
Influence of Positive Instances on
Multiple Instance Support Vector Machines
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Abstract. This work studies the influence of the percentage of positive instances
on positive bags on the performance of multiple instance learning algorithms
using support vector machines. There are several studies that compare the per-
formance of different types of multiple instance learning algorithms in different
datasets and the performance of these algorithms with the supervised learning
counterparts. Nonetheless, none of them study the influence of having alow or
high percentage of positive instances on the data that the classifiers are using to
learn. Therefore, we have created a new image dataset with differentpercentages
of positive instances from a dataset for pedestrian detection. Experimental results
of the performance of mi-SVM and MI-SVM algorithms on an image annotation
task are presented. The results show that higher percentages of positive instances
increase the overall accuracy of classifiers based on the maximum bagmargin
formulation.
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1 Introduction

In supervised learning, the classifier is provided with a training set that consists of in-
stances and the corresponding labels. The training set is then used to obtain a classifier
that can predict the labels for novel instances [4]. Nonetheless, the correspondence re-
quirement between instances and labels is difficult or even prohibitive for some applica-
tions like object detection. Annotating whole images is easier and faster than annotating
and identifying relevant image regions.

Multiple instance learning appeared as a more flexible paradigm assuming that there
is some ambiguity in how the labels are assigned. Namely, in multiple instance learn-
ing, the instances are grouped into bags and the labels are assigned to the bags instead
of being assigned to each of the instances. The labels are then learned using a multiple
instance learning assumption like the weighted collectiveassumption [10] or the stan-
dard multiple instance learning assumption. The standard multiple instance learning
assumption is the one that is considered in this work, and states, for a binary classifi-
cation problem: a bag is positive if at least one of the instances in that bag is positive,
a bag is negative if all the instances in that bag are negative. Therefore, the true input
labels are not known during training, i.e., the true input labels are latent variables. Note
also that a positive bag can contain negative instances.

jag
Typewriter
Robot 2015, Second Iberian Robotics Conference, Vol.418 pp.259-271
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In order to understand better the multiple instance learning problem, let us consider
an example adapted from [7]. Consider that we have a classroom and we know some
professors that have access to that classroom, and others who do not have access. Each
professor has a key chain with a few keys that can be differentiated, for example, by
color. The goal is to predict if a given key or a given key chainallows to open the door
of the classroom. Using the multiple instance learning framework, the bags will corre-
spond to the key chains that are labeled as positive or negative according to the access
that the professor has to the classroom. The instances are the keys contained in the key
chains. Using the assumption, we know that keys on key chainsfrom professors that
do not have access to the classroom do not open the door. Thus,to solve this problem
we have to find the key that is common in all positive key chains. If we consider the
color as a feature, the keys colors that appear in negative key chains could be ruled out.
Hopefully, there is one key color that remains and this will correspond to the key that
opens the door to the classroom. If the classifier can correctly identify this key, it can
predict if a key or key chain is able to give access to the classroom. From this simple
example, we can see that multiple instance learning algorithms can have several formu-
lations because they can aim at designing classifiers for better discriminating bags or
instances.

The performance of multiple instance learning algorithms have been compared be-
tween themselves and with the supervised learning counterparts in several application
domains. But none of them focused on what is the influence of a different percentage of
positive instances on the classifiers. Therefore, this workintends to study this influence
on the performance of the classifiers. We focus on mi-SVM and MI-SVM which are
support vector machines adapted to the multiple instance learning framework.

The paper has two major contributions: a new dataset that allows to evaluate the
influence of different percentages of positive instances, and experimental evidence that
increasing this percentage has a positive impact in the performance of MI-SVM.

In terms of structure, we will first present a brief review of the state of the art on mul-
tiple instance learning algorithms in Section 2. A more detailed formalism of multiple
instance learning frameworks with focus on algorithms using support vector machines
is provided in Section 3. The methodology used to evaluate the performance of the clas-
sifiers and the dataset used is described in Section 4. The results and major conclusions
are presented in Section 5 and Section 6, respectively.

Notation: The notation followed throughout this work is the following: non-italic let-
ters correspond to functions, italic letters correspond toscalars, lower case bold letters
correspond to vectors (for example, to represent instances), and upper case bold letters
correspond to matrices (for example, to represent bags).

