
tween themselves and with the supervised learning couwartsrin several application
domains. But none of them focused on what is the influence tfexeht percentage of
positive instances on the classifiers. Therefore, this wadads to study this influence
on the performance of the classifiers. We focus on mi-SVM ameSMM which are
support vector machines adapted to the multiple instarareiley framework.

The paper has two major contributions: a new dataset thawslto evaluate the
influence of different percentages of positive instanced,experimental evidence that
increasing this percentage has a positive impact in thepadnce of MI-SVM.

In terms of structure, we will first present a brief reviewlod state of the art on mul-
tiple instance learning algorithms in Section 2. A more iiedaformalism of multiple
instance learning frameworks with focus on algorithms gisinpport vector machines
is provided in Section 3. The methodology used to evalu@@dnformance of the clas-
sifiers and the dataset used is described in Section 4. Thksrasd major conclusions
are presented in Section 5 and Section 6, respectively.

Notation: The notation followed throughout this work is the followingpn-italic let-
ters correspond to functions, italic letters corresponstctiars, lower case bold letters
correspond to vectors (for example, to represent instanaed upper case bold letters
correspond to matrices (for example, to represent bags).

2 Related Work

Multiple instance learning algorithms appeared to overesome limitations of super-
vised learning regarding the training sets for some apipdina like object detection or
drug activity prediction. The limitation is associatedtwihe difficulty of providing an
accurate and correctly labeled training set at the insthaves.
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The term multiple instance learning appeared with Diattesi al. [7] in the context

of drug activity prediction. Diettericlet al. [7] developed the Axis-Parallel Rectangle
algorithm for predicting some property of the molecule lobge the molecule’s shape
statistics. Since than, several algorithms have been peapfor solving the multiple
instance learning problem. Mar@hal. [13] proposed the Diverse Density (DD) algo-
rithm to learn Gaussian concepts for representing theipesigions. This algorithm
was then extended by Zhaegal. [17] to use the expectation-maximization (EM) has
the optimization technique.

Other authors have proposed algorithms for multiple instdaarning by adapting
the support vector machine framework. The support vectahimna framework aims in
finding an hyperplane that is capable of separating theitgiiata with the maximum
margin possible. Andrewst al. [2] proposed two algorithms, mi-SVM and MI-SVM,
that differ in the margin definition. The first considers thargin between the positive
and negative instances while the second considers themaggiveen the bags. In the
MI-SVM, the bags are not represented by multiple instanaggdther by the most
positive instance for the positive bags and by the leasttivegimstance for the nega-
tive bags. Bunesce al. [5] extended the MI-SVM algorithm by adding constraints to
ensure that at least one of the instances in a positive baggitye. This algorithm is
shown to work well for sparse positive bags.

The previous approaches modify the objective function flayding the support vec-
tor machines to the multiple instance learning framewolter€é are other approaches
that modify the kernels used. Gartratral. [11] proposed two kernels: statistic kernel
and the normalized set kernel. In the statistic kernel, #geib transformed into a fea-
ture vector by selecting the minimum and maximum values &mhefeature from all
instances in the bag. In the normalized set kernel, the begpiesented as the sum of
all instances that belong to the bag normalized by the 1 @mr&in

These algorithms have been applied in different applioadiomains like classifica-
tion of molecules [7], content based image retrieval [2}t tassification [2], among
others. These algorithms have different formalisms and eerdetailed review can be
found in the following articles [1, 3, 10].

Since there are a large number of applications and a high euaftalgorithms for
multiple instance learning, several studies have conagdrin finding the best multi-
ple instance classifier. Ray and Craven [16] concluded ktemetis no optimal multiple
instance learning algorithm since their performance démenthe data. Furthermore,
the multiple instance learning algorithms have been coatptr the correspondent su-
pervised learning algorithms using different datasetg,[56]. These studies concluded
that the multiple instance learning algorithms are coastty superior, although this
observation also depends on the data. Nonetheless, nohesef studies have consid-
ered the rate of positive instances in their data while atalg the performance of the
multiple instance learning algorithms. The rate of positinstances on positive bags
is directly related with the standard multiple instancer@sy assumption. Therefore,
in this work we want to evaluate if the rate of positive ingtas on positive bags in-
fluence the performance of multiple instance learning algms. This will allow to
determine if this should be considered as a variable whelyzing the performance of
these algorithms.
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3 Multiple Instance Learning

In this section we will present the formalism associatedhwie multiple instance learn-
ing problem. Remember from Section 1 that in superviseaiegythe training set con-
sists of example pairs: an input and a corresponding labetultiple instance learning,
the inputs are grouped into bags and the labels are assigtieel hags of inputs. Thus,
we do not know which of the inputs or pair of inputs is respblesfor the label. In this
sense, the multiple instance learning framework makes &resdsumptions about the
labeling information.

In order to formulate the multiple instance problem, let assider a training data
® with N pairs of examples:

q’:{(X17y1)5(X27y2)a"'7(XNayN)} (1)

whereX; is the bag of the-th example, and; is the corresponding bag label of the
i-th example. A bad; is composed of\/; instances:

Xi = {xi1, X2, - -, Xin, } @

wherex;; € x; is thej-th instance of the bal; andy; = R”s is the D;-dimensional
Euclidean space (dimension of tleh instance). For simplifying the notation, assume
from now on that all bags in th& pairs of examples have the same number of instances
M; = M and all instances belong to the safedimensional Euclidean spagg =
x =RP,
A bag labely; € 7 is the result of the labels given to each of the instanges v
that compose the bay;. For simplifying this exposure, consider a binary clasatfan
problem wherel” = {—1,1} andv = {—1, 1}. Using the standard multiple instance
learning assumption for binary classification, mentione&ection 1, the bag labe}
corresponds to:
yi—InJaXyij—{_l Vi = —1 (3)
The goal of the multiple instance learning algorithm is &rtran instance classifier
f (x) : x — v or abag classifieF (X) : Y™ — 7. From (3), a bag classifier can be ob-
tained from a correct instance classifierlbyX;) = sign (max; f (x;;)). Hence, most
of the multiple instance learning algorithms aim to learstamce classifiers instead of
bag classifiers.

The focus of this work is to evaluate the performance of supyextor machines in
the multiple instance learning framework in an image cfasgion task, therefore we
will now present the formalism of the two classifiers usedxiMaim Instance Margin
(mi-SVM) and Maximum Bag Margin (MI-SVM). But first, let ustirmduce the support
vector machine framework for supervised learning.

3.1 Support Vector Machines

Consider a training sé&2 with K examples:

Q = {(xi1,¥i1) , (Xi2, Yi2) , - - -, (Xirke, Vi) } 4)
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in a binary classification problem,; = {—1,1}. The objective of a support vector ma-
chine framework is to find the hyperplane that separatesxhmples with the biggest
margin possible. The margin is defined as the smallest disthetween the hyperplane
and a positive and a negative example.

The support vector machine soft-margin formulation is:

K
min_§ [[wl* +C X &
w,we,&; j=1
s.t. gij Z 0
Yij (W-Xij +wo) > 1 -

®)

wherew is the hyperplane normal, is the hyperplane offset, and thg are the slack
variables that allow to apply the support vector machinenéaork to data that is not
separable. This means that we are allowed some mislabededpdss. This leads to a
guadratic programming problem that is convex and easilyabté. The examples that
are nearest to the hyperplane are called the support vectors

In this work we do not intend to detail the support vector niaelfiormalism. There-
fore, for a detailed introduction to support vector machitiee reader should refer to
[12, 14].

3.2 Maximum Instance Margin: mi-SVM

The maximum instance margin formulation of the support aeatachines aims to
recover the instance labels of the positive bags.

In support vector machines for supervised learning, thel$alp; of each instance
x;; in atraining set are known. In multiple instance learnirig ifinot the case, only the
labelsy; of a bagX; are known. Considering the standard multiple instanceniegr
assumption (3), we can see that the labels for each instdreceegative bag are also
known and therefore the margin could be defined as in a regupgoort vector machine.
However, the labels for each instance of a positive bag dteawn and therefore com-
puting the margin is more complicated. Andreg&tsal. [2] treated the instance labels
¥i; a@s unknown integer variables:

min min_ 3 [w]®+CY&;
Yij  W,wo,&; ]
Yij (W X5 +wo) > 1—&; (6)
yij = —1, Viiy; = -1
SU > Wiy =1
J

From (6) we can see that in mi-SVM multiple negative or pwesitinstances in
positive bags can be support vectors. The problem leads txedrnteger program
that is hard to solve. Nonetheless, the integer variatileshilden labels; ;, reduce the
problem to a quadratic programming problem. Andreta. [2] proposed an heuristic
that consists of two steps: first train a SVM classifier coesity a given value for the
instance labels, then use the new classifier to update ttenireslabelg;; of positive
bags. This process is computed until no changes occur imstarice labels.
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3.3 Maximum Bag Margin: MI-SVM

The maximum bag margin formulation of the support vector mraes aims to recover
the key positive instance for every positive bag.

In this formulation, the margin of a bag corresponds to th&mam distance be-
tween the hyperplane and all of the instances that belondptma

y; = max (W - X;; + wp) @
J
From (7) we can see that the margin of a positive bag is detehby the most
positive instance while the margin of a negative bag is datexd by the least negative
instance. The bag margin formulation is:

min 2||W|| +CZ§U

W,wo,8i

s.t. gz] >0 (8)
yi max (W x5 +wo) >1—&;

This optimization is not convex, therefore Andreetsal. [2] introduced an extra
variable s(j) for each bag. This variable denotes the instance that istedl@s the
witness instance of a positive bag. The formulation (8) i goven by:

min min 2HWH —|—C’Z§U
50 wwo.é;

st £;>0 )
WX +wo < —1+&;,Vity; =—1
w- Xzs(])+w0217§.z]7VZ yi =1

In this formulation, each positive bag is represented by onk positive instance.
All the negative instances in the positive bags are disdeghrLike the formulation of
mi-SVM, this corresponds to a mixed integer program. Nogless, the integer vari-
ables, the variables j), reduce the problem to a quadratic programming problem. An-
drewset al. [2] also proposed an heuristic that consists in two steps:tfiain a classi-
fier like a regular supervised learning considering a givénegs instance, then using
the new classifier select new witness instances for theiposigs. The optimization
process ends when the selected witness stops to change.

4 Methodology

The objective of this work is to compare the performance ofltiple instance support
vector machines’ learning algorithms with the percentdggositive instances on pos-
itive bags. This performance is evaluated in an image aftinotéask using a dataset
for pedestrian detection. Image annotation task consisidemtifying if an image has
a person and if a given region of that image contains a pensampart of a person.
Normally, datasets in multiple instance learning do noborephe percentage of
positive instances included on the positive bags and tlerm istudy evaluating the
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Fig. 1. Examples of positive and negative instances obtained during the trarafon of the
HDA Person Dataset. A and C: Negative instances (cyan) drawn fegatiwve bags. B and D:
Negative (cyan) and positive (red) instances drawn from positigs.ba

influence of positive instances on this type of classifietser&fore, a new multiple in-
stance learning dataset has been created based on a reat ftat@edestrian detection,
the HDA Person Dataset [9, 15].

The HDA dataset is a high resolution image sequence dasetdearch on high
definition surveillance, pedestrian detection and redifleation. The dataset comprises
information from 18 cameras with different resolutions.ofa of 13 image sequences
are labeled. The labeled data includes 64.028 annotations 85 persons in a total
of 75.207 frames. The annotations include information &lioeiperson bounding box
position and unique identification, occlusion and type dedgon (person or crowd).
Additionally, the annotations have information about taenera and frame number.

In order to transform this dataset, we adopted a similategyato Andrewst al.
[2]. This takes in consideration the standard multipledanse learning assumption for
binary classification: an image is positive if at least therene person or a part of a
person on the image, and an image is negative if there is rsoper part of a person
on the image. Therefore, the positive images are randonalyrdfrom the annotated
frames of the cameras while the negative images are sampledtifie non-annotated
frames. Notice that frames annotated with occlusion areconosidered, in order to
not provide erroneous features to the classifier. Remenhiaeithie bounding box for
an occluded person is drawn by estimating the whole bodynektehe HDA Person
Dataset.

In a positive image (Figure 1.B and Figure 1.D), the positimage regions are
obtained by sampling randomly the bounding box area whéenttgative image regions
are drawn from the remaining area of the annotated framesnéagative image (Figure
1.A and Figure 1.C), the negative image regions are randeattypled from the entire
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Set Positive Instance Rat Positive Eags Neg_ative Bags Total Ba_g_s
[Total InstancegPositive InstancesNegative Instancesglotal InstancegPositive Instances
Testing 0.469 409 192 500 909 192
Training-10 0.100 750 75 750 1500 75
Training-30 0.300 750 225 750 1500 225
Training-50 0.500 750 375 750 1500 375
Training-70 0.699 747 522 750 1497 522
Training-90 0.899 739 664 750 1489 664

Table 1. Number of instances for each training and testing set obtained from tiie Rdbson
Dataset.

area of the non-annotated frame. In either of the cases, axémm overlapping area
between image region of the same image is 40%, and the windosgidered for each
image region is 60 x 60. Furthermore, in order to comply withiveen percentage of
positive image regions on positive images, only annotatathés that satisfied this
percentage have been considered for each of the trainirgetatobtained. Like the
MIL datasets mentioned previously, the number of instapegshag is also variable.
The features are extracted from the image regions usingntegral channel features
defined by Dollaret al. [8] and that have been used for pedestrian detection. These
features include color (LUV color space), gradient magietiand gradient histograms.
Remember from Section 3 that each instance belongsiedmensional Euclidean
space, a feature corresponds to each of?l@mponents of that Euclidean space. The
number of features per image region is 600.

The training and testing sets have been obtained using freagh defined above.
A total of 5 training sets were created, each with a diffeneericentage of positive
instances on positive bags: 0.1, 0.3, 0.5, 0.7, and 0.9derdo have an unbiased com-
parison, the testing set consists of sets with differentgr@age of positive instances:
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. Each of theseage composed of ap-
proximately the same number of bags. Notice also that thgéséor the training and
testing sets were obtained from different cameras. Theitrgiset was obtained from
cameras 53, 56, 57 and 58, while the testing set was obtaiosddameras 50 and 59.
The images used correspond to cameras of equal resolut8thx1200.

In conclusion, the HDA Person dataset was transformed imeva dataset with
training sets that consist of 150 bags (75 positive and 7athvegbags), and into a
testing set of 100 bags (50 positive and 50 negative bags)stiimmarized statistics of
each dataset obtained can be found in Table 1.

Similarly to the previous datasets, this dataset is usedrdiming and testing the
mi-SVM and MI-SVM classifiers. The parameters for each ofkbmels (linear, poly-
nomial and RBF [6]) were analyzed and optimized using 3-totiss-validation using
a training set of 150 bags (75 positive and 75 negative bagsjred similarly to the
testing set described above.

5 Results

The classifier and kernels accuracies depend on the datanahd application domain
[16]. Therefore, we started by evaluating the performarfceagh of the classifiers
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and kernels on a specific training set (Training-CL) befaralgzing the influence of
the positive instances on positive bags. This training saesponds to a mix of bags
with different percentages of positive instances in ordegdt training data that is not
biased towards one of the training sets with a specific péagerof positive instances.
This analysis will allow us to select the best classifiers kgchels to the problem of
pedestrian detection. The results obtained are presenible 2.

From Table 2, we can conclude that the mi-SVM algorithms aresistently better
than the MI-SVM counterparts. This means that the featuresgnt at the instance level
are sufficient to learn a classifier that can discriminatesben the positive and negative
bags. Furthermore, we can conclude that the mi-SVM clasgifth RBF kernel has the
highest bag and instance classification accuracies fordhptad HDA Person dataset.
Notice also that the instance accuracies for mi-SVM withnadir kernel are similar
to the ones obtained using a RBF kernel. This analysis all@ie determine that the
classifiers for this data should use RBF kernels. Therefbessemaining analysis were
made using the mi-SVM classifier with RBF kernel and the MINE¥lassifier with
RBF kernel.

As mentioned in Section 4, the performance of the mi-SVM anéSMM classi-
fiers is evaluated for different percentages of positivéaimses on positive bags. The
classification accuracies obtained are reported in Table@n Table 3, the increas-
ing percentage of positive instances has higher influende@maximum bag margin
algorithms than on the maximum instance margin algoritimghe mi-SVM, the in-
stance classification accuracies are very similar for tfferént percentages of positive
instances (maximum difference between the minimum andmaxi classification ac-
curacies is 1.8%), and the bag classification accuracy esagshmaximum when the
training set has 50% of positive instances and then stadsdoease. In the MI-SVM,
the bag and the instance classification accuracies incsgaséicantly with the increas-
ing percentage of positive instances.

The results in Table 3 give information about the overallimacy of the classifier. In
Figure 2, we present the performance of the classifier ortip@sind negative instances.
From Figure 2, we can reinforce that the impact of an increppercentage of positive
instances is higher on MI-SVM classifier. Namely, when the @& positive instances
increases the classification accuracy of positive bagsrestdrices increases. Nonethe-
less, this increase is followed by a decrease in the claatdic accuracy of negative
bags and instances. This decrease occurs at a significasslgktent on instances than
on bags. Regarding the mi-SVM classifiers, the influence eitpe instances is more
noticeable at the bag level. The change in the classificatiauracy is driven by the
change on the classification accuracy of negative bags (mamidifference between
the minimum and maximum classification accuracies is 11%g.résults show that the
classifier is biased towards negative bags when there is ahalxhigh percentage of
positive instances. At the instance level, the accuracg doehave significant changes
with the increase of positive instances.

In conclusion, for maximum bag margin algorithms, the iasee of positive in-
stances allow to obtain classifiers with higher accuracgufeé 3). Nonetheless, at the
bag level, the overall accuracy of the classifier does notfitemhen the percentage of
positive instances is too high (90%). These findings can péamed by the fact that
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Bag Classification Accuracy Instance Classification Accuracy
Training Set mi-SVM MI-SVM mi-SVM MI-SVM
Linear [Polynomial RBF |Linear [Polynomiall RBF |Linear [Polynomiall RBF |Linear [Polynomiall RBF
Training-CL | 0.680] 0.510 [0.770 0.600] 0.500 [0.710 0.878] 0.677 |0.8790.804] 0.789 |0.81§
Table 2.Bag and instance classification accuracies on an adapted HDA Petasatd@he higher

classification accuracies are presented in bold.

Training Sets mi-SVM.RBF MI-SVM.RBF
Bag Accuracy]Instance AccuracyBag Accuracy Instance Accuracy
Training-10 0.730 0.882 0.500 0.789
Training-30 0.760 0.889 0.500 0.789
Training-50 0.790 0.871 0.580 0.795
Training-70 0.780 0.882 0.760 0.843
Training-90 0.750 0.879 0.750 0.864
Table 3. Bag and instance classification accuracies for the mi-SVM and MI-SVM RBifr

kernel obtained from training in datasets with different rates of positstairces.

mi-SVM.RBF MI-SVM.RBF
140 T T T 140 T T T
[l Correct Negative Bags [l Correct Negative Bags
[ incorrect Negative Bags [ incorrect Negative Bags
120 B b 120 b
[ correct Positive Bags [ correct Positive Bags
[TJincorrect Positive Bags [Jincorrect Positive Bags

Percentage of Bags (%)
Percentage of Bags (%)

Rate

mi-SVM.RBF MI-SVM.RBF

[l Correct Negative Instances [l Correct Negative Instances
120 [l incorrect Negative Instances | 120k [ incorrect Negative Instances

[ correct Positive Instances [ correct Positive Instances

[Jincorrect Positive Instances [ Tincorrect Positive Instances

Percentage of Instances (%)
Percentage of Instances (%)

Rate Rate

Fig. 2. Percentages of correctly and incorrectly classified bags (top) anadestg¢bottom) with
increasing percentage of positive instances on positive bags for ii-@ft) and MI-SVM
(right) classifiers.
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these multiple instance algorithms use the most positistante of each positive bag
and the least negative of each negative bag to find the hyperghat best separate
the two types of instances. Thus, the higher percentagesitiy@instances allows the
classifier to span more hypothesis for finding the instanaeishmost representative of
the positive class. Nonetheless, after finding the witnestsance of the positive class,
adding more instances would not help increase the accufabg classifier. These re-
sults suggest that is better to use images whose randomiagrhpk higher likelihood
of providing positive instances.

Fig. 3. Example of an instance classification using the MI-SVM classifier for asirg rate of
positive instances on positive bags: 0.5, 0.7, and 0.9. The imagmseig green correspond to
instances correctly labeled while the image regions in red correspondlabeied instances.

On the other hand, for maximum instance margin algorithhes jicrease of pos-
itive instances do not exhibit any influence on the classduracy at the instance
level. This may be due to the fact that these algorithms udggieupositive or negative
instances to determine the hyperplane. Although the ptagerof positive instances is
increasing, the negative instances are present in a higleqp@ge in all training sets.
Therefore, these classifiers are highly capable of deténguithe negative instances
from the remaining instances. This could justify why the bag instance accuracy of
these classifiers is high throughout the several rate ofippéistances. Nonetheless, at
the bag level, the classifier shows signals of overfittindiigh and low rate of positive
instances.

6 Conclusions

In this work, the influence of positive instances on positiggs is analyzed on support
vector machines adapted for the multiple instance learfismgework: mi-SVM and
MI-SVM. The algorithms were evaluated using a new datasetinéd from an existing
pedestrian detection dataset.

The results show that the increasing percentage of pogistances have a positive
impact in the overall accuracy of the MI-SVM classifier assuteof the maximum bag
margin formulation. For the mi-SVM classifiers, no relevahénges occur at instance
level. At bag level, the classifier is biased towards negab&gs at low and high rates
of positive instances affecting the overall performancéhefclassifier. Therefore, the
rate of positive instances should be considered while atialy the performance of
mi-SVM and MI-SVM classifiers.
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As future work, we would like to extend this analysis to moraltiple instance
learning algorithms and consider algorithms that are baseother multiple instance
learning assumptions.
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