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Abstract. Although there are intrinsic advantages of using pan-tilt-zoom cam-
eras their application in automatic surveillance systems is still scarce. The dif-
ficulty of creating background models for moving cameras and the difficulty of
keeping fitted pose and optical geometrical projection models are key reasons for
the limited use of pan-tilt-zoom cameras. Geometric calibration is a useful tool
to overcome these difficulties.
In this work we propose a method for PTZ camera auto-calibration over the cam-
era’s zoom range. A new approach based on adivision distortion model, which
allows designing linear algorithms, is followed to solve the radial distortion when
images are captured in different zooms. Results obtained over both synthetic and
real data show that a full zoom range, complete field of view, pan-tilt-zoom cam-
era calibration is possible.

1 Introduction

Despite the high versatility and potential of pan-tilt-zoom cameras, their use in current
surveillance systems is still much less frequent than the use of fixed cameras. The lim-
ited dissemination of pan-tilt-zoom cameras can be justified by the slightly higher costs
of the hardware and the higher risk of failure due to the mechanical components. This
is however just a partial justification, since the hardware costs and failures can decrease
significantly with mass production. Other, more compelling, justifications arise from the
operation of the cameras and the difficulty of developing surveillance methodologies.
Aiming to have mostly high quality employment implies that installations with numer-
ous pan-tilt-zoom cameras cannot involve many human operators. This motivates devel-
oping automatic control and surveillance methodologies inopposition to the currently
utilized manual control. The difficulty of creating background models for moving cam-
eras and the difficulty of keeping fitted pose and optical geometrical projection models
are also key reasons for the limited availability of automatic surveillance methodolo-
gies provided by the industry. Geometric calibration is a useful tool to overcome these
difficulties.

There are several methods documented in the literature for calibrating cameras. The
method proposed by Bouguet [1] is nowadays one of the most used calibration methods.
Bouguet’s method allows estimating intrinsic and radial distortion parameters based on
imaging a planar chess pattern placed at various orientations. In the case of mobile
cameras, in particular the pan-tilt-zoom cameras, there has been shown that they can
be auto-calibrated using natural features of a static scenario. Hartley [2] presented an
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auto-calibration method for rotating cameras and later Agapito et al. [3, 4] introduced a
self-calibration method for rotating and zooming cameras.These works showed that ge-
ometric calibration of intrinsic and extrinsic parameterscan be achieved without requir-
ing non-linear optimization. Estimating of the radial distortion still implied non-linear
optimization. Sinha and Pollefeys [5] also recurred to the non-linear minimization of re-
projection errors in order to consider the estimation of radial distortion in pan-tilt-zoom
cameras. Their approach is based on estimating intrinsic and radial distortion coeffi-
cients using imagery taken within a small range of the camera’s FOV. In all methods
presented till here, there is no approach which achieves an accurate estimation of both
intrinsic and radial distortion parameters with low (time)computational costs.

One of the key aspects justifying the complexity of including the estimation of ra-
dial distortion in the calibration process is that the distortion model cannot be easily in-
verted. To overcome this aspect, Fitzgibbon [6] proposed the division distortion model,
which directly maps the radially distorted points into undistorted points. This direct
mapping allows estimating the radial distortion and other calibration parameters in a
manner very similar to the conventional calibration of pan-tilt cameras [2]. Steele and
Jaynes [7] improved Fitzgibbon’s algorithm by making it more stable. Kukelova and
Pajdla [8] solve the same problem with the use of the fundamental matrix.

In this work, we propose using a linear algorithm [3] for the calibration of the intrin-
sic parameters of a pan-tilt-zoom camera, including the estimation of radial distortion.
A new approach is followed for solving the radial distortionwhen images are captured
at different zooms.

This paper is organized as follows: Section 2 introduces thepan-tilt-zoom cam-
era model, Section 3 presents several calibrations methodologies, Section 4 proposes
a methodology for the calibration of radial distortion whenin presence of zoom, Sec-
tion 5 shows some results with real and synthetic data, and finally, in Section 6 some
conclusions are drawn and the future work is stated.