2 Related Work

Multiple instance learning algorithms appeared to overcome some limitations of super-
vised learning regarding the training sets for some applications like object detection or
drug activity prediction. The limitation is associated with the difficulty of providing an
accurate and correctly labeled training set at the instancelevel.
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The term multiple instance learning appeared with Dietterichet al. [7] in the context
of drug activity prediction. Dietterichet al. [7] developed the Axis-Parallel Rectangle
algorithm for predicting some property of the molecule based on the molecule’s shape
statistics. Since than, several algorithms have been proposed for solving the multiple
instance learning problem. Maronet al. [13] proposed the Diverse Density (DD) algo-
rithm to learn Gaussian concepts for representing the positive regions. This algorithm
was then extended by Zhanget al. [17] to use the expectation-maximization (EM) has
the optimization technique.

Other authors have proposed algorithms for multiple instance learning by adapting
the support vector machine framework. The support vector machine framework aims in
finding an hyperplane that is capable of separating the training data with the maximum
margin possible. Andrewset al. [2] proposed two algorithms, mi-SVM and MI-SVM,
that differ in the margin definition. The first considers the margin between the positive
and negative instances while the second considers the margin between the bags. In the
MI-SVM, the bags are not represented by multiple instances but rather by the most
positive instance for the positive bags and by the least negative instance for the nega-
tive bags. Bunescuet al. [5] extended the MI-SVM algorithm by adding constraints to
ensure that at least one of the instances in a positive bag is positive. This algorithm is
shown to work well for sparse positive bags.

The previous approaches modify the objective function for adapting the support vec-
tor machines to the multiple instance learning framework. There are other approaches
that modify the kernels used. Gartneret al. [11] proposed two kernels: statistic kernel
and the normalized set kernel. In the statistic kernel, the bag is transformed into a fea-
ture vector by selecting the minimum and maximum values for each feature from all
instances in the bag. In the normalized set kernel, the bag isrepresented as the sum of
all instances that belong to the bag normalized by the 1 or 2-norm.

These algorithms have been applied in different application domains like classifica-
tion of molecules [7], content based image retrieval [2], text classification [2], among
others. These algorithms have different formalisms and a more detailed review can be
found in the following articles [1, 3, 10].

Since there are a large number of applications and a high number of algorithms for
multiple instance learning, several studies have concentrated in finding the best multi-
ple instance classifier. Ray and Craven [16] concluded that there is no optimal multiple
instance learning algorithm since their performance depend on the data. Furthermore,
the multiple instance learning algorithms have been compared to the correspondent su-
pervised learning algorithms using different datasets [5,7, 16]. These studies concluded
that the multiple instance learning algorithms are consistently superior, although this
observation also depends on the data. Nonetheless, none of these studies have consid-
ered the rate of positive instances in their data while evaluating the performance of the
multiple instance learning algorithms. The rate of positive instances on positive bags
is directly related with the standard multiple instance learning assumption. Therefore,
in this work we want to evaluate if the rate of positive instances on positive bags in-
fluence the performance of multiple instance learning algorithms. This will allow to
determine if this should be considered as a variable when analyzing the performance of
these algorithms.
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3 Multiple Instance Learning

In this section we will present the formalism associated with the multiple instance learn-
ing problem. Remember from Section 1 that in supervised learning, the training set con-
sists of example pairs: an input and a corresponding label. In multiple instance learning,
the inputs are grouped into bags and the labels are assigned to the bags of inputs. Thus,
we do not know which of the inputs or pair of inputs is responsible for the label. In this
sense, the multiple instance learning framework makes weaker assumptions about the
labeling information.

