
Lens Auto-Classification using a Featureless Methodology

Ricardo Galego 1, Ricardo Fereira 1, Alexandre Bernardino 1,
{rgalego,ricardo,alex}@isr.ist.utl.pt

1 Institute for Systems and Robots
Instituto Superior Tecnico, Lisboa, PT

Etienne Grossmann 2, José Gaspar 1

etienne@egdn.net,jag@isr.ist.utl.pt

2 Intel Corp.
Menlo Park, USA

Abstract

In this work we propose a methodology to find automatically the type of
the lens of a discrete mobile camera. The assumption that pixels have
approximately uniform density on the sensor allows the classification of
different types of lenses, independently of the sensor shape.

1 Introduction

Traditional imaging sensors are formed by pixels precisely placed in a
rectangular grid, and thus look like calibrated sensors for many practi-
cal purposes such as localizing local extrema, edges or corners. Incon-
trast, the most common imaging sensors found in nature are the compound
eyes, collections of individual photo cells which clearly do not form rect-
angular grids, but are very effective for solving various tasks at hand and
thus have inspired the design of many artificial systems.

Recently, Olssonet al. [8] proposed a methodology for topologi-
cally calibrating a central imaging sensor based on a number of photo-
cells. A metric reconstruction is found by Grossmannet al. [5], when
the relation between signal correlation values and pixel distance-angles is
known. Methods that do not require this relation to be known were pre-
sented by Censi and Scaramuzza [2] and Galegoet al. [6]. In [6] the
computational complexity associated to augmenting the sensor resolution
is handled by using methods derived from the classical Multi Dimensional
Scaling (MDS) [3].

In the cases where the sensor topology is a rectangular grid with a
perspective lens one can use traditional calibration methodologies [1, 9,
11]. However, for other type of lenses these methodologies do not work.
A methodology to calibrate other types of lens was proposed by Kannala
et al. [7]. The methodology of Kannalaet al. requires using a calibration
pattern and the specification of the lens type. In our work we propose an
automatic method to find the lens type while using natural images.

2 Camera Model

Discrete central cameras, as conventional (standard) cameras, are described
geometrically by the pin-hole projection model. Differently from standard
cameras, discrete cameras are simply composed of collections of pixels
organized as pencils of lines with unknown topologies.

Grossberg and Nayar[4] introduced the concept of raxel as a math-
ematical abstraction of the pose of a photo-cell. Instead of denoting the
real position of the photo-cell, a raxel is just assumed to be along the
direction of the chief ray associated to the photo-cell. A raxel can be
characterized as a 3D position, p, and a direction vector,q, as shown in
Fig.1(d). Since we are considering central cameras, all light rays (ac-
quired by photo-cells) converge to the same point, and thuspi = p j for
any pair of raxels. Therefore, we ignore the position of the raxels, since
the only useful information is contained in the direction vectorq. As a di-
rection vector,q, we assume that all the vectors have the same norm. This
assumption removes one degree of freedom, which allows us to represent
q with only two angles,(Ω,µ).

Traditionally the coordinate system of a camera sensor is represented
by ui andvi, which are the ith pixel position along horizontal and ver-
tical grid. Here we use a polar coordinate system of[r µ ], whereri =
√

(ui −u0)2+(vi − v0)2, µi = acos(ui/vi), and [u0 v0] is the principal
point.

In this work we assume that the discrete camera geometric model can
be characterized by an unknown radial functionh. This function links the
angle at which a light ray (raxel) hits the camera lens with the imaged
point (pixel coordinates),

Ω = h(r/l), (1)

considering thatr is the radial distance, in pixels, from the center of an
imaging sensor,l is the focal length andΩ is the angle between the prin-
cipal axis and the incoming ray, as it can be seen in figure 1 (d), note that
the µ is the same as in pixels coordinates, since the lens transformation
only affect the radius.

In the following we assume that we have three different lenses [7]:

Ω = atan(r/l) perspective lens, (2)

Ω = r/l equidistance projection lens, (3)

Ω = asin(r/l) orthogonal projection lens. (4)

From now on the focal lengthl will be not considered since it is a constant
that will not have impact on the differentiation of a lens type.

In order to classify a lens mounted on a camera we propose a method-
ology based in three steps: i) topological calibration of a sensor; ii) marginal-
ization of the density of the topology alongµ ; iii) lens classification based
in finding the closest match for the marginal density function of the topol-
ogy.
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Figure 1: Model of a discrete camera mounted on a pan-tilt basis. The
optic-fiber bundle, points E to D in (a), Input image (b). Twisted input
image (c). Projection model and raxels notation (d).

3 Auto-Calibration Methodology

The classical Multiple Dimensional Scaling (MDS) algorithm [3] pro-
vides a simple way of embedding a set of points in Euclidean space given
their inter-distances. It works well when the distances are Euclidean and
when the structures are linear, however, when the manifolds are nonlinear,
the classical MDS fails to detect the true dimensionality of the data set.
Isomap is built on classical MDS but instead of using Euclidean distances
it uses an approximation of geodesic distances [10]. These geodesic dis-
tance approximations are defined as a series of hops between neighboring
points in the Euclidean space using a shortest path graph algorithm such
as Dijkstra’s. In our particular case, this algorithm is used to provide a
pixel embedding given the inter-pixel distances estimated from the pixel
stream correlations.

In order to obtain the embedded raxels directions,Q f = [q1 q2 · · ·qN ],
one follows the steps proposed in [6]: (i) Data binarization using a fixed
threshold such that each pixel stream value is either 1 or−1. (ii) Comput-
ing the normalized correlation between all the pixel-streams. (iii) Con-
verting the inter-pixel correlations,C, into distances,d, using the linear
transformationd(qi,q j) = 1−C( fi, f j), fi corresponds to a time series of
brightness values captured byith pixel. (iv) Using Isomap to compute the
topology of the sensor.
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Figure 2: Detection of the lens type. In (a) we can see a typical image acquired by the camera. (b) the estimated raxels topology. (c) mapping of a
image into the topology. (d) histogram of theR density in the topology.

4 Lens Effect and Raxel Densities

Assuming that we have a uniform distribution of the pixels, what is the
distribution expected in the raxels space? The marginal density of the
pixels would be the solution if we had no lens transformation, however
the transformation created by the lens will change the marginal density of
the raxels.

Simulating a 100×100 pixel camera with the three types of lens one
finds that each lens creates a distinct distribution of raxels (see Fig. 3(d)) 1.

(a) (b)

(c) (d)
Figure 3: Effects of a lens in a uniform pixel distribution to the raxels
topology. (a) Perspective lens. (b) Equidistant lens. (c) Orthogonallens.
(d) Density of each topology along the radius

Given the previous observation one can now propose a lens classifica-
tion algorithm. One starts by acquiring the radial distribution of the topol-
ogy,h−1(Ω). We truncate the domain ofh−1 to Ω ∈ [0, h(max(h−1(.))].
The truncation is done since a random topology is in general not circular
(e.g. most of the conventional sensors have rectangular shapes).Then a
quadratic curve is fitted toh−1 using a minimum squared error criterium.
Based on the value of the first quadratic term we can estimate the type
of the lens mounted in our camera. The first case that we look at is the
equidistant lens. If the first term has a modulus value lower than 10% of
the second term then the lens is tagged as an equidistant lens. Otherwise,
if the first term is negative the lens on the camera is a orthogonal lens.
Otherwise, it is a perspective lens.

5 Results

The experiments have been conducted with a PGR-Flea camera equipped
with an equidistant lens type (see Eq. 2). We selected just a central region
of the camera, 100×100 pixels, and then subsampled one in every three
pixels in both directions. This sensor composed by square pixels forming
a regular square grid has a uniform distribution in the pixels space[u v]. In
order to estimate the lens-type of the camera, we reconstruct the topology
of the camera using a set of 8500 random images. One of the calibrating
images is shown in Fig. 2(a). The topology resulting of the proposed
algorithm can be seen in Fig. 2(b). Figure 2(c) shows image (a) remapped

1The focal lengthl is the same in all cases. A square sensor is used, instead of a circle,
because it is easier to spot the differences between each case. However the histograms of
cumulative functions, are made using the biggest circle that could fit in thetopology.

according to the reconstructed topology. Since the estimated topology is
not perfect, and we have pixel sub-sampling one can see blur in the figure.

Figure 2(d) shows the density function of the estimated topology. The
part of the function used for classifying the lens is marked in red. The
estimated quadratic curve isy = 0.0045∗ x2 + 0.19∗ x+ 0.013. In this
case the ratio between the first and the second term is 2.3%, which means
that the lens mounted in the camera is an equidistant lens. This result is
confirmed by the datasheet of the lens.

6 Conclusions and Future work

In this work we have shown that is possible to find automatically the type
of a lens mounted on a mobile camera. This is useful, for example, to
further automate current calibration processes which involve indicating a-
priori the type of the lens. Our future work will focus on formalizing the
mathematical background of the proposed methodology.
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