2 Pan-Tilt-Zoom Camera Model

The pin-hole camera model for the perspective pan-tilt-zoom camera consists of a map-
ping from 3D projective space to 2D projective space. This isrepresented by a 3x4
rank-3 perspective matrix,P. The mapping from 3D to the image plane takes a point
X = [X Y Z 1]T to a pointu = PX in homogeneous coordinates. The projection matrix
is usually decomposed as:

P = Kz[R t] (1)

wheret is a 3x1 vector that represents the camera location,R is a 3x3 rotation matrix
that represents the orientation of the camera with respect to an absolute coordinate
frame andKz is a 3x3 upper triangular matrix encompassing the intrinsicparameters of
the camera:

Kz =
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whereku andkv are the magnifications in the respectiveu andv directions,u0 andv0

are the coordinates of the principal point of the camera ands is a skew parameter (in
this work we assumes = 0).

2.1 Specific aspects of pan-tilt-zoom cameras

Contrarily to cameras with fixed optics, pan-tilt-zoom cameras allow zoom in/out, and
thus allow varying theKz matrix.

In addition, note that the pan and tilt movements are simply rotations about the
projective centerO = −R−1t, which is usually chosen to be the world origin and thus
t = [0 0 0]T . The pan and tilt movements are included inR, and thusR is also a time
varying matrix.

2.2 Radial distortion

Most cameras deviate from the pin-hole model due to radial distortion. This effect de-
creases with increasing focal length. Due to radial distortion a 3D pointX is projected
to a pointxd = [xd yd ]

T . This point is deviated from the pointx = [x y]T according to
the radial distortion function,Rz:

[xd yd ]
T =R

z ([x y]T ; k1, k2
)

= L(r)[x y]T (3)

whereL(r) = (1+k1r2+k2r4)[x y]T andr =
√

x2+ y2. This radial distortion model cor-
responds to a simplified two coefficient version of the model proposed by Heikkila [9]
wherer is the radial distance (distance from pointx to the center of distortion(xc,yc)),
L(r) is a radially symmetric distortion factor andk1 andk2 are the two radial distortion
coefficients considered. For every zoom levelz, Rz is parameterized by(xz

c,y
z
c,k

z
1,k

z
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In this work we assume that the principal point(u0,v0) is constrained to be the cen-
ter of distortion and therefore the radial distortion function is only parameterized by
coefficientskz

1 andkz
2.

In summary, the goal of the calibration process of a pan-tilt-zoom camera is to
estimate the unknown parameters of a model(Kz,R andRz) that provides the intrinsic
parameters for any pan, tilt and zoom admissible configuration. SinceR is likely to
change continuously due to the operation of the camera, in general the calibration of
pan-tilt-zoom cameras refer just to estimatingKz andRz.

3 Calibration Methodologies

This section contains a comprehensive review of auto-calibration methodologies for
pan-tilt-zoom cameras.

3.1 Calibration Method by Agapito et al.

Agapito et al. in [10] introduced an image based auto-calibration method that estimates
the intrinsic parameters of a rotating camera. Given a 3D world pointX , it has different



projections on different images,xi = PiX . SinceX is the same on all the images and
P = KR, we can calculate the relation between the images

xi = PiP
−1
j x j. (4)

The relation between images is a homography (projective transform)H ji = PiPj
−1 =

KiRi jK j
−1. SinceR is a rotation matrix, it satisfiesR = R−T , and thus

H jiK jK
T
j HT

ji = KiK
T
i . (5)

In the cases thatKi = K j, i.e. images with constant zoom, Eq. 5 can be solved by a set
of linear equations in the entries ofKK−T .