In order to formulate the multiple instance problem, let us consider a training data
Φ with N pairs of examples:

Φ = {(X1, y1) , (X2, y2) , . . . , (XN , yN )} (1)

whereXi is the bag of thei-th example, andyi is the corresponding bag label of the
i-th example. A bagXi is composed ofMi instances:

Xi = {xi1,xi2, . . . ,xiMi
} (2)

wherexij ∈ χj is thej-th instance of the bagXi andχj = R
Dj is theDj-dimensional

Euclidean space (dimension of thej-th instance). For simplifying the notation, assume
from now on that all bags in theN pairs of examples have the same number of instances
Mi = M and all instances belong to the sameD-dimensional Euclidean spaceχj =
χ = R

D.
A bag labelyi ∈ Υ is the result of the labels given to each of the instancesyij ∈ υ

that compose the bagXi. For simplifying this exposure, consider a binary classification
problem whereΥ = {−1, 1} andυ = {−1, 1}. Using the standard multiple instance
learning assumption for binary classification, mentioned in Section 1, the bag labelyi
corresponds to:

yi = max
j

yij =

{

1
−1

∃j : yij = 1
∀j : yij = −1

(3)

The goal of the multiple instance learning algorithm is to train an instance classifier
f (x) : χ → υ or a bag classifierF (X) : χM → Υ . From (3), a bag classifier can be ob-
tained from a correct instance classifier byF (Xi) = sign (maxj f (xij)). Hence, most
of the multiple instance learning algorithms aim to learn instance classifiers instead of
bag classifiers.

The focus of this work is to evaluate the performance of support vector machines in
the multiple instance learning framework in an image classification task, therefore we
will now present the formalism of the two classifiers used: Maximum Instance Margin
(mi-SVM) and Maximum Bag Margin (MI-SVM). But first, let us introduce the support
vector machine framework for supervised learning.

3.1 Support Vector Machines

Consider a training setΩ with K examples:

Ω = {(xi1, yi1) , (xi2, yi2) , . . . , (xiK , yiK)} (4)
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in a binary classification problemyij = {−1, 1}. The objective of a support vector ma-
chine framework is to find the hyperplane that separates the examples with the biggest
margin possible. The margin is defined as the smallest distance between the hyperplane
and a positive and a negative example.

The support vector machine soft-margin formulation is:

min
w,w0,ξi

1
2 ‖w‖

2
+ C

K
∑

j=1

ξij

s.t. ξij ≥ 0
yij (w · xij + w0) ≥ 1− ξij

(5)

wherew is the hyperplane normal,w0 is the hyperplane offset, and theξij are the slack
variables that allow to apply the support vector machine framework to data that is not
separable. This means that we are allowed some mislabeled examples. This leads to a
quadratic programming problem that is convex and easily solvable. The examples that
are nearest to the hyperplane are called the support vectors.

In this work we do not intend to detail the support vector machine formalism. There-
fore, for a detailed introduction to support vector machines the reader should refer to
[12, 14].

3.2 Maximum Instance Margin: mi-SVM

The maximum instance margin formulation of the support vector machines aims to
recover the instance labels of the positive bags.

In support vector machines for supervised learning, the labelsyij of each instance
xij in a training set are known. In multiple instance learning this is not the case, only the
labelsyi of a bagXi are known. Considering the standard multiple instance learning
assumption (3), we can see that the labels for each instance of a negative bag are also
known and therefore the margin could be defined as in a regularsupport vector machine.
However, the labels for each instance of a positive bag are unknown and therefore com-
puting the margin is more complicated. Andrewset al. [2] treated the instance labels
yij as unknown integer variables:

min
yij

min
w,w0,ξi

1
2 ‖w‖

2
+ C

∑

i,j

ξij

s.t. ξij ≥ 0
yij (w · xij + w0) ≥ 1− ξij
yij = −1, ∀i : yi = −1
∑

j

yij+1
2 ≥ 1, ∀i : yi = 1

(6)

From (6) we can see that in mi-SVM multiple negative or positive instances in
positive bags can be support vectors. The problem leads to a mixed integer program
that is hard to solve. Nonetheless, the integer variables, the hidden labelsyij , reduce the
problem to a quadratic programming problem. Andrewset al. [2] proposed an heuristic
that consists of two steps: first train a SVM classifier considering a given value for the
instance labels, then use the new classifier to update the instance labelsyij of positive
bags. This process is computed until no changes occur in the instance labels.
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3.3 Maximum Bag Margin: MI-SVM

The maximum bag margin formulation of the support vector machines aims to recover
the key positive instance for every positive bag.

In this formulation, the margin of a bag corresponds to the maximum distance be-
tween the hyperplane and all of the instances that belong to abag:

yi = max
j

(w · xij + w0) (7)

From (7) we can see that the margin of a positive bag is determined by the most
positive instance while the margin of a negative bag is determined by the least negative
instance. The bag margin formulation is:

min
w,w0,ξi

1
2 ‖w‖

2
+ C

∑

i,j

ξij

s.t. ξij ≥ 0
yi max

j
(w · xij + w0) ≥ 1− ξij

(8)

This optimization is not convex, therefore Andrewset al. [2] introduced an extra
variables(j) for each bag. This variable denotes the instance that is selected as the
witness instance of a positive bag. The formulation (8) is now given by:

min
s(j)

min
w,w0,ξi

1
2 ‖w‖

2
+ C

∑

i,j

ξij

s.t. ξij ≥ 0
w · xij + w0 ≤ −1 + ξij , ∀i : yi = −1
w · xis(j) + w0 ≥ 1− ξij , ∀i : yi = 1

(9)

In this formulation, each positive bag is represented by only one positive instance.
All the negative instances in the positive bags are disregarded. Like the formulation of
mi-SVM, this corresponds to a mixed integer program. Nonetheless, the integer vari-
ables, the variabless(j), reduce the problem to a quadratic programming problem. An-
drewset al. [2] also proposed an heuristic that consists in two steps: first train a classi-
fier like a regular supervised learning considering a given witness instance, then using
the new classifier select new witness instances for the positive bags. The optimization
process ends when the selected witness stops to change.

4 Methodology

The objective of this work is to compare the performance of multiple instance support
vector machines’ learning algorithms with the percentage of positive instances on pos-
itive bags. This performance is evaluated in an image annotation task using a dataset
for pedestrian detection. Image annotation task consists on identifying if an image has
a person and if a given region of that image contains a person or a part of a person.

Normally, datasets in multiple instance learning do not report the percentage of
positive instances included on the positive bags and there is no study evaluating the
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BA

C D

Fig. 1. Examples of positive and negative instances obtained during the transformation of the
HDA Person Dataset. A and C: Negative instances (cyan) drawn from negative bags. B and D:
Negative (cyan) and positive (red) instances drawn from positive bags.

influence of positive instances on this type of classifiers. Therefore, a new multiple in-
stance learning dataset has been created based on a real dataset for pedestrian detection,
the HDA Person Dataset [9, 15].

The HDA dataset is a high resolution image sequence dataset for research on high
definition surveillance, pedestrian detection and re-identification. The dataset comprises
information from 18 cameras with different resolutions. A total of 13 image sequences
are labeled. The labeled data includes 64.028 annotations from 85 persons in a total
of 75.207 frames. The annotations include information about the person bounding box
position and unique identification, occlusion and type of detection (person or crowd).
Additionally, the annotations have information about the camera and frame number.

In order to transform this dataset, we adopted a similar strategy to Andrewset al.
[2]. This takes in consideration the standard multiple instance learning assumption for
binary classification: an image is positive if at least thereis one person or a part of a
person on the image, and an image is negative if there is no person or part of a person
on the image. Therefore, the positive images are randomly drawn from the annotated
frames of the cameras while the negative images are sampled from the non-annotated
frames. Notice that frames annotated with occlusion are notconsidered, in order to
not provide erroneous features to the classifier. Remember that the bounding box for
an occluded person is drawn by estimating the whole body extent in the HDA Person
Dataset.

In a positive image (Figure 1.B and Figure 1.D), the positiveimage regions are
obtained by sampling randomly the bounding box area while the negative image regions
are drawn from the remaining area of the annotated frames. Ina negative image (Figure
1.A and Figure 1.C), the negative image regions are randomlysampled from the entire
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Set Positive Instance Rate
Positive Bags Negative Bags Total Bags

Total InstancesPositive InstancesNegative InstancesTotal InstancesPositive Instances
Testing 0.469 409 192 500 909 192

Training-10 0.100 750 75 750 1500 75
Training-30 0.300 750 225 750 1500 225
Training-50 0.500 750 375 750 1500 375
Training-70 0.699 747 522 750 1497 522
Training-90 0.899 739 664 750 1489 664

Table 1. Number of instances for each training and testing set obtained from the HDA Person
Dataset.

area of the non-annotated frame. In either of the cases, the maximum overlapping area
between image region of the same image is 40%, and the window considered for each
image region is 60 x 60. Furthermore, in order to comply with agiven percentage of
positive image regions on positive images, only annotated frames that satisfied this
percentage have been considered for each of the training datasets obtained. Like the
MIL datasets mentioned previously, the number of instancesper bag is also variable.
The features are extracted from the image regions using the integral channel features
defined by Dollaret al. [8] and that have been used for pedestrian detection. These
features include color (LUV color space), gradient magnitude, and gradient histograms.
Remember from Section 3 that each instance belongs to aD-dimensional Euclidean
space, a feature corresponds to each of theD components of that Euclidean space. The
number of features per image region is 600.

The training and testing sets have been obtained using the approach defined above.
A total of 5 training sets were created, each with a differentpercentage of positive
instances on positive bags: 0.1, 0.3, 0.5, 0.7, and 0.9. In order to have an unbiased com-
parison, the testing set consists of sets with different percentage of positive instances:
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. Each of these sets are composed of ap-
proximately the same number of bags. Notice also that the images for the training and
testing sets were obtained from different cameras. The training set was obtained from
cameras 53, 56, 57 and 58, while the testing set was obtained from cameras 50 and 59.
The images used correspond to cameras of equal resolution 1280 x 800.

In conclusion, the HDA Person dataset was transformed into anew dataset with
training sets that consist of 150 bags (75 positive and 75 negative bags), and into a
testing set of 100 bags (50 positive and 50 negative bags). The summarized statistics of
each dataset obtained can be found in Table 1.

Similarly to the previous datasets, this dataset is used fortraining and testing the
mi-SVM and MI-SVM classifiers. The parameters for each of thekernels (linear, poly-
nomial and RBF [6]) were analyzed and optimized using 3-foldcross-validation using
a training set of 150 bags (75 positive and 75 negative bags) obtained similarly to the
testing set described above.

5 Results

The classifier and kernels accuracies depend on the data and on the application domain
[16]. Therefore, we started by evaluating the performance of each of the classifiers
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and kernels on a specific training set (Training-CL) before analyzing the influence of
the positive instances on positive bags. This training set corresponds to a mix of bags
with different percentages of positive instances in order to get training data that is not
biased towards one of the training sets with a specific percentage of positive instances.
This analysis will allow us to select the best classifiers andkernels to the problem of
pedestrian detection. The results obtained are presented in Table 2.

From Table 2, we can conclude that the mi-SVM algorithms are consistently better
than the MI-SVM counterparts. This means that the features present at the instance level
are sufficient to learn a classifier that can discriminate between the positive and negative
bags. Furthermore, we can conclude that the mi-SVM classifier with RBF kernel has the
highest bag and instance classification accuracies for the adapted HDA Person dataset.
Notice also that the instance accuracies for mi-SVM with a linear kernel are similar
to the ones obtained using a RBF kernel. This analysis allowsus to determine that the
classifiers for this data should use RBF kernels. Therefore,the remaining analysis were
made using the mi-SVM classifier with RBF kernel and the MI-SVM classifier with
RBF kernel.

As mentioned in Section 4, the performance of the mi-SVM and MI-SVM classi-
fiers is evaluated for different percentages of positive instances on positive bags. The
classification accuracies obtained are reported in Table 3.From Table 3, the increas-
ing percentage of positive instances has higher influence onthe maximum bag margin
algorithms than on the maximum instance margin algorithms.In the mi-SVM, the in-
stance classification accuracies are very similar for the different percentages of positive
instances (maximum difference between the minimum and maximum classification ac-
curacies is 1.8%), and the bag classification accuracy reaches a maximum when the
training set has 50% of positive instances and then starts todecrease. In the MI-SVM,
the bag and the instance classification accuracies increasesignificantly with the increas-
ing percentage of positive instances.

The results in Table 3 give information about the overall accuracy of the classifier. In
Figure 2, we present the performance of the classifier on positive and negative instances.
From Figure 2, we can reinforce that the impact of an increasing percentage of positive
instances is higher on MI-SVM classifier. Namely, when the rate of positive instances
increases the classification accuracy of positive bags and instances increases. Nonethe-
less, this increase is followed by a decrease in the classification accuracy of negative
bags and instances. This decrease occurs at a significantly less extent on instances than
on bags. Regarding the mi-SVM classifiers, the influence of positive instances is more
noticeable at the bag level. The change in the classificationaccuracy is driven by the
change on the classification accuracy of negative bags (maximum difference between
the minimum and maximum classification accuracies is 11%). The results show that the
classifier is biased towards negative bags when there is a lowand high percentage of
positive instances. At the instance level, the accuracy does not have significant changes
with the increase of positive instances.

