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Abstract. Although there are intrinsic advantages of using pan-tilt-zoom cam-
eras their application in automatic surveillance systems is still scarce. The dif
ficulty of creating background models for moving cameras and the wliffiof
keeping fitted pose and optical geometrical projection models are keynmeéor

the limited use of pan-tilt-zoom cameras. Geometric calibration is a useflul too
to overcome these difficulties.

In this work we propose a method for PTZ camera auto-calibration ogerain-
era’s zoom range. A new approach based alivision distortion model, which
allows designing linear algorithms, is followed to solve the radial distortiomwhe
images are captured in different zooms. Results obtained over bdtietigrand

real data show that a full zoom range, complete field of view, pan-tiltrecam-

era calibration is possible.

1 Introduction

Despite the high versatility and potential of pan-tilt-moeameras, their use in current
surveillance systems is still much less frequent than tieeofiixed cameras. The lim-
ited dissemination of pan-tilt-zoom cameras can be judtlfiethe slightly higher costs
of the hardware and the higher risk of failure due to the meidah components. This
is however just a partial justification, since the hardwargtg and failures can decrease
significantly with mass production. Other, more compellingtifications arise from the
operation of the cameras and the difficulty of developingsillance methodologies.
Aiming to have mostly high quality employment implies thasgtallations with numer-
ous pan-tilt-zoom cameras cannot involve many human opardthis motivates devel-
oping automatic control and surveillance methodologiesgiposition to the currently
utilized manual control. The difficulty of creating backgral models for moving cam-
eras and the difficulty of keeping fitted pose and optical getoical projection models
are also key reasons for the limited availability of autamatrveillance methodolo-
gies provided by the industry. Geometric calibration is efulstool to overcome these
difficulties.

There are several methods documented in the literaturafitrating cameras. The
method proposed by Bouguet [1] is nowadays one of the modtaadibration methods.
Bouguet’s method allows estimating intrinsic and radiatalition parameters based on
imaging a planar chess pattern placed at various orientatim the case of mobile
cameras, in particular the pan-tilt-zoom cameras, thesebean shown that they can
be auto-calibrated using natural features of a static siertdartley [2] presented an
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auto-calibration method for rotating cameras and latempitgaet al. [3, 4] introduced a
self-calibration method for rotating and zooming camefagse works showed that ge-
ometric calibration of intrinsic and extrinsic parametess be achieved without requir-
ing non-linear optimization. Estimating of the radial diston still implied non-linear
optimization. Sinha and Pollefeys [5] also recurred to thie-finear minimization of re-
projection errors in order to consider the estimation ofatdistortion in pan-tilt-zoom
cameras. Their approach is based on estimating intringlcradial distortion coeffi-
cients using imagery taken within a small range of the calmé&r@V. In all methods
presented till here, there is no approach which achieveseurate estimation of both
intrinsic and radial distortion parameters with low (tino@mputational costs.

One of the key aspects justifying the complexity of inclglthe estimation of ra-
dial distortion in the calibration process is that the distm model cannot be easily in-
verted. To overcome this aspect, Fitzgibbon [6] proposediithision distortion model,
which directly maps the radially distorted points into widited points. This direct
mapping allows estimating the radial distortion and otredibecation parameters in a
manner very similar to the conventional calibration of pigincameras [2]. Steele and
Jaynes [7] improved Fitzgibbon’s algorithm by making it matable. Kukelova and
Pajdla [8] solve the same problem with the use of the fundaahematrix.

In this work, we propose using a linear algorithm [3] for tladiloration of the intrin-
sic parameters of a pan-tilt-zoom camera, including thienesion of radial distortion.
A new approach is followed for solving the radial distortiwhen images are captured
at different zooms.

This paper is organized as follows: Section 2 introducespttilt-zoom cam-
era model, Section 3 presents several calibrations melihngids, Section 4 proposes
a methodology for the calibration of radial distortion wharpresence of zoom, Sec-
tion 5 shows some results with real and synthetic data, aatlyfinn Section 6 some
conclusions are drawn and the future work is stated.

2 Pan-Tilt-Zoom Camera Model

The pin-hole camera model for the perspective pan-tilthzoamera consists of a map-
ping from 3D projective space to 2D projective space. Thiejgresented by a 3x4
rank-3 perspective matriR. The mapping from 3D to the image plane takes a point
X =[XY Z 1" to a pointu = PX in homogeneous coordinates. The projection matrix
is usually decomposed as:

P =K7Rt] 1)

wheret is a 3x1 vector that represents the camera locaids,a 3x3 rotation matrix
that represents the orientation of the camera with respeantabsolute coordinate
frame andK?is a 3x3 upper triangular matrix encompassing the intripai@meters of
the camera:
ku s Uo
KZ= | 0 ky Vo (2)
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wherek, andk, are the magnifications in the respectivandv directions,up andvp
are the coordinates of the principal point of the camerasisda skew parameter (in
this work we assums= 0).

2.1 Specific aspects of pan-tilt-zoom cameras

Contrarily to cameras with fixed optics, pan-tilt-zoom caaseallow zoom in/out, and
thus allow varying thé&? matrix.

In addition, note that the pan and tilt movements are simptgtions about the
projective cente® = —R~!t, which is usually chosen to be the world origin and thus
t=[000Q". The pan and tilt movements are includedRnand thusR is also a time
varying matrix.

2.2 Radial distortion

Most cameras deviate from the pin-hole model due to rad&bdion. This effect de-
creases with increasing focal length. Due to radial diginra 3D pointX is projected
to a pointxg = [Xg Yq]T. This point is deviated from the poimt= [x y|T according to
the radial distortion functiorfR%

[xa Ya]" =R2(xy]"; ke, ko) = L(r)[xy]" ®)

whereL(r) = (1+kir2+kor#)[xy]" andr = /X2 +y2. This radial distortion model cor-
responds to a simplified two coefficient version of the modeppsed by Heikkila [9]
wherer is the radial distance (distance from paxib the center of distortiofxc, y¢)),
L(r) is a radially symmetric distortion factor akg andk, are the two radial distortion
coefficients considered. For every zoom lexeR? is parameterized b{xZ,yz, ki, k3).

In this work we assume that the principal poiub, Vo) is constrained to be the cen-
ter of distortion and therefore the radial distortion fuoitis only parameterized by
coefficientsk; andk3.

In summary, the goal of the calibration process of a paretiim camera is to
estimate the unknown parameters of a maq#él R andfR?) that provides the intrinsic
parameters for any pan, tilt and zoom admissible configumatBinceR is likely to
change continuously due to the operation of the camera,nargéthe calibration of
pan-tilt-zoom cameras refer just to estimatikgandR?.

3 Calibration Methodologies

This section contains a comprehensive review of auto-4@ldn methodologies for
pan-tilt-zoom cameras.

3.1 Calibration Method by Agapito et al.

Agapito et al. in [10] introduced an image based auto-calibn method that estimates
the intrinsic parameters of a rotating camera. Given a 3Ddymwint X, it has different



projections on different images, = PX. SinceX is the same on all the images and
P = KR, we can calculate the relation between the images

X = PP 1. (4)

The relation between images is a homography (projectivestoam) H;j; = Plel =
KiRjK; 1. SinceRis a rotation matrix, it satisfie®= R™T, and thus

HjiK]-KJ-TH]-Ti:KiKiT. (5)

In the cases thd; = K|, i.e. images with constant zoom, Eq. 5 can be solved by a set
of linear equations in the entries KK .

3.2 Bundle Adjustment, Sinha and Pollefeys’ Calibration Mehod

Sinha and Pollefeys [5] proposed an algorithm to calibrateibaneously the intrinsic
parameters of a camera as well its radial distortion. Theithwd is based on multiple
bundle adjustments. Given a set of images, their algoritstimates the radial distor-
tion, R, and the homographies among the imageshy minimizing the reprojection
error,D, on the surface of a cube:

M 9 zin) X1 Y Z\D(&jﬁ(ﬂxj))? (6)
j=1li=

Having an initial estimate of the radial distortion and o thomographies, the algo-
rithm uses a method like Hartley and Agapito’s to solve far ihtrinsic parameters.
Afterwards the method encompasses another bundle adjuistoefine the radial dis-
tortion parameters and the intrinsic parameters:

m n . )
MM (2050, R zrin) XT D ZD(&”K(%(RX‘)))Z (7)
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As it has several bundles this method can be slow, dependitigegonumber of images
and corresponding points.

3.3 Division distortion model, Fitzgibbon’s Calibration Method

Fitzgibbon proposed an auto-calibration algorithm thadgithe homographies among
images taken at various pan and tilt poses and, simultalgéods the radial distortion
characterizing the camera at a fixed zoom level [6]. In ord@stimate simultaneously
the homographies and the radial distortion, the radiabdisin is represented in the so
calledone-parameter division distortion model:

1
X= ——— 8
T A a2 (®)



wherex is the undistorted pixel positiong is the distorted pixel position arxlis the
radial distortion parameter. The calibration methodolegimates the radial distortion
from a pair of images. From Eqg. 4 one has tkas equal toHx;, which leads to:

Xi @Hx; =0 9)
where® denotes the Kronecker productxfs replaced using Eq.8 then one obtains:
(X +Az) @H(xj+Az;) =0 (10)
wherex; = [u; v 1]T andz = [0 0u?+V2]T. The expansion of Eq. 10, based on distorted
points directly observed on the images, leads to a quadrigignvalue problem (QEP):
(D1+AD2+A%D3)h=0 (11)

where theD;, D, andD3 matrices are composed from the data, rstthe homography,
H vectorized. The solution proposed by Fitzgibbon invoh@siag a number of times
Eqg. 11, each one for a pair of images, and then computing tltkamef the solutions.
In addition, Eq. 11 is modified to be written with squared ricas. The matrices in
Eqg. 11 are made square by multiplying all the terms of the toguay DI:

(D] D1 +AD]D2+A?D{D3)h =0. (12)

The solution of the problem described by Eq.12, A@ndh, can be obtained numeri-
cally using e.g. the functiopol yei g of Matlab.

3.4 Division distortion model, Steele and Jaynes’ Calibrabn Method

Steele and Jaynes [7] improved Fitzgibbon’s algorithm biinmit lesser biased by the
noise existing in the correspondences found among imades:. Method takes advan-
tage of an QEP algorithm working directly on rectangularnmas, and thus eliminates
the need to enforce square matrices as Fitzgibbon proplstteir method they add a
new variable to Eq. 11:

Dih+A(D2h+Dsu) =0 (13)
u—Ah=0 (14)
Solving the equation fdn andu one get§A— AB)v = 0 with:

e[ Pl]

The solution to this problem is obtained iteratively. Thgasithm starts witth = 0 and
thenv is computed through single value decomposition. The uptiadeis done by
solving the quadratic equation

VI (BT +AAT)(A—AB)v=0 (16)
and choosing the positive rdot

1For the quadratic equatiomx’® + bx 4 ¢ = 0 the positive root is given by(—b -+

Vb2 —4ac)/(2a)



3.5 Comments

The pioneer work by Agapito et al. already focuses on the g#dmauto-calibration
of pan-tilt-zoom cameras. However, it aims solely to estaefficiently the intrinsic
parameters, not including radial distortion. Sinha anddfeys’s approach to auto-
calibrate these cameras, addresses estimation of battsintand radial distortion pa-
rameters, but relies on multiple bundle adjustment prasessich make the process
computationally complex (time). The methods of Fitzgibband Steele and Jaynes,
allow a simple computation of both radial distortion and logimaphies, but do not pro-
vide calibration for multiple zoom levels.

Table 1 summarizes the features of the calibration metlogied presented in this
section. One observes that no single methodology has afirtreented three features,
namely estimating radial distortion, allowing multiplearo levels, and having at the
same time low computational demands (more precisely, lawpegational time).

Calibration Multiple | Radial |Low Comp
methodology zoom levelgdistortion resources
Agapito et al. [10] yes yes
Sinha and Pollefeys [§] