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Abstract—In this paper we present an online stereo calibra-
tion system that calibrates the eyes of a humanoid robot at
a kinematic chain level using information from the embedded
cameras and the motor encoders. The system calibrates the
joints’ offsets and mounting errors of the cameras using ad-
vanced filtering techniques based in the epipolar constraint. By
calibrating the stereo system at a kinematic chain level we are
able to continuously provide an accurate stereo reconstruction
of the world with version and vergence of the eyes. Our
method is able to converge even with large initial errors and
is independent of camera movements - can operate with still
or moving cameras. The filtering approach is essential for
smoothing out errors arising from spurious image matches and
converges in just a few seconds in case of sudden model changes.

Experiments using the iCub robotic head are presented and
illustrate the performance of the methodology as well as the
advantages of using such an approach.

I. INTRODUCTION

Humanoid robots are in vogue, with different sizes, shapes
and features. This variety makes each one unique, requiring
specific procedures in order to correctly perform the tasks
they were designed for. However, the biological inspiration
used in their designing process somehow standardized the
basic type of sensors they should all include: two cameras
for stereo vision, inertial measurement units and encoders in
their motor joints. We humans are able to correctly integrate
and fuse information from similar sensors due to a perfectly
calibrated internal model which is continuously adapted
through life-long developmental learning mechanisms. The
ability to obtain and keep an accurate model of a humanoid
robot’s internal state, adapting both to sudden changes dur-
ing operation or repair, and slow changes due to material
changing properties, is an essential but challenging task.

In [7] we presented an online calibration system to learn
the internal model of a humanoid robot head by fusing in-
formation from these three types of sensors. Even though the
system was accurate, the kinematic model used to represent
the robot eyes was incomplete since it did not contemplate
possible mounting errors of the cameras. Figures 1(d) and
1(e) show how these mounting errors influence the quality
of the stereo reconstruction and the difference between
both cases is quite noticeable. In this work we decided to
change our focus to stereo calibration thus requiring a new
system suitable to work in dynamic environments, unlike our
previous work where the world was assumed to be static.

(d) (e

Fig. 1. The iCub head used in this work (a). The complete kinematic
model of the robot eyes, including the mounting errors of the left camera
(b). Original scene to be reconstructed (c). Stereo reconstruction using the
kinematic model of the robot eyes considering perfect assembly (only joints
{1} and {2}) (d). Stereo reconstruction after calibration of the complete
kinematic model of the robot eyes, considering the mounting errors of the
left camera ({3} and {4}) (e). The stereo reconstruction code is taken off-
the-shelf from OpenCyv.

Stereo reconstruction is very sensitive to small misalignments
between the two images: a small misalignment of just one
pixel between the two images is enough to get a miss
reconstruction. This sensitivity is even more serious when
working with active vision where the transformation between
the two images changes considerably through time. There
are numerous methods capable of accurately calibrate the
stereo system for a unique configuration of the cameras, such
as the Bouguet toolbox [1]. However, calibration is usually
performed in an offline fashion and when this configuration is
changed by moving the cameras, the calibrated status is lost
and a new calibration is required. In robotics, very few works
tackle the continuous update of the system’s parameters as
it moves in the environment with active vision. In this paper
we present a stereo calibration system that performs online
calibration at a kinematic model level, meaning the robot
can move the eyes and still reconstruct the world using
information solely from the kinematic model at each time.
This calibration system does not require any external visual
markers thus permanently adjusting the robot calibration state


jag
Typewriter
IEEE ICDL-EPIROB 2014, pp.454-460, DOI: 10.1109/DEVLRN.2014.6983023


by using natural visual information from the world.

When considering state-of-the-art calibration systems, the
Bouguet toolbox [1] is one of the most well known and pre-
cise system given the amount of information it uses to reach
a calibration state. This toolbox is able to provide intrinsic
and extrinsic parameters for both cameras but requires the
acquisition of (many) images with a visible calibration grid
and human intervention to control and validate the acquisition
process. The calibration patterns must fully intersect in all
the images otherwise stereo calibration can not be achieved.
In [5] a new type of calibration pattern is presented for
multi-camera calibration in which only a small part of
the calibration pattern needs to be visible (without images
intersection) in order to calibrate the system. In spite of
their precision and accuracy, these systems are highly time
consuming and can only work in an offline manner. The
authors of [2] present an accurate offline calibration method
for multi-cameras that uses a bundle adjustment technique
to optimize some previously obtained calibration parameters
without requiring any human intervention, unlike the previous
ones.

Online stereo calibration systems allow for small changes
during operation of the cameras since the system can adapt
to that changes. In [8] a system to estimate the extrinsic
parameters between two cameras without any reference ob-
jects or human intervention, by integrating visual information
with angular velocities given by a gyroscope to reject image
features that are useless to the estimation, is presented. The
system described in [3] uses a Kalman Filter to continuously
estimate the extrinsic parameters of the stereo cameras and
the one explained in [6] uses recursive filtering techniques
and plane induced homographies between successive frames
to optimize the calibration parameters between the cam-
eras, in an online manner. The method explained in [10]
implements a new form of partitioned bundle adjustment
to calibrate stereo cameras and simultaneously provide an
estimate for the pose of the cameras. When working with
active vision, it is important to know the exact transformation
between the two cameras so stereo reconstruction can be
obtained for every configuration of the cameras. The authors
of [11] tried a different approach and calibrated the stereo
cameras at a kinematic level so the transformation between
the two cameras is always known during operation with active
vision. However this system requires the use of a calibration
pattern and human intervention to achieve calibration state.
In comparison with the state-of-the-art, our system calibrates
the cameras at a kinematic model level in an online fashion
simply by observing the world, without requiring any human
intervention during the calibration process. It uses natural
visual features instead of external visual markers which gives
the flexibility to calibrate the system anywhere. The fact
it provides correct stereo transformations that work with
active vision is a major advantage when compared with the
previously mentioned systems.

The structure of the paper is as follows. Section II does an

introduction to the calibration problem. Section III describes
the proposed methodology for the stereo calibration. Results
obtained with a humanoid robotic head are shown in section
IV and conclusions are drawn in section V.

II. PROBLEM FORMULATION

Let BTy, represent the transformation between the left and
right images. In a perfectly calibrated active stereo system, it
is possible to compute the transformation 77, at a kinematic
level using solely the readings from the motor encoders,
which allows quality stereo reconstruction even with cameras
motion. The problems arise because very often humanoid
robot heads are equipped with relative encoder sensors and
exhibit mounting errors in the camera’s assembly. On one
hand, the relative encoder sensors lack the capability of
providing an absolute encoder position with respect to some
factory calibrated value, e.g. having the cameras looking
forward with parallel projection planes. These encoders are
not persistent and fix their zero value at the position in which
they are turned on, consequently demanding recalibration
each time the system is powered on. On the other hand,
mounting errors of the cameras are persistent within the same
platform but are not usually considered in a kinematic model
of a robot since they change between robots.

In order to generalize the calibration problem we include
the mounting errors into the kinematic model of the robot.
We assume a model where one of the eyes has only one
rotation joint (pan joint, {1}), e.g. the right camera, thus
representing the mounting errors as two virtual joints for the
left camera only (virtual tilt and swing joints, {3} and {4},
respectively) placed in front of its last real joint (pan joint,
{2}) as seen in figure 1(b). These virtual joints had no en-
coder readings thus representing only the physical mounting
rotations of one camera in respect to the other. The complete
transformation 7}, from the left camera’s reference frame
L to the right camera’s reference frame R can be represented
as a composition of elementary transformations between all
the consecutive joints

BTy (6, ...04)
=BTy (00) Ty (05) 13 Tpay (02) Ty (61) DTy
ey
where each transformation is represented as
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and is a function of the rotation angle 6; associated to the ith
joint. The final transformation 77, is then a function of all
the rotation angles 6; associated to each individual joint. Due
to the referred encoder resetting when powered up, the joint
angles 0; are given by the encoder readings e; subtracted by
a constant ¢; which needs to be estimated. In the case of the
virtual joints, the value for e; is always zero (non existent).
The objective of this work is to estimate the offsets §; such
that the relation
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holds. We then collected the joint offsets §; in a single vector
X, the system state to be estimated at each time step.

Using this concept of virtual joint, we can generalize the
calibration problem to any stereo system equipped only with
cameras by forcing all the joints to be pure virtual with no
measurements thus having all the values of e; equal to zero.

III. CALIBRATION METHODOLOGY

The base of our system is an Implicit Kalman Filter [9],
which, given the state transition and the sensor observation
equations is able to update the state in order to reduce the
measurement error, thus providing the best estimates for the
joints offsets. An Implicit Kalman Filter is used since none
of the measurement equations can be written in explicit form,
defining instead a constraint that the measurements, together
with the system state, need to satisfy.

A. State Transition Model

In our system state y the joint offsets are assumed to be
constant over time, thus the state transition equation J simply
propagates the previous values with some state transition
noise wk.

YFIR=1 — h=1 gk (4)

Here w* ~ N (0, Q%) where Q" represents the covariance
matrix of the zero mean state transition noise w”, assumed
Gaussian. The system can be adapted to be more or less
responsive to variations in the offsets by changing this
covariance matrix.

B. Observation Model

The cameras provide /N image features represented by their
image coordinates f; = [u;v;] which can be collected in a
feature measurement vector Z at a certain time instant k:

ZE=f5-. fh_i] (5)

The N image features for the left and right cameras, Z%
and Zkp respectively, are sorted by match. The features
are matched between the two images by applying the SIFT
detector, extracting their descriptors and performing a K-
nearest neighbor search (in our case k = 2).

Considering M kinematic joints, a scan of all the encoders,
Z E consists of M measurements of the relative position of
the joints taken at time instant k,

Zg = [eg ... efwfl} . (6)

In the case of a virtual joint i, the value for e is always
zero. The encoders are sampled at the same time instants as
the cameras so synchronization between sensors is ensured.
The system measurements 2 k are, at each time instant k,

given by:
ZF = [ZE, ZERZE) +oF (7)

where vF ~ N (O, Rk) is the observation noise assumed to
be a zero mean Gaussian with covariance matrix R*. These
measurements provide geometrical constraints which are used
by the filter to improve the estimates.

In order to obtain the correct and complete transformation
BT, from the left camera to the right camera, the absolute
value of each joint (real and virtual) is needed. Collecting
equation (3) in vector form, the absolute values of the joints
O are given by

OF = Zj —x* )

For the purpose of describing our filter’s observation
function, let’s assume we known the correct transformation
BTy between the left and right images. We can take the
rotational component of this transformation, RR;, as well
as the translational component, Ry, and compute the Essen-
tial Matrix E [4] that relates corresponding points in both
images:

E=[".] "Rp )

where [ft] is a skew-symmetric matrix using the vector
components of *t; . In perfect conditions, if we take a pair of
image features 2, and Z r, represented by their homogeneous
normalized coordinates, the following relation holds:

ThEZ, =0 (10)

This relation, called the Epipolar Constraint [4], can itself be
rewritten in a different form in order to use image coordinates
instead of normalized coordinates of the features by a change
of variables T and z . Thus, we have a new constraint given
by:

x%F zr, =0

Y

with

F=(K?)"E(EY) (12)
where x; and xp correspond to the coordinates of the
features, in pixel units, and F' is the Fundamental Matrix
[4]. In non-perfect conditions, using a pair of noisy matched
image points, equation (11) will not be zero but an € instead.
Next we will use the distance to the epipolar line, ¢, as a
measurement error. Considering the right part of the product
of equation (11):

[A B ¢ =Fu (13)

it gives the three components of the epipolar line, describing
a line, where the point correspondence z should lie in the
right image. To obtain the distance ¢ from zp to its closest
projection in the line, in pixel units, we have to normalize
these three components

(4 B ¢ ]"=[4 B C]"/V/A2+B? (14)
and apply them to the corresponding point z

eh[ A B o] = (15)



This distance € tells us how far, in pixel units, point zp
is from its corresponding epipolar line in the right image.
We use this distance € in our filter’s observation function as
an implicit constraint that guarantees the correct estimation
of the joint offsets. To accomplish this, we first obtain the
transformations 77, (@k) and ‘Tg (@k), using equations
(1) and (8). We rewrite these two transformations as in (12)
and apply equations (13) to (15) to each pair of features @
represented in Z; and Z%,. From each pair of features i
we obtain two distance measurements, “¢; and Fe;, repre-
senting the distances from the left and right features to their
corresponding epipolar lines, respectively. We then compute
the squared norm of the error

gi = (&)’ + (Rei)?

into a larger vector G*¥ with N entries, according to the
number of matched image features

Gk <Xk|k—1’Zk) _ [ o

representing the Implicit Kalman filter’s innovation function,
depending both on the system state prediction x*/*~1 and
on the measurements Z*. By using this function as the
filter’s innovation, the system is able to estimate all the joint
offsets that minimize the distance between each point to its
corresponding epipolar line.

(16)
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IV. RESULTS

This section describes the experiments realized to test the
behaviour and performance of the online stereo calibration
system. The experiments were performed using the iCub
robotic head at VisLab, IST-Lisboa !, as seen in figure 1(a).

The calibration procedure consists of initializing the eyes
of the robot in an arbitrary uncalibrated position, setting
them to the zero position. Normally, a mechanical calibration
procedure at initialization time is performed, either manually
by the user or automatically by driving the joint until a limit,
so that the eyes are looking forward with approximately
parallel optical axes. Then we run the system until a con-
vergence state is reached. In order to validate our system,
two specific sets of experiments were realized with the iCub
head testing the (IV-A) accuracy and (IV-B) repeatability of
the calibration results obtained. We compared our results with
those obtained using the Bouguet toolbox, as a benchmark,
using a calibration grid with known dimensions (with a length
L of 381mm and a height H of 296mm).

The intrinsic parameters of the cameras were obtained
using the Bouguet toolbox and the calibration grid previously
mentioned. The standard deviations of the observation noises
were measured in order to have an accurate characterization
of the sensors and define the covariance matrix R* in the
observation model. The measured values are shown in table
I along with the frequency associated with each sensor.

Thttp://vislab.isr.ist.utl.pt

TABLE I
CHARACTERIZATION OF THE SENSORS

Sensor Noise Std. Dev. | Frequency (Hz)
Cameras 5pixel 30
Encoders 0.0005rad > 30

A. Accuracy analysis of the calibration results

We started the iCub eyes at three different positions, for
experiments 1, 2 and 3, as shown in figures 2(a), 2(b) and
2(c) respectively, and set the eyes to their zero position,
looking forward. We exaggerated in the initialization errors
to show the ability of the system to converge even in extreme
cases. Figures 3(a), 3(b) and 3(c) show the convergence of
the system to the corresponding offsets of the joints in ap-
proximately 350 iterations, 150 iterations and 950 iterations,
respectively, with a frame rate of 10 frames per second.
During these periods the cameras were statically looking
to a dynamic scenario. The filter was initialized with all
offsets to zero. Due to unfavourable initializations, these
values are higher than in more reasonable cases. In a normal
initialization case the system converges in a few iterations
(< 30).

To test the system’s accuracy after convergence we took
8 images with the calibration grid with different orientations
and obtained the calibrated stereo transformation using the
Bouguet toolbox. The results obtained with the Bouguet
toolbox are meant to work as a ground truth for our system
due to its precision.

(b)

Fig. 2. Accuracy: Convergence of the joints offsets for three different
starting positions of the robot eyes. Starting position of the eyes for
experiment 1 (a), experiment 2 (b) and experiment 3 (c).

In tables II, IIT and IV are represented the rotational (rz,
ry and rz) and translational (tz, ty and tz) vector parameters,
extracted from the transformation T} given by the two
systems for each configuration of the eyes.

TABLE 11
ROTATIONAL AND TRANSLATIONAL VECTORS PARAMETERS,
REPRESENTING THE TRANSFORMATION FROM LEFT TO RIGHT CAMERA
FOR EXPERIMENT 1

Experiment 1 | Our System Bouguet error
rz (deg) —1.5976 —1.0657 0.5319
ry (deg) 0.9786 0.4137 0.5649
rz (deg) —1.1375 —1.2026 0.0651
tx (mm) —66.7387 —66.9005 | 0.1618
ty (mm) 0.0 1.08175 1.08175
tz (mm) 1.9805 —0.36044 | 2.34094

We get a mean error of 0.3322deg in the rotational
parameters and a mean error of 1.1704mm in the translational
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TABLE III
ROTATIONAL AND TRANSLATIONAL VECTORS PARAMETERS,
REPRESENTING THE TRANSFORMATION FROM LEFT TO RIGHT CAMERA
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Accuracy: Convergence of the joints offsets for three different

starting positions of the robot eyes.

FOR EXPERIMENT 2

Experiment 2 | Our System Bouguet error
rz (deg) —1.5818 —1.0267 | 0.5551
ry (deg) 1.0777 1.107 0.0293
rz (deg) —1.3037 —1.1998 0.1039
tx (mm) —66.6952 —66.6854 | 0.0098
ty (mm) 0.0 1.0803 1.0803
tz (mm) 2.6482 0.5001 2.1481

TABLE IV

ROTATIONAL AND TRANSLATIONAL VECTORS PARAMETERS,
REPRESENTING THE TRANSFORMATION FROM LEFT TO RIGHT CAMERA

FOR EXPERIMENT 3

Experiment 3 | Our System Bouguet error
rz (deg) —1.5449 —1.0434 | 0.5015
ry (deg) 0.8004 0.2126 0.5878
rz (deg) —1.1776 —1.2273 | 0.0497
tx (mm) —66.7849 —66.8968 | 0.1119
ty (mm) 0.0 1.1071 1.1071
tz (mm) 1.932 —0.5598 2.4918
parameters.

To analyse the influence of these errors in the stereo
reconstruction, we extracted three corners from an image
where the calibration grid was at a distance in between
380mm and 450mm, almost parallel to the cameras, and
estimated the dimensions of the calibration grid (L and H).
The estimated results, for each configuration of the eyes, are
shown in tables V and VI

TABLE V

ESTIMATING THE DIMENSIONS OF H (296mm)

Experiment # | Our system (mm) | Bouguet (mm)
1 275.482 298.429
2 294.854 297.291
3 268.108 291.895
TABLE VI

ESTIMATING THE DIMENSIONS OF L (381mm)

Experiment # | Our system (mm) | Bouguet (mm)
1 354.029 377.302
2 375.38 374.379
3 348.317 369.629

Using the Bouguet toolbox as a benchmark, we obtain a
mean reconstruction error of 19.138mm, in comparison with

the Bouguet’s mean error of 4.919mm.

To test the accuracy of our system with motion of the
eyes (version), we started the eyes encoders at their zero
position as shown in figure 4(a). We then moved both eyes,
by hand, to the right and left, without turning the system
off, as seen in figures 4(b) and 4(c). During this operation, 8
images containing the calibration grid were acquired at each
position of the eyes, for each camera, so we could compare
our results with the ones obtained using the Bouguet toolbox
(a total of 48 calibration images were used).
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Fig. 4. Accuracy: Eyes positions during online calibration. (a) Position 1
- Starting position of the eyes. (b) Position 2 - Eyes looking to the right.
(c) Position 3 - Eyes looking to the left.

To compare the results, we extracted the three corners of
the calibration grid from calibration images, at a distance
in between 430mm and 550mm, and again estimated the
dimensions of L and H for the three positions of the eyes.
The estimated results, for each position of the eyes, are shown
in tables VII and VIIL.

TABLE VII
ESTIMATING THE DIMENSIONS OF H (296mm)

Eyes position # | Our system (mm) | Bouguet (mm)
1 309.647 298.073
2 276.267 308.612
3 274.659 296.154
TABLE VIII

ESTIMATING THE DIMENSIONS OF L (381mm)

Our system (mm)

Bouguet (mm)

Eyes position #
1

2
3

388.669
364.112
359.939

370.681
392.749
387.592

In this case we obtained a mean reconstruction error of
16.723mm for our system, in comparison with the Bouguet’s
of 7.249mm. We clearly see the advantage of our system
when working with active since the quality of the recon-
struction remains almost the same for different positions of
the eyes.

B. Repeatability analysis of the calibration results

The correct behavior of the system is also validated by
ensuring its repeatability. To test the repeatability of the
calibration procedure, we ran the algorithm 5 times for each
configuration of the eyes, shown in figures 2(a), 2(b) and
2(c), without a full reset of the encoders between each trial.
Figures 5(a), 5(b) and 5(c) show the convergence of the
offsets estimates for the right pan offset (1), the left pan
offset (d2), the virtual left tilt offset (3) and the virtual left
swing offset (d4) in each experiment with the mean values
taken in the last 50 iterations shown in table IX, X and XI
along with the standard deviations.

Considering the two last joints represent the mounting
errors of the left camera, the estimates of the offsets should
be roughly the same, independently of the starting position of
the eyes. By analysing the results for the three experiments,
we have a standard deviation of just 0.0503deg for the virtual
left tilt offset (03) and 0.0612 for the virtual left swing offset
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Fig. 5. Repeatability: Convergence of the (real and virtual) joints offsets for
three different starting positions of the robot eyes (5 trials per experiment).



TABLE IX
REPEATABILITY TEST - EXPERIMENT 1

Trial # | 01 (deg) | 62 (deg) | 03 (deg) | d4 (deg)
1 —43.0344 | 45.9615 1.5336 1.2083
2 —43.0198 | 46.0341 1.5342 1.228
3 —43.0763 | 46.0349 1.5419 1.2498
4 —43.0752 | 46.1249 1.5538 1.2676
5 —42.8647 | 45.9609 1.5165 1.1617
std.dev. 0.0871 0.0676 0.0136 0.0409
TABLE X
REPEATABILITY TEST - EXPERIMENT 2
Trial # | 01 (deg) | 62 (deg) | 93 (deg) | 04 (deg)
1 53.2242 | —40.7295 1.4286 1.2693
2 52.9378 | —40.8335 1.4434 1.3446
3 52.5676 | —41.2097 1.4687 1.3508
4 53.1539 | —40.6823 1.4367 1.2843
5 53.3059 | —40.5371 1.4241 1.2751
std.dev. 0.2963 0.2534 0.0175 0.0396
TABLE XI
REPEATABILITY TEST - EXPERIMENT 3
Trial # | 01 (deg) | 02 (deg) | 03 (deg) | 04 (deg)
1 1.6535 45.1342 1.5367 1.1884
2 1.6026 45.1669 1.5655 1.1863
3 1.9534 45.6184 1.5365 1.1873
4 1.7522 45.2004 1.5364 1.1663
5 2.0143 45.5788 1.5376 1.1811
std.dev. 0.1817 0.2379 0.0129 0.0092

(d4), for a total of 15 trials. The results show that the different
experiments converge to similar values in their trials thus
empirically proving the robustness of the proposed method.

V. CONCLUSIONS

In this paper we have presented a new markerless stereo
calibration system that calibrates the eyes of a humanoid
robot at a kinematic model level in an online fashion. The
system does not require any visual marker in the world thus
using natural image points to achieve a calibration state. The
calibration is obtained at a kinematic model level meaning it
allows the use of active vision without losing quality in the
stereo reconstruction due to the system’s robustness.

We tested the accuracy and repeatability of our system us-
ing the results with the Bouguet toolbox as ground truth. We
are able to correctly calibrate the stereo system independently
of the starting position of the eyes as seen by the correct es-
timates of the calibration pattern dimensions with acceptable
reconstruction errors, considering the sensitivity of stereo
reconstruction. The same calibration state is achieved after
restarting the system without resetting the encoders which
demonstrates the repeatability, and therefore the robustness,
of the system. The online calibration at a kinematic model
level is tremendously useful when working with active vision
S0 a correct stereo reconstruction is always possible for every
position of the robot’s eyes, as seen in performed tests.

We believe that, as the efforts on miniaturisation of robots
grow and their complexity increase, automatic and self-

sources of uncertainty, will be key to the usability and
reliability of future robots.
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