In conclusion, for maximum bag margin algorithms, the increase of positive in-
stances allow to obtain classifiers with higher accuracy (Figure 3). Nonetheless, at the
bag level, the overall accuracy of the classifier does not benefit when the percentage of
positive instances is too high (90%). These findings can be explained by the fact that
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Training Set
Bag Classification Accuracy Instance Classification Accuracy

mi-SVM MI-SVM mi-SVM MI-SVM
Linear Polynomial RBF Linear Polynomial RBF Linear Polynomial RBF Linear Polynomial RBF

Training-CL 0.680 0.510 0.770 0.600 0.500 0.710 0.878 0.677 0.879 0.804 0.789 0.816

Table 2.Bag and instance classification accuracies on an adapted HDA Person dataset. The higher
classification accuracies are presented in bold.

Training Sets
mi-SVM.RBF MI-SVM.RBF

Bag Accuracy Instance AccuracyBag Accuracy Instance Accuracy
Training-10 0.730 0.882 0.500 0.789
Training-30 0.760 0.889 0.500 0.789
Training-50 0.790 0.871 0.580 0.795
Training-70 0.780 0.882 0.760 0.843
Training-90 0.750 0.879 0.750 0.864

Table 3. Bag and instance classification accuracies for the mi-SVM and MI-SVM withRBF
kernel obtained from training in datasets with different rates of positive instances.
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Fig. 2. Percentages of correctly and incorrectly classified bags (top) and instances (bottom) with
increasing percentage of positive instances on positive bags for mi-SVM (left) and MI-SVM
(right) classifiers.



Positive Instances on mi-SVM and MI-SVM 11

these multiple instance algorithms use the most positive instance of each positive bag
and the least negative of each negative bag to find the hyperplane that best separate
the two types of instances. Thus, the higher percentage of positive instances allows the
classifier to span more hypothesis for finding the instance that is most representative of
the positive class. Nonetheless, after finding the witness instance of the positive class,
adding more instances would not help increase the accuracy of the classifier. These re-
sults suggest that is better to use images whose random sampling has higher likelihood
of providing positive instances.

Fig. 3. Example of an instance classification using the MI-SVM classifier for increasing rate of
positive instances on positive bags: 0.5, 0.7, and 0.9. The image regions in green correspond to
instances correctly labeled while the image regions in red correspond to mislabeled instances.

On the other hand, for maximum instance margin algorithms, the increase of pos-
itive instances do not exhibit any influence on the classifieraccuracy at the instance
level. This may be due to the fact that these algorithms use multiple positive or negative
instances to determine the hyperplane. Although the percentage of positive instances is
increasing, the negative instances are present in a high percentage in all training sets.
Therefore, these classifiers are highly capable of determining the negative instances
from the remaining instances. This could justify why the bagand instance accuracy of
these classifiers is high throughout the several rate of positive instances. Nonetheless, at
the bag level, the classifier shows signals of overfitting forhigh and low rate of positive
instances.

6 Conclusions

In this work, the influence of positive instances on positivebags is analyzed on support
vector machines adapted for the multiple instance learningframework: mi-SVM and
MI-SVM. The algorithms were evaluated using a new dataset obtained from an existing
pedestrian detection dataset.

The results show that the increasing percentage of positiveinstances have a positive
impact in the overall accuracy of the MI-SVM classifier as a result of the maximum bag
margin formulation. For the mi-SVM classifiers, no relevantchanges occur at instance
level. At bag level, the classifier is biased towards negative bags at low and high rates
of positive instances affecting the overall performance ofthe classifier. Therefore, the
rate of positive instances should be considered while evaluating the performance of
mi-SVM and MI-SVM classifiers.
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As future work, we would like to extend this analysis to more multiple instance
learning algorithms and consider algorithms that are basedon other multiple instance
learning assumptions.
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