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Abstract

3D metric data of environmental structures is nowadaysgmtaa many infor-
mation sources (maps, GIS) and can be easily acquired wittemalepth sens-
ing technology (RGBD, laser). This wealth of information careadily used for
single view calibration of 2D cameras with radial distontiprovided that image
structures can be matched with the 3D data.

In this paper we present an analysis of the level of accuraatydan be ob-
tained when such calibration is performed with the 2D{3DrI-Linesalgorithm.
The analysis propagates uncertainty in the detection tdifeaat the image level
to camera pose, and from there to 3D reconstruction. Thegtamalror propaga-
tion expressions are derived using first order uncertaimgets, and are validated
with Monte Carlo simulations in a virtual indoor environmenhe method is gen-
eral and can be applied to other calibration methods, asdemxplicit or implicit
expressions can be derived for the transformation from ér@prdinates to 3D
reconstruction.

We present results with real data for two applications: e)3D reconstruction
of an outdoors building for which 3D information is given byreap, observed
by a mobile phone camera; and ii) the uncertainty in the Ipabn at the floor
plane of points observed by a fixed camera calibrated by & exhopped with an
RGBD camera navigating in a typical indoor environment.
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analysis

1. Introduction

Camera calibration is required in a wide range of applicati@eo-localization
of detected events, measurement of people’s height or le&hgpeed, associat-
ing events between cameras, are examples of tasks whichntabetackled if
cameras are calibrated with respect to the coordinateraysita known scenario.
Whereas calibrating camera translation can, in many cagepetiormed by a
simple measurement, calibrating rotation and intrinsiapeeters are more diffi-
cult tasks. In many cases the selection of the viewing dorczoom and focus
is only done while mounting the camera. Calibration in-sstthus convenient for
many applications.

In-situ calibration with conventional calibration toolsquires the use of cal-
ibration rigs or patterns which may be impractical in mangesa For instance
the methods of Tsai [1], Heikkil [2], Zhang [3], Kannala [4] and Bouguet [5]
demand that the known pattern covers most of the imagedwaheet) requires an
impractically large calibration pattern if the camera isumted at a high position,
far from the floor level. In addition, conventional calibcat methodologies are
mostly focused in the intrinsic parameters, and thus do mighe distances (rigid
pose transformations, extrinsic parameters) among theugunits within a cam-
era network. In other words, they are not designed to proaiglwbal coordinate
system for all cameras.

In this work we consider a calibration methodology that east of using a
calibration pattern, uses the scene data imaged by a cametmted in place,
and auxiliary data encoding some 3D structure about the echagea (Fig. 1).
In some cases the auxiliary data can be simply a map or anl aegge. In-
situ calibration based on world data brings two benefitsth@ye is no need for
calibration patterns, and (ii) the world data specifies adinate system which
can be used by multiple cameras.

The most common type of data used for camera calibratioreisdinrespon-
dence between 3D scene points and their 2D image projedtiorid. Consid-
ering pin-hole camera models, one finds that 3D points and 2Reprojections
are related by simple linear constraints in homogeneousdowies that can be
combined in the so-callddirect Linear Transformation (DLT]B, 7]. Particularly
in urban scenarios, straight lines are omnipresent. Thisvates the use of lines
for calibration. In fact, using lines instead of points izvandtageous specially be-
cause simple image processing tools for local line fittingloaused to reduce the
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Figure 1: Indoors and outdoors camera calibration. (a)b€ation of a fixed camera using data
acquired by an auxiliary mobile RGB-D camera. (b) Calitmatof a fixed camera using the 3D
structure of imaged buildings. The matching of 3D data KHines) with image data allows
calibrating the fixed camerd€}, and in particular estimating their pos&3c, and intrinsic pa-
rameterK.

matching error between 2D and 3D structures. The ideniibicaf corresponding
lines in multi-modal data is less sensitive to errors thdal#shing point corre-

spondences [8, 9]. Interestingly, writing linear consttsifor calibration from

line correspondences, i.e. estimating the projectionimag as simple as with
points [10]. Once the projection matrix is computed, the eemnpose and intrinsic
parameters are readily obtained by factorization [7]. Thiality of the estimated
parameters depends on a series of factors: structure obse\ed environment,
selected data matches, model parameterization and optionzriteria [11].

The ability to assess the uncertainty in the estimates ofilraaon method
is important not only to infer errors on 3D reconstructiorn aiso as a means to
validate and improve the calibration process. One way tddois$ to propagate
the uncertainty in the measurement process (variance @i poordinates of the
feature points or lines used for calibration) to unceriauatiues on the calibration
parameters, either intrinsic, extrinsic, or both; and ftbese uncertainties, to that
of the computed 3D reconstruction when such calibrationeshbre used.

This paper presents such detailed noise propagation aébyshe case of
the DLT-Linescamera calibration process. We derive expressions to ctengsd
timates for the the covariance of the camera intrinsic patars as well as esti-
mates for the covariance of the camera pose. To do so, we d¢eragdirst order
linearization of the calibration method around the obtdiselution and use it to



perform first order error propagation [12, 13]. We validdte tbtained uncer-
tainty with synthetic data based on Monte-Carlo simulati@msl with real data
from a non-overlapped camera network.

The uncertainty analysis is derived first for tB&T-Linesformulation pre-
sented in [14] and further extended to introduce novel cas@sterest, namely
the combination oDLT-Lineswith square pixel constraints, and with radial dis-
tortion. Finally, the analysis is also extended for the gasghich the scene can
be considered to obey a floor plane constraint, typical adbenagery.

2. Related work

Cameras can be installed outdoors or indoors [15, 16], ancdbeamsed to
cover overlapped or non-overlapped shared views [17, 18rl@pping fields of
view usually allow matching scene features among diffecanteras and therefore
provide extrinsic information for their calibration. Comsely, non-overlapped
fields of view require alternative sources of extrinsic mfation.

State of the art techniques for camera calibration requiesuse of non-
planar [1] or planar [3] patterns, usually made of pointegd or checkerbo-
rads [19], conics [20], or even ArTag markers [21]. Unfosrtely, for large out-
door camera networks, calibration patterns of reasonabés ©ften project on
images with very small resolution, mainly because camem@atoaated at a con-
siderable height with respect to the floor. In addition, dgratbased independent
calibration of each camera would require a secondary psdoa®late all camera
coordinate systems to a global reference frame, but estatj this relation with
small to null overlapping fields of view is nearly impossibt®r planar scenarios,
a DLT [6, 2, 7] suffices to estimate image to plane homograplag]. In practice
however, the planar scenario assumption is too restrietsvaonparallel locally
planar surfaces, such as ramps and plazas, often occuf urlbea environments.

An interesting in situ calibration methodology was promgbby Svoboda et
al. [23]. This technique requires to use a bright moving $paalibrate the cam-
era network, simplifying the process with respect to thed#ad approaches. The
technique assumes overlapping fields of view to estimatefthpolar geometry, to
extract homographies, estimate depth, and finally comat@verall calibration
of the camera network. However the method is not suited ftdaor scenarios
or when the fields of view of the cameras do not overlap. Anadlternative is to
place the led light on a moving robot and to have a secondaot exjuipped with
a laser sensor track the first one, relating their positidimeges to the camera



network [24]. Yet another system that relies on tracking aimgobject to es-
timate the extrinsic parameters is [25], which assumes ataotvelocity model
for the target. Tracking a moving target each time the systeeds recalibration
might be prohibitive. The estimation of the camera locaparely by analyzing
cast shadows is also mathematically possible, but with ksvyposition accuracy
in practice [26], and if one is interested only in the topglofthe network config-
uration and not in a metric calibration, multi-target trexgkof people could also
be an alternative [27]. In contrast to these approaches,pvéoa system that
does not rely explicitly on a moving pattern or shadow tolralie the network,
and that produces accurate metric calibration, even incoutscenarios.

Analogously to use moving targets, one may have moving casnerg. cam-
eras encompassing controlled orientation changes (patiindgapito et al. [28]
use the properties of the image of the absolute conic to @alibrate such moving
cameras. The computed intrinsic parameters, and the aligmieof landmarks to
image features allows to estimate also the extrinsic pae§29]. However,
camera networks are often composed of fixed cameras andidieerequire scene
information to compensate the lack of self-motion. Capnild &orre [30] use the
properties of vanishing points in two steps. First theyneate the focal length
and the principal point of a camera, while in a second stepdlémate the trans-
formation between two cameras, with corresponding vanispbints. Another
way to calibrate the camera network is to use a vertical Yamgspoint and the
knowledge of a line in a plane orthogonal to the vertical ctie on each cam-
era image [31]. In [31] fundamental matrices are used to ecdenfhe relative
camera positions. They utilize a vertical vanishing-paimtl an infinity homogra-
phy. A common world coordinate system is defined to elimirlageoverlapping
constrain.

Our work is in this vein of fixed cameras which are calibratéithynformation
commonly available in urban scenarios. Our calibratiomades consist of net-
works of fixed monocular cameras which are traversed by aiiayX_IDAR or
color-depth (RGB-D) mobile camera (see Fig. 1). The auxil@ynera provides
3D data of the scenario which is sufficient for the calibnai@md thus overcomes
the need of additional calibration artifacts. In addititme mobile camera is as-
sumed to have an estimate of its own localization, and tbhezgdrovide a global
(single) coordinate system to the fixed cameras. As therenarg/ well known
methodologies for self localizing the mobile camera, as igultaneous Local-
ization and Map Building (SLAMve focus our work on the aspect of calibrating
the fixed camera with respect to the mobile camera. Our regerk on camera
calibration based in point clouds [14], is extended herd& w&imore comprehen-
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sive Gauss-Newton formulation. This formulation allows #asy introduction of
additional constraints and algorithm analysis.

An analysis of camera calibration uncertainty is needed/éduate the qual-
ity of metric reconstructions that can be inferred from thages in the camera
network [32]. In a wide variety of cases, uncertainty pragam can be analyzed
using first order techniques [12]. In [33] for instance, atfoder error analysis
is used to propagate the calibration uncertainty to theongtiarameters. Ansar
and Daniilidis [34] study the sensitivity of the camera pesBmation while using
points or lines with corresponding 3D coordinates. In Dathé and Ernst [35]
uncertainty propagation techniques are used to developnhiased estimator.
Salvi et. al. [36] tested the accuracy of several classiahbiations methodolo-
gies. Sun and Cooperstock [37] show empirically the effettsamera camera
calibration, of data size and input noise. In [11], the asiglys made via pa-
rameter correlation, and in [38] we introduce a calibratiaoertainty analysis for
cameras without radial distortion. In this paper we propoBest order estimation
analysis of the full extrinsic calibration of cameras thavé radial distortion.

3. Cameracalibration

The pin-hole camera model maps the 3D projective space @2Dh@ojective
plane. Using homogeneous coordinates, a scene poiat/X Y Z1]T is imaged
as a poinm=[uv1]T,

m=PM=KI[R tM, (1)
where= denotes equal up to a scale factor &id a 3x 4 projection matrix. The
3 x 3 upper triangular matriX contains the intrinsic parameters. The rotation
matrix R and translation vectdrform a rigid transformation from world to camera
coordinates. In other wordisdenotes the location of the origin of the world frame
in camera coordinates aftblescribes the world frame also in camera coordinates.

To model radial distortion, we use tlavision model proposed by Fitzgib-
bon [39], where an undistorted image poimt, = [uy viy]T is computed from a
radially distorted image pointy"= [ug Vg]" by fy = g/ (1+ A Hrﬁd||2), andA
represents the radial distortion parameter. The coorenaftmi, andnyy are ex-
pressed in a 2D coordinate system having the origin cointidéh the image
principal pointcy = [cy ¢y]T. Thedivision modektan also be conveniently written
in homogeneous coordinates with

UU Ud
v | = Vg , &S my=my+Aey. (2)
1 14+ A ||yl
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3.1. DLT-Points

The Direct Linear Transformation (DLT), developed by AzimdaKarara [6,
2], allows estimating the camera projection matrix in ®,)by solving a linear
system on the matrix entries using a set of 3D poifikg;, : M; = [X Y; Z 1]T}
and their corresponding 2D image poifits : m = [u; v; 1]T}. Applying a cross
product bym; to both sides of the equatiomy x my = m; x (P M;), becomes zero
in the left hand side and thusy|. P M; = 0, where[m] . represents the linear
cross product operation as a skew-symmetric matrimyofThe properties of the
Kronecker product [40]w, allow one to obtain an equation factorizing the data
and variables to estimate

(M @ [m]«) veqP) =0, (3)

wherevedP) denotes the vectorization of the matfx formed by stacking the
columns into a single column vector.

Each pair(M;,m;) provides a set of three equations in the entriesexfP)
but only two of them are linearly independent. Thereforege oeeds at least
six pairs of 3D-to-2D corresponding points to estimate thggetion matrix.
Having N > 6 pairs of 3D-to-2D correspondences, in a nondegeneratégoen
ration, allows forming a matrid, 3N x 12, by stacking\ ma‘rricesMiT ® [my] .
The singular vector corresponding to the smallest singudéure of A is an es-
timate of projection matrix (vectorized), minimizing therar ||A vedP)|® s.t.
[vedP)| =1 [41].

Note that pre-normalization of the input data is crucial mplementing this
algorithm [42]. Hartley suggested that the appropriatenmenalization method
consists in translating all data points (3D and 2D points)hea their centroids
are at the origin. Further the data should be scaled so tbavérage distance, of
data points to the origin, is equal {2 for image points ang/3 for 3D points.

Fitzgibbon’s division model provides an extension of DieT-Pointscalibra-
tion methodology to deal with the estimation of the camemgation matrix,P,
directly from radially distorted image data. Substitutthg right hand side of (2),
in the DLT-Pointsfactorized equation (3) results in

(M @ [mgq +Aeq),) veqP) =0 (4)

which can be rewritten ag\1 + A Ai2)veqP) = 0, whereAj; = MiT ® [mig]x and
Az =M @ [e4]«. ConsideringN pairs(M;,my) one forms two 8l x 12 matrices,
A; and Ay, by stacking matricegy; andAjp. As suggested by Fitzgibbon [39],
left-multiplying the stacked matrices béyI results in a polynomial eigenvalue

v



problem(A] A; + AA] Ao)vedqP) = 03. Its solution gives simultaneously the pro-
jection matrix,vedP) and the radial distortion parametar, Noting that the dis-
tortion model involves representing points around thegpial point, which we
assume to be approximately equal to the image center [3®kgtimated projec-
tion matrix is finally obtained witt®’ = T 1P, whereT is a 3x 3 matrix defining
the translation of the image coordinate reference to threfal point. Having es-
timatedP’, one has an estimate of the principal point, which can be tssiterate
the calibration procedure and therefore improve the appration.

However, in some scenarios it is impossible to calibratenaera usingdLT-
Points An example is shown in Fig. 4 where we do not have direct 2Dz8De-
spondences between Fig. 4 (b) and (c). In such scenariosaonaseDLT-Lines
as will be discussed in the next section.

3.2. DLT-Lines

The use of lines for camera calibration, as opposed to swlamhage points,
allows for fine tuning the location of the lines in the imageotigh simple line
fitting algorithms.

Given a 3D linel;, its projection on the camera image plahesan be repre-
sented by an implicit equatiori{m) = am+ bm, +c¢ = 0, wheremis a point on
the line. The parameters of this equatibs; [a b dT, can be defined by the cross
product of two normalized pointay andmy,

| =my xmp= Mpx — My : (5)
MyxMpy — MyyMpy

Note thata andb form a sub-vector that is perpendicular to the lines= [a b]T.
The distance from point to line &= I"m/||n/||, and one can normalize the line
distance with|n|| = 1.

Camera calibration basedDL T-Linesinvolves matching image lines with 3D
lines or, more precisely, 3D points. As PLT-Pointstwo cases are considered,
namely (i) no radial distortion and (ii) significant radiaktbrtion. In the case
where the radial distortion is considered, it is modeledgi§iitzgibbon’s division
model. The case of radial distortion is detailed in the nektisn. First we detalil
the simpler case of no radial distortion.

3Can be solved in Matlab using tipe@! yei g function



Any pointmy; lying on a linel; satisfied” my; = 0. Multiplying by IT on both
sides of (1), i.e.l” mq =T P My;, leads to:

T P My =0 (6)

whereMy; is a 3D point in projective coordinates lyinglinthe 3D line imaged as
li. As in the case oDLT-Points using the Kronecker product one obtains a form
where the elements of the projection matrix are factorized:

(M @17 veqP) = 0. (7)

Each pair of 3D point and its corresponding image lifMy, |;), provides a single
linear constraint in the entries eéqP). ConsideringN pairs(M;, l;), one forms
amatrixB, N x 12, by stacking thél matricesM/; @ 7.

From (7) one has that in a noiseless cBge= 0 with || p|| # 0 and therefore
maxrank(B)) = 11. Therefore, in order to estima®one needs at least six non-
degenerate 3D lines configuration and their corresponainigiage lines, i.e. six
four-tuples(M;1, Mi2, mi1, m2). Each four-tuple generates two pairs of a 3D point
and an image line{(M;j1,li), (Mi2, i)} wherel; = mi; x mz. Thus, the six lines
generate 12 pair@dVy;, |;) which allowB reaching the maximum rarfk The least
squares solution

p*=argpmin|Bp|® st |pl=1, (8)

wherep = vedP), is the right singular vector corresponding to the leasjuder
value ofB. As already discussed, to obtain the maximal ranR requires at least
six 3D lines and their images. However, if one has some Gdldom parameters
known a priori then the rank & may be lesser than the maximum and the amount
of required 3D information diminishes.

Some more properties of interest can be stated for propadiedation method-
ologies. From (7) and (3) it is possible to conclude thaT-Pointscan be incor-
porated orDLT-Lines by concatenation of matricésandB, respectively. Both

“Note that in a nondegenerate and noiseless case, the maxianirof B is 11, and thus one
can drop one of the 12 pai(My;, l;). This is a similar case as wifbLT-Points where are required
6 pairs(Myi, M), within which one of the pairs is needed to provide one sirglestraint, but
provides two constraints as all the other five pairs. Nondegge implies, for example, that the
3D lines cannot be all co-planar. For instance, fig. 1(b) isseoof just vertical and horizontal
lines, where would be useful to have all horizontal linesptamar but that makes the rank Bf
lesser than 11 (more detail in the results section).
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matrices represent equations on entriep,dllowing two paired M;, my) points,
be combined with{My;, l;) to estimate the projection matrix

Comparing both DLT methods, it is important to note that whilBLT-Points
one has to provide one 3D-point to one 2D-point corresporeernnDLT-Lines
one 2D-line lj is an image of a 3D-lind,; and thus associates many-3D-points
to one-2D-line. Any pointMy; € L; forms a linear constraint with (7). This
property ofDLT-Linesallows to apply additional image processing tools that add
robustness to the extraction of calibration data. In paldic DLT-Linescan be
used for fine tuning finding lines both in the RGB and RGBD images.

In addition, any line defined in the RGBD image indicates 3D fso{from
the depth data) that are expected to form a line in 3D. Thetpdamming the 3D
line have noise, e.g. due to the finite depth resolution, wleemportant to filter
using a RANSAC procedure [7].

3.3. DLT-Lineswith square pixels

One specific case of interest consists in knowing the pixgieet ratio. As-
suming the case of square pixels, common in modern camdi@ags alecreasing
the required completeness of data formi)@ccepting for examplenk(B) = 10.
Using SVD factorization, leB=U>VT andV = [v; ... v11 V15| be the singular
vectors ofB. In the case ofank(B) = 10 the calibration solution is a linear com-
bination of the last two singular vectorg,; andvi2. The square pixels constraint
allows then writing the calibration problem as a 1D non-dineptimization prob-

lem:
p* = V\ka]_;L—{— A/ 1— (W*)2V12

w* = argy min||K(1,1) —K(2,2)|| 9)

wherew* € [0, 1] and the intrinsic parameters matrik, is computed through
QR decomposition of the vect@* reshaped to a 8 4 matrix. Note that by
construction|| p*|| = 1, sincevy1 andvy are orthogonal and have unit norm. The
intervalw* € [—1, O] is not considered sincep* andp* lead to the same solution.

3.4. DLT-Lines with radial distortion

Using (2), which describes the relationship between distband undistorted
image points, a lind;> can be defined as the cross product of two undistorted
points:

Uid U2d ~
l1p = Vid , | Vog | = li2+Aer (10)
1+ A |[yqll 1+ A [|rigg]|
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where the line can be divided in two terms, one without theatatistortion pa-
rameter, and a distortion correction teega = [vq ||fiq | * — Vg || g ||%, Uzg [|ingl|? —
Upg HmZde, 0]". Applying (10) into the point-to-line constraint (7), onash

(MI @ (I12+Aerp)") veqP) =0 (11)

whereMy denotes th&" 3D point projecting to the liné . The equation can be
rewritten as:

(Bkir + A Byi2) veqP) =0 (12)
whereByj, = M|-(r ® qZ’ Bki2 = |V||-(r & GIZ.
EstimatingP requires multiple 3D lines and the corresponding imagesyd.a
(distorted) imaged lines are divided into smaller, apprately straight, seg-

A

ments. Considerin§l > 12 pairs(My;, i), whereN = knaimax one forms two
N x 12 matricesB; andB,, by stacking matriceByj; andBy;,. Breaking imaged
lines into segments increases the number of rowB,0dnd B,. For example,
breaking one imaged line into segments addnaxn — 1) rows toB; andBy.
Breaking every imaged line into two segments doubles the eamirows ofB;
andB;.

Let us define the cost function:

f(MM) = || (By+AB)p||” (13)
The minimization problem to fingg = veqP) can be written as:

(P, A¥) =arg,  minf(mM;p,A)
st.p p—1=0. (14)

Applying a change of variabl&p = g, one obtains the Lagrangian:

% =p'BIB1p+p' (B] B2+ BJIB1)g+q"BIBag+

+o(p p—1)+Vv'(q—Ap) (19)

where o,v are KKT multipliers, therefore yielding the KKT conditiorts the
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problem which can be written as the system of equations:

G(m M, p;v,0) = Ozgx1
()
(2B]B1p+ (B]B2+B;B1)q+20p—Av=012.1
(B{B2+B3B1)p+2B;Baq+V = 0121

q—Ap=_012 (16)
—V p=01,1
\ P'p—1=01.1

Given the KKT conditions we can use Gauss-Newton to estimpat®lore pre-
cisely we solve the system by iterating the solution throtighlinear system:

Js6=-G (17)

where8 denotes the Newton step which needs to be solved for, andevilised
to updatep,v ando. The Jacobiadg assumes the form:

2B[B1+2l0 B[B,+BlB1 —-v 2p —IA
B/B,+BlB1  2B]B; 0o 0 |

Jo = —vr o' 0 0 —p'|. (18)
2p" o' 0 0o O
—IA I —-p 0 O

To initialize the iterative method, we use Fitzgibbon’s gestion [39]: left-
multiplying the stacked matrices lﬁﬁ results, once more, in a polynomial eigen-
value problem(B] B; +ABJ B,) vedP) = 0, which was solved in Matlab using
thepol yei g function. Its solution gives simultaneously the projectioatrix,
vedP), the radial distortion parametdr, andP’ = T~1P, where T is defined in
sec 3.1. In a similar way as explained before, both DLT methagaplied to the
radial distorted camera, can be combined to estirRaaadA. Note that the so-
lution will only be an approximation since the minimizatifumctions are not the
same.

Having estimated the projection matri, the camera intrinsic and extrinsic
parameters can be obtained using QR-decomposition [7].

3.5. Summary and back-projection application

In the previous sections we describBd T-Pointsand DLT-Lines which in-
volved solving for the intrinsic and extrinsic parametessleast squares prob-
lems. In the more general case, in which we estimate alsathal distortion, we
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proposed a Gauss-Newton iterative solution. Many otherasting and relevant
cases can be found within these frameworks. For instancentths known, its
inverse can applied to the 2D data and, in the cadaldfPoints the calibration
problem is converted to solving the well knowerspective-n-PointPnP) prob-
lem [43]. Another simple case is the one where the cameracengiven and
thereforeDLT-PointsandDLT-Linesare reduced to the estimation of an homog-
raphy,KR, by subtracting the camera center to all the 3D data. Otlterdsting
cases arise by specifying constraintsRiior t, or in K, such as square pixels and
principal point coincident with the image center. Theseesasan be dealt with
Gauss-Newton solutions as proposedDaiT-Lineswith radial distortion.

The simple data-based constraints, created by DLT like idations, are use-
ful in many applications. Here we start describing the ayapion central to this
paper, namely the analysis of uncertainty propagationlibregion. In particular
we detail the effect of calibration uncertainty into theamestruction of ground
points, i.e. points back-projected to the ground planestkire introduce back-
projection and in subsequent sections we study its unogytpropagation.

Consider a pointnobserved in an image, we know itis related to a 3D point on
the mobile camera coordinate systéf, throughm=P MM. Using the trans-
formation from the world coordinate frame to the mobile cean¥ Ty, we can
rewrite it to consider points in world coordinates= P MTyy, WM. Using the plane
constraint of floor point¥’M, = 0 we can further write it am=PMTw ET EWM
whereE is an elimination matrix removing the third row 8fM. Inverting the
system we have the projection of the point on the floor in hognegus coordi-
nates

EYM=(PMTWE") 'm (19)

4. Error propagation

In this section we derive first order error propagation foasufrom 2D and
3D data to the calibration parameters, while usingh&-Linescalibration pro-
cess. Section 4.1 shows that line fitting helps reducing 2Benwhen lines are
defined by their end points. However, despite of the fittiregidual 2D noise
remains present due to the discrete nature of pixels, tlweedésnature of pixel
values and noise in the pixel values.

Uncertainty in the B data (points) is due to a wider variety of reasons. As-
suming that 3D data is acquired by a sensor such as a LIDARRGEBD camera,
then error in the estimated pose of the sensor or error imthiasic parameters of
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the sensor or the discretization of the sensor inputs, seailces of uncertainty.
For example, an offset in the real location of a sensor irspilso an offset in
the position of the calibrated camera. Error in the intdrsrameters of the 3D
sensor may induce artificial zooming in the calibrated camer

Having indicated a number of common sources of uncertaveydetail now
the uncertainty propagation analysis through@bhg-Linescalibration methodol-
ogy. In a first step we derive the expression propagating @rrthe calibration
data to error in the estimated lines paramef®rsin a second stef@), we derive
error propagation between lines parameters and thel&a to the camera pro-
jection matrix. In a third step@), we derive error propagation from the matrix
entries to the camera projection center, orientation atrthgic parameters. The
whole process can be summarized as shown in the next diagram:

mM - IiiM - P — K,Rt Mw
@ @ €)

oM — ZoIM — Zp o IGIRI Sy

While the last section discussed how to compute the soluid,t2 and®),
this section will propagate the covariance informatiorotiyh these same trans-
formations. The general rule used is that given a fungtienF (x) and assuming
F is differentiable near a particular a first order covariance propagatiag is
obtained from the input noise covariance®gs= JrZxJt .

TransformatiorD) is explicitly available so the Jacobian is readily compigab
Since the covariance of the line measurements is obtaioedtivo image points,
it can be computed as:

2|, = & Zmy,my ‘Jl-ir (20)

whereJ;; is the Jacobian of either (5) or (10). The covariance mafrik@imaged
line-segment end-point&q,, m,, is usually set a-priory according to typical user-
clicking errors. Alternatively, in case one uses a linerfgtprocess (sec. 4.1),
the edge points near the fitted line inform about the fittingrez,, which is
transformed to error at the line-segment end-points.

The same approach cannot be used@pand @ where no closed form ex-
pression is known, as they are computed using numeric &hgaosi Nonetheless,
since an implicit characterization of these transformraiexists, the Jacobian is
computable using the implicit function theorem [44]. Ginaegystem of equations
G(x,y) = 0 defining implicitly an unknown functiog = F (X) satisfying the the-
orem conditions, the Jacobian Bfcan be computed from the derivatives Gf
asJr = —[DyG]*lDXG whereDyG andDyG are the partial derivatives of G with
respect tox andy respectively. The implicit function theorem requires thatnx
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DyG to be invertible, a condition we assume to be true in this paseotherwise
the input data consists of a singular case where a calibrattution is not possi-
ble. The rest of this section will make this propagation &xplor the two cases
(with and without radial distortion).

4.1. Image lines uncertainty

DLT-Linesallows filtering the input data by using line fitting methoolgies.
This is beneficial as the uncertainty bef@ecan be attenuated and, consequently,
obtaining more precise and accurate calibrations. In thgien we detail the
image line fitting methodology we use and study its effect oisyhdata.

(a) Selected lingb) Selected line (black) (c) Corrected (d) Corrected line
over image gradient line (black) over image
gradient

Figure 2: Fine tuning the line location. (a) Input data, ¢(iut data over image gradient, (c) and
(d) result after line optimization.

Each extracted 2D-ling can be the result of fine tuning a lihéo better match
edge points in an image. The user deflhbg clicking the two ends of the line.
Line I allows defining gradient values]l in a direction perpendicular to Line
li is therefore refined to better match the image appearance loptamization
process, that maximizes the sum of image gradients andtmssegh a constant
texture:

—argmaxZHDI M) = BOi(m): Mk e (inZ) (21)

wherel is the RGB image converted to gray scdledenotes the image gradient
in the direction orthogonal th g; ) is the local image variancg, is a constant
gain, andZ is a region of interest containing the straight-line seghpéus some
tolerance (e.g+10 pixel) around the segment extremes. This refinement proce
dure is illustrated in Fig. 2. Frame (a) shows the initidiiza of the algorithm. In
this case, the algorithm was initialized with a significambe (see red line). Af-

ter the optimization procedure one can see that the line easatly estimated,
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Figure 3: Line fitting Monte Carlo uncertainty analysis. Rgnge of line directions in the test set
used for the Monte Carlo analysis. Sample input image boitepresent one ground truth line
(ABin red) from the test set. (b) Histogram of the normal outptre when a uniform noise is
used as input. (c) Plot of the line fitting error accordingnitialization error. (d) Histogram of the
line fitting error according to initialization error. (e) Bmple of the noise used in the initialization
process, the noise was a uniform distribution. (f) Evolutaf the angular error, arccos f,
estimation when is used different line lengths.

frame (c). Frames (b) and (d) show that image gradient valul@se points (black
line) are maximized by the procedure.

After the optimization procedure, one obtains line endamim; and np,
whose error is propagated to the linelas| + &, wheree is the estimation error.
The errore has only significant impact on the line parametensyfandm, are
close to each other. If the points are far way, élgux — Mp|| > ||&]|, the pixel
error can be almostignoreld=1 /(| || +&/||f ||, since||ri || > |lg|| = &/||ni|| = O

In order to study the estimation error of the line parametexsun a Monte
Carlo test with a simple line fitting algorithm. The test catsiin finding a line
in aimage, given two initial end points. Figure 3(a-rightpw/s the typical image
used. The test encompasses several different lines, tkedifferent angles, sizes,
and sub-pixel translations. Figure 3(a-left) shows a sutsistne line orientation
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and sizes used. In the Monte Carlo simulation we initializaeghgline fitting with
random uniform noise, betweerd and 4 pixels in each of theandv directions
(see Fig. 3(b)).

The blue dots in Fig. 3(c) show initialization and fitting@ns. The initializa-
tion error (horizontal axis) is the distance from the idigation line end-points to
the ground truth line, which has an approximately uniforstribhution between 0
and 4/2 pixel, caused by the noise shown in Fig. 3(b). The fittingrefvertical
axis) is the distance from the estimated line end-pointhiéoground truth line
and has a less than 1 pixel mean error. The red line has usitgrg and thus in-
dicates noise reduction or amplification for blue pointsemal over the red line.
One observes that in general fitting reduces noise excep tigeinitialization
noise is already subpixel. Figure 3(d) is a box plot indimgumedian, 25th and
75th percentiles, which is obtained from (c) by splitting tihorizontal axis in a
number of regions. This plot shows that fitting error is apprately constant in
the 75th percentiles of subpixel range, and therefore atdgcan algorithm that
upon convergence is independent on the initializationrerro

Figure 3(e) shows initialization and fitting errors as hyggoms. The initial-
ization error has an approximately uniform distributiomile the fitting error has
an histogram shifted to subpixel error as desired. FiguReshpws, as expected,
that the angular distance (arcepbri) between the estimated line and the real line
improves with the line width as shown in [45, 12].

4.2. DLT-Lines error propagation without radial distortion

This section explores the sensitivity of the proc@snamely how error prop-
agates fronk, %y, to Zp when it is solved with a least squares (7).

The optimization problem in (8) can be seen as function tbe¢pts linesl()
and points ;) and outputs the least squares estimate of the projectitnixnia

P=f(l1,....In, My, ..., M) (22)

To compute the covariance propagation we need the Jacobigni.e. J;. Al-

though f does not have an explicit solution (it is the result of an optation
problem), an implicit system can be written from the KKT ciiwehs of the con-
strained least squares problem in (8).

2B mp+2yp =0,

23
pTp—1 =0. (23)

G(l,M;nV):{

The implicit function theorem can then be used to provide
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-1
Ji = [_ (D(p.yG) D{'ivMi}G] 12x6N

where the brackets denote taking only the first 12 rows ofékalt since the last
row is the row equivalent to the Lagrange multipljer

4.3. Error propagation in the presence of radial distortion

Suppose we have used setaridM to estimatep using the Gauss-Newton
algorithm. Althoughp = f(l,e,M) does not have an explicit formulation again,
we can use the implicit function theorem to compute the Jacodf the method:

Ji = [— (D{p,a,v}G)_lD{l./e,M}G}

whereG is the KKT system in (16), and whose derivatives are givenli).(
Uncertainty can thus be propagated as

126N’

Zp=JtZ emdf (24)

4.4. Error propagation of P towards camera pose

In [7] it is show how the projection matrix can be decomposgthie internal
and external calibration parameters. Here we propagatertbertainty from>p
to 2k Rty Q-

We start by looking at (1), noticing that we can dividén two blocks,Ps.3 =
KR and ps = Kt. Once again an explicit solution does not exist, however the
separation oP into two blocks defines an implicit system if we take into agab
the upper triangular structure Kfand thatR is a rotation matrix:

(P33 =KR
Pa = Kt
:
GPKRY=4 7!
Koy =0
[ K32=0,

The derivatives of this implicit system are:

18



-1 0 | @K RT®l 0]
0 —I 0 tTel K
0 0 (|9—|—C3><3)(| ®RT) 0 0
=10 o 13 0o of’ (25)
0 O 11 0o o0
(0 O 1 0 0]

whereCs, 3 is a 9x 9 circulant matrix (i.e., it's the matrix that makesqR") =
Cax3vedR) true for any 3x 3 matrixR), and1' is a vector 9 1 of zeros with 1 in
positioni. Note that the constrainR' R= | are redundant (symmetric), hence we
manually remove the rows Jf corresponding to the redundant equations. Once
again we can use the implicit function theorem to flad= —[DK_R,TG]*leG.

The estimation okkrT can be obtained by:

Sk RT = JFIpJP. (26)

These equations are valid for both calibration methodeksgwith and without
radial distortion.

4.5. Error propagation of P towards reconstructed floor psint

Propagating uncertainty from a camera pomto the world floor takes into
account three sources of uncertainty: the camera poitdelf, the camera posi-
tion represented by the projection matiand the mobile camera position repre-
sented by"Tw. (19) provides an explicit equation but due to the inversefion
involved, its derivatives are not trivial to compute. We @arstwo steps, first in-
terpreting (19) as an equality and then applying the nozaabtn. The derivative
of the equality with respect t, P, andMTyy is

D=[Q -mQTEMT{®Q -m' QE®RQP]

where Q= (PMTy ET) ~1_ After applying the projective normalization, the com-
plete Jacobian of (19) is

[ il

where|[xy 47 is the projective result of (19). Again, the error propagatiquation
IS
Sy = IZmpug, ' (27)
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5. Experimental results

In order to validate the proposed methods and uncertairalysis we conduct
some experiments in a virtual indoor environment, for whicte has available
precise and accurate ground truth. We show a simple reahdegfe case which
can be solved usinBLT-Lines with a single constrain. In addition, we apply the
proposed uncertainty analysis to a real setup based on anrisdene encom-
passing a wall and a couple of doors, which has been recotestrin 3D using
color-depth (RGB-D) data, thus providing directly the reqdiBD information
for the DLT-Linescalibration methodology.

5.1. DLT-Lines calibration experiment

In this first experiment we illustrate tHeLT-Linescalibration methodology
when available data does not fully constrain the solutiee &ec. 3.3 (9)).

2 529 .3 4
gt : e &
g ; -
0 ¥ ol @ 2%
2 » 7

= d ~) 3 o A % ® il
b o ol i 5 ..
4 rb({;‘v, e % 3 b BN *’

(b) Aerial view (Google rhaps) and horizontal
(blue) and vertical lines (red dots) used for cali-
bration.

(a) Image taken by the camera to (c) Estimated pose of the camera shown by the red
calibrate and image lines used for pyramid. Estimated facade heights are used to de-
the calibration. fine the ground plane.

Figure 4: Calibration and reconstruction experiment.imsic and extrinsic calibration of a camera
based on imaged lines (a) and 3D data inferred from an aenagé (b). The reconstruction of
facade heights complements information not available éretkrial view (c).
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The camera to calibrate is a cellphone camera using a singgd of the
streets and buildings from a window in the 5th floor of a towsre( Fig. 4(a)).
The terrain is uneven and therefore the zero height wastedléx be defined by
the roof of the large building imaged in front of the camer&eBD calibration
information is only partially available as the 3D lines axrped in a 2D aerial
(orthophoto) view and therefore lack a depth coordina{see Fig. 4(b)). Vertical
lines are defined by two poin&= 0 andZ = 1. Horizontal lines in the planar
roofs of the building are also defined by choosihg: 0. Other horizontal lines,
not at the roof height, have an unkno&n

Using only vertical and horizontal lines at the roof lev&k= 0, results in rank
deficient problem, more preciselsank(B) = 10 in (7). The solution based on
the two singular vectors corresponding to the least simguaes,p = wy1vig +
W12V12, has an ambiguity between the camera height and the vedalllength.
The null space is a set of camera configurations where thereaiséixed atX
andY coordinates whileZ varies. As theZ gets higher the camera is rotated
downwards and the vertical focal length is augmented soth®imaging does
not change.

In order to constrain the solution, we use the square pixahsteaint pro-
posed in the form of a 1D optimization problem in (9). The solu obtained,
displayed graphically in Fig. 4(c), allows retrieving thentera pose (localization
and rotation) and its intrinsic parameters. The estimaiedlization of the cam-
era matches well the information of the aerial view (see g &(b) the blue cross
on the facade of the tower).

In addition, the known scale of the aerial (orthophoto) imaljows converting
the 3D calibration data and the projection matrix into metgts. Consequently,
it is possible also to infer in meter units some distanceshé dcenario, such
as heights of buildings. The estimated height of the bugdmbserved in the
middle of the image is 10 meters which can be compared with the height read
in blueprints, 104 meters, yielding an experimental error of just 6% justitigd
data noise.
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Figure 5: Single camera setup. (a) Ground truth 3D inforomats known for the image lines
shown. (c) Standard deviation of the estimation errop@f entry (2,4) of P, given noise iruv
andXY Z (d) Standard deviation of calibration error propagatedifinoise inuv ranging from 0
to 6 pixel, red line; compared against Monte Carlo uncetyaamalysis, blue line. (e) Standard
deviation of calibration error propagated from noisexif Z ranging 0 to 002 meters, red line;
compared against Monte Carlo uncertainty, blue line.
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Figure 6: Analysis of calibration uncertainty in a two caamsetup. (a) VRML setup. (b) RGB
image. (c) RGBD intensity image. (d) RGBD range image. Eaghdefined in the RGBD image
corresponds to a line in the RGB image, and leads to a 3D lirkdrworld/RGBD coordinate
system. (e) 3D lines form the required input dataBdT-Linescalibration. (f) Relation between
the error in the RGB image coordinates and the projectiomixnparameters. (g) Monte Carlo
simulations of the same relation between image error stdrtviation and the standard deviation
of the projection matrix elements.

5.2. Synthetic experiments

In this section the variance of the entries of the projeatiatrix, Zp, predicted
using the proposed uncertainty analysis is compared witb@i®Carlo based un-
certainty analysis. The experiments are done using syotteta (VRML ) which
allows us to define with high accuracy a camera location ared afgixed image
points and the corresponding set &f Boints. We consider various levels of white
Gaussian noise in image point®) points, or both. Experiments are conducted in
three different scenarios in order to show that the proposegrtainty propaga-
tion methodology effectively takes into account the suuuebf the scenario.

4The decomposition of estimated projection matrix, dethite[7], allows factorizing the in-
trinsic and extrinsic parameters Bs= K[R t], and therefore comparing them with the ground
truth. The horizontal focal length relative error is defimaKer = (K(1,1) — Ke(1,1))/K(1,1),
whereK is the VRML camera true intrinsic parameters matig is the estimated one and
K(3,3) = Ke(3,3) = 1.
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Figure 7: Calibration uncertainty analysis for a camerdwatdial distortion. (a) VRML setup 2.
(b) RGB image, with radial distortion. (¢) RGBD intensityage. (d) RGBD range image. Each
line defined in the RGBD image corresponds to a line in the R@&ge, and leads to a 3D line
in the world/RGBD coordinate system. (e) 3D lines form thguieed input data foDLT-Lines
calibration with radial distortion. (f) Relation betwedmeterror in the RGB image coordinates
and the projection matrix parameters in presence of raditdrdion. (g) Monte Carlo simulations
of the same relation between image error standard deviatiohthe standard deviation of the
projection matrix elements. (h) Monte Carlo simulationd #meoretical relation between image
error standard deviation and the standard deviation ofdatiak distortion parameter.

The first setup is based on a single RGBD camera. The setup caebeans
Fig. 5(a), which corresponds to a typical 'L’ shaped corrjdioe overal setup can
be seen in Fig. 5(b). Camera calibration ground truth is knawad is used to
assess the validity of the noise propagation estimatiohogetnd the accuracy of
the calibration. Figure 5(c) shows the theoretical valueofq; 4 in the presence
of noise simultaneously in both the image and the range sallibe plot shows
the correlated effects between the image and range noisesval

Monte Carlo simulations were also run for this setup. Plojsaa(@ (e) show
both the analytic and estimated valueafor P(2,4) as a function of variations
in image and depth noise.

Plot (d) shows once more that the first order approximatiamig valid up to
aroundop, = 3 pixels. The theoretical prediction is nevertheless atelor lower
levels of noise showing that the proposed uncertainty arsatgkes correctly into
account the scene structufle M;). Noise in range data exhibits less non-linear
effects, as shown in plot (e).
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The second synthetic setup is formed by two cameras, nanmebgbée color-
depth (RGBD) camera which collects 3D data and a fixed RGB carkegg®(a)),
in this setup the cameras have different optical centeroardtations. Fig. 6(b)
shows a synthetic image acquired by the RGB camera, while &{gsand 6(d)
show the synthetic intensity and range images aquired bR@IBD camera.

In this setup, we analyze what happens when just the RGB imagadise.
In other words, the noise in 3D points is set nuily(= 0)°. Uncertainty analysis
was done using both the proposed propagation methodolog\Wemte Carlo
simulations. Monte Carlo was configured to do 300 runs for éaxadl of noise.
The standard deviation of the noise in the 2D points variesf0 to 6 pixels
(om=0:.06: 6 pixels). Having all the runs, the variance of everynfrP, i.e.
Zp(jj fori=1.3 andj =1..4, has been estimated.

The linear propagation of the standard deviation of eaclnefentries oP,
computed with the proposed methodology, is shown in Fig). 6fes expected
some entries oP are more robust to noise than others. Figure 6(f) shows the
Monte Carlo simulation results for each level of noise, adaiirall the entries of
P. Plots (f) and (g) indicate that the analytical values oi#diusing the linear
propagation analysis match those of Monte Carlo resultsdbres ofo, lower
than approximately 3 pixels. Nonlinearities have moredeace for large image
noise, making our first order approximation unreliable. dibeless, pixel value
noises in ranges below 3 pixels are acceptable for most mgasgnsors.

The final synthetic experiment was done with two camerashapteviews
one, a fixed RGB camera and a mobile color-depth (RGBD) camerehvdail-
lects 3D data. See Fig 7(a). However in this case the RGB cahaeraadial
distortion, Fig 7(b). Figure 7(c) and 7(d) show respectitee RGBD intensity
and P range data. Figure 7(e) shows a set Dflhes given to the calibration
algorithm, in red is the RGBD camera position and orientatwnie in blue is
the camera with radial distortion to calibrate. The proplogecertainty analysis
was once again compared to Monte Carlo simulations. In thee tae standard
deviation of noise in 2D varies from 0 to 4 pixelg,( = 0:.05: 4 pixels). For
each level of noise we did 400 runs. The theoretical preathotif Zp is plotted
in Fig. 7(f), while Fig. 7(g) shows the Monte Carlo results. ¢#&n observe that
the theoretical results are in accordance with the MonteoGanhulations. Fig-
ure 7(h) shows the theoretical and the Monte Cago Once again both results

5To improve readability, variance is written using uppere;as and standard deviation is
written using lower caseg.
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are similar empirically confirming the correctness of oupr@ach.

5.3. Error propagation real dataset

In this section we present the results of our algorithm irehdata set acquired
in a typical indoor scene, with several doors and a corriseg, Fig. 8(b). This
experiment was done with a ASUS X-Tion (RGBD camera) mountedmobile
robot, Fig. 8(a), and Axis P1347 (typical RGB surveillanceneaa). The RGB
image used for calibration is show in Fig. 8(e), and has temwi of 1920 by 2560
pixels. Twenty lines were marked in the calibration proce$his camera has
significant radial distortion (see for example the first doahe left). Figure 8(c)
shows the depth image of the RGBD sensor and Fig. 8(b) showstéssity
image, where the same set of twenty lines that can be seee R®GB images are
overlayed. The intensity and depth images have the samktieso 480 by 640
pixels. 3751 ® points along the 20 lines where automatically sampled.

The calibration was done usim@LT-Lineswith radial distortion. Figure 8(f)
shows the original image without radial distortion. Fig8(d) shows the theoret-
ical evolution ofg; in the presence of white Gaussian noise in the RGB camera.
The plot shows the prediction @k for different levels ofay,, namely from O to
3 pixels. Figure 8(g) shows the result of the calibratioroatym, namely the
estimated pose and the position uncertainty of the RGB cari@eauncertainty,
represented as an ellipsoid, was estimated assuming a @aitssian noise with
om = 1.5 pixels in the RGB while the 3D noise was set to zerg,= 0 meters.
Figure 8(h) shows uncertainty at the floor plade= O meters, for a number of
image points given the estimated calibration uncertaiAt/expected the uncer-
tainty gets higher as the selected points gets farther flencamera. This is
manly explained by foreshortening. Due to the perspeci®e vf the camera, as
we get closer to the vanishing line of the ground plane thed&tance between
each pixel approaches infinity. As a result the uncertagtgs$ towards infinity.

6. Conclusions

In this work we presented uncertainty analysis for two t-samera calibra-
tion methodologies, namelLT-LinesandDLT-Lineswith radial distortion. We
provide analytic solutions to uncertainty propagatiomfrerrors on the input data
to the estimated parameters and empirically verify theditgliof the analysis with
Monte Carlo simulations. From the uncertainty in the progatinatrix we derive
() the uncertainty in intrinsic and extrinsic parametans|uding radial distortion,
and (ii) the uncertainty of 3D points in the ground plane.
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Figure 8: Analysis of camera calibration uncertainty. (@gRndoor setup. (b) RGBD intensity
image. (c) RGBD range image. Each line defined in the RGBD @r@agresponds to a line in
the RGB image, and leads to a 3D line in the world/RGBD coatdirsystem. (d) Evolution af
with different noise levels oby,. At black is markedo,,, = 1.5. Blue, green, red and are X, Y, Z
coordinates respectively. (e) RGB image without radialadi®n correction, in red lines used to
calibrate the camera. (f) The RGB images with radial digiartorrection. (g) 3D reconstruction
of the scene, white the robot camera, blue the estimatedregnose and orientation. Ellipsoid
representing the position uncertainty when in presence,p£ 1.5 can be seen in the zoomed
part. (h) Blue print of the corridor, the red with a plus sigrthie robot position and in blue is the
camera position. The blue ellipse are the floor uncertaiivigrgan image point. The inner ellipse
represents b, while the outer ellipse represent@3meaning that with 99% the image point is
projected at the given floor location.
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We tested our methodologies both in a virtual environmetit wround truth
and with real cameras. In particular we demonstrated uaiogytpropagation to
the camera location and to points in the ground plane.

In the future work we will focus in finding structures thatcall lower vari-
ances in the camera parameters. We also will focus in findigpand lines that
increase the accuracy of the calibration.
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