3.2 Bundle Adjustment, Sinha and Pollefeys’ Calibration Method

Sinha and Pollefeys [5] proposed an algorithm to calibrate simultaneously the intrinsic
parameters of a camera as well its radial distortion. Their method is based on multiple
bundle adjustments. Given a set of images, their algorithm estimates the radial distor-
tion, R, and the homographies among the images,T , by minimizing the reprojection
error,D, on the surface of a cube:

minTi,R(zmin),X j

m

∑
j=1

n

∑
i=1

D(x j
i ,R(TiX

j))2. (6)

Having an initial estimate of the radial distortion and of the homographies, the algo-
rithm uses a method like Hartley and Agapito’s to solve for the intrinsic parameters.
Afterwards the method encompasses another bundle adjustment to refine the radial dis-
tortion parameters and the intrinsic parameters:

minK(zmin),Ri,R(zmin),X j

m

∑
j=1

n

∑
i=1

D(x j
i ,K(R(RiX

j)))2 (7)

As it has several bundles this method can be slow, depending on the number of images
and corresponding points.

3.3 Division distortion model, Fitzgibbon’s Calibration Method

Fitzgibbon proposed an auto-calibration algorithm that finds the homographies among
images taken at various pan and tilt poses and, simultaneously, finds the radial distortion
characterizing the camera at a fixed zoom level [6]. In order to estimate simultaneously
the homographies and the radial distortion, the radial distortion is represented in the so
calledone-parameter division distortion model:

x =
1

1+λ‖xd‖2 xd (8)



wherex is the undistorted pixel position,xd is the distorted pixel position andλ is the
radial distortion parameter. The calibration methodologyestimates the radial distortion
from a pair of images. From Eq. 4 one has thatxi is equal toHx j, which leads to:

xi ⊗Hx j = 0 (9)

where⊗ denotes the Kronecker product. Ifx is replaced using Eq.8 then one obtains:

(xi +λzi)⊗H(x j +λz j) = 0 (10)

wherexi = [ui vi 1]T andzi = [0 0u2
i +v2

i ]
T . The expansion of Eq. 10, based on distorted

points directly observed on the images, leads to a quadraticeigenvalue problem (QEP):

(D1+λD2+λ2D3)h = 0 (11)

where theD1, D2 andD3 matrices are composed from the data, andh is the homography,
H vectorized. The solution proposed by Fitzgibbon involves solving a number of times
Eq. 11, each one for a pair of images, and then computing the median of the solutions.
In addition, Eq. 11 is modified to be written with squared matrices. The matrices in
Eq. 11 are made square by multiplying all the terms of the equation by DT

1 :

(DT
1 D1+λDT

1 D2+λ2DT
1 D3)h = 0. (12)

The solution of the problem described by Eq.12, i.e.λ andh, can be obtained numeri-
cally using e.g. the functionpolyeig of Matlab.

3.4 Division distortion model, Steele and Jaynes’ Calibration Method

Steele and Jaynes [7] improved Fitzgibbon’s algorithm by making it lesser biased by the
noise existing in the correspondences found among images. Their method takes advan-
tage of an QEP algorithm working directly on rectangular matrices, and thus eliminates
the need to enforce square matrices as Fitzgibbon proposed.In their method they add a
new variable to Eq. 11:

D1h+λ(D2h+D3u) = 0 (13)

u−λh = 0 (14)

Solving the equation forh andu one gets(A−λB)v = 0 with:

A =

[

D1 0
0 I

]

; B =

[

−D2 −D3

I 0

]

; v =

[

h
u

]

(15)

The solution to this problem is obtained iteratively. The algorithm starts withλ = 0 and
then v is computed through single value decomposition. The updateto λ is done by
solving the quadratic equation

vT (BT +λAT )(A−λB)v = 0 (16)

and choosing the positive root1.

1 For the quadratic equationax2 + bx + c = 0 the positive root is given by(−b +√
b2−4ac)/(2a)



3.5 Comments

The pioneer work by Agapito et al. already focuses on the geometric auto-calibration
of pan-tilt-zoom cameras. However, it aims solely to estimate efficiently the intrinsic
parameters, not including radial distortion. Sinha and Pollefeys’s approach to auto-
calibrate these cameras, addresses estimation of both intrinsic and radial distortion pa-
rameters, but relies on multiple bundle adjustment processes which make the process
computationally complex (time). The methods of Fitzgibbon, and Steele and Jaynes,
allow a simple computation of both radial distortion and homographies, but do not pro-
vide calibration for multiple zoom levels.

Table 1 summarizes the features of the calibration methodologies presented in this
section. One observes that no single methodology has all thepresented three features,
namely estimating radial distortion, allowing multiple zoom levels, and having at the
same time low computational demands (more precisely, low computational time).

Calibration Multiple Radial Low Comp.
methodology zoom levelsdistortion resources

Agapito et al. [10] yes yes
Sinha and Pollefeys [5] yes yes

Fitzgibbon [6] yes yes
Steele and Jaynes [7] yes yes

Table 1.Comparing calibration methodologies

4 Calibration considering both Radial Distortion and Multip le
Zoom Levels

In this section we propose an auto-calibration methodologythat estimates radial dis-
tortion, allows multiple zoom levels, and can be implemented efficiently (processing
time). This methodology builds on the methodologies available in the literature that
were described in the previous section. Before presenting the complete calibration al-
gorithm, we will firstly introduce the calibration procedure for one zoom level given the
calibration of the preceding zoom level.

Considering that the radial distortion varies with the zoomlevel, one has to modify
Eq. 10 to represent both distortion levels,λ1 andλ2:

(xi +λ1zi)⊗H(x j +λ2z j) = 0 (17)

Expanding Eq. 17 one obtains:

xi ⊗Hx j +λ1zi ⊗Hx j +λ2(xi ⊗Hz j +λ1zi ⊗Hz j) = 0 (18)

here factorized forλ2. The equation can be further expanded to factorize the homog-
raphy as a column vector,h = [h11 h21 · · ·h33]

T , pre-multiplied by matricesD1 and



D2:
(D1+λ2D2)h = 0 (19)

where

D1=

[

0 0 0 −x′−λ1r′2x −y′−λ1r′2y −1−λ1r′2 yx′ yy′ y
x′+λ1r′2x y+λ1r′2y′ 1+λ1r′2 0 0 0 −xx′ −xy′ −x

]

(20)
and

D2 =

[

0 0 0 0 0−r2−λ1r2r′2 0 0 y′r2

0 0 λ1r2r′2+ r2 0 0 0 0 0−x′r2

]

. (21)

Note that Eq. 19 can be once more solved using thepolyeig function of Matlab, or
using the iterative method proposed by Steele and Jaynes (see equations 15 and 16).

Now that one has a methodology to calibrate a zoom level giventhe calibration
of another zoom level, it is possible to design a complete calibration algorithm. Our
proposal of a complete calibration methodology encompasses the following main steps:

1. Calibration at minimum zoom using the methodology of Steele and Jaynes (sec-
tion 3.4)

2. Calibration of one zoom level after another using the methodology introduced in
this section (Eq. 19).

Doing calibration at minimum zoom (i.e. maximumzoom out) involves moving
(panning and tilting) the camera with a fixed zoom, detectingand matching features. In
our case we use SIFT features [11]. The calibration for various zoom levels involves
fixating the pan and tilt angles while increasing the zoom level. Between each pair of
zoom levels one has to find once more corresponding SIFT features.

5 Experiments and Results

This section describes two experiments: (i) comparing the performance of Fitzgibbon’s
calibration algorithm against the Steele and Jaynes’ in a pan-tilt sequence created from
a synthetic scenario, and comparing the performance of our zoom algorithm combined
with both algorithms; (ii) qualitatively assessment of theperformance of our methodol-
ogy on real data, namely mosaics built from pan-and-tilt andfrom zoom sequences.

5.1 Noise Analysis

This experiment is based on synthetic data, generated from random 3D points imaged
by a virtual pan-tilt-zoom camera with radial distortion. White Gaussian noise is added
to the position of the features observed by the camera. The noise varies from zero pixels
of standard deviation up to two pixels.

The first part of the experiment involves comparing the performance of Fitzgibbon’s
and Steele and Jaynes’ algorithms in estimating the radial distortion from a set of im-
ages with constant zoom. The Fitzgibbon’s algorithm is tested with a set of 50 pair of
images and the Steele and Jaynes’ algorithm is tested with just 6 pairs of images. Both



algorithms performed well with no noise, as they both found the correct radial distor-
tion parameterλ = 0.1278 (see fig. 1, green line). However as the noise increases the
Fitzgibbon algorithm (left plot, A) tends to go away from thereal value of the parame-
ter. On the other hand Steele and Jaynes’ algorithm (left plot, B) stays close to the real
solution even in a presence of a considerable noise. Despiteusing a lesser number of
image pairs, Steele and Janeys’ algorithm performs better.

(A)

(B)

1 2

(C)

(D)

1 2

Pan-tilt sequence, Distortionλ vs noise Zoom sequence, Distortionλ vs noise
standard deviation (0..2 pixels) standard deviation (0..2 pixels)

Fig. 1.Estimated distortion vs noise in the data. Comparing two estimation methods in a pan and
tilt sequence (left plot) and in a zoom sequence (right plot). The green line represents the true
distortion value in both plots. Noise is white Gaussian noise varying from 0 to 2 pixels (standard
deviation).

In the second part of the first experiment we assess our methodology for calibrating
the radial distortion given images taken at different zoom levels. More precisely, this
experiment involves generating random 3D points and capturing two images with dif-
ferent zooms. One of the two images has known radial distortion. The imaged points,
matched between the two images, are corrupted with white Gaussian noise with 0 to 2
pixels pixels of standard deviation. Figure 1(right plot) compares usingpolyeig once
(C) with usingSVD iteratively (D), as proposed by Steele and Jaynes’ for the constant
zoom case (the horizontal green line denotes the ground truth value). One observes that
the iterative algorithm is beneficial for estimating the radial distortion in the case of
multiple zoom levels, as it was in the single zoom level.

5.2 Mosaics

The second experiment involves testing the proposed calibration methodologies with
real data acquired with an Axis 215 PTZ camera. The calibration of the intrinsic pa-
rameters and the radial distortion is performed using a set of 16 images, captured at
different orientations, with the same zoom level. First theradial distortion is estimated
using Steel and Jaynes’ algorithm. After correcting the images the algorithm of Agapito
et al. is used to estimate the intrinsic parameters,Kz. Figure 2 (a) shows that both algo-
rithms work well together since the texture is qualitatively consistent at stitching image
seams.



(a) Pan and tilt mosaic (b) Zooming on mosaic

Fig. 2. (a) Mosaic build from sequence of 16 pan and tilt images. (b) Mosaic from a sequence 4
images with different levels of zoom.

The experiment on real data continues with a sequence of images with varying
zoom. Four images were acquired with different zoom levels.The radial distortion pa-
rameters are known (estimated in the previews step) just forthe first image. The param-
eters of the other images are estimated using our methodology. The result of the radial
distortion correction and pasting of the images is shown on fig. 2 (b).

6 Conclusions and Future Work

In this paper we approach the problem of auto-calibrating pan-tilt-zoom cameras. The
auto-calibration comprises estimating intrinsic and radial distortion parameters over the
camera’s full zoom range.

Fitzgibbon [6] proposed a method for calibrating the radialdistortion without know-
ing anything besides matching features between images. Steele and Jaynes [7] improved
the method by making it more robust. In both works the zoom level was considered to
be fixed, and thus the radial distortion was constant for all images acquired by the cam-
era. In our methodology we show that auto-calibration can begeneralized to the case
of multiple zoom levels while still effectively including the estimation of radial distor-
tion. We propose solving the problem of different zoom levels by estimating the radial
distortion at one zoom level given the radial distortion of another level.

Future work will focus on investigating even more complex modelings of pan-tilt-
zoom cameras, while keeping computationally time-efficient solutions. Recently work
by Kukelova and Pajdla [8] is already pointing towards this direction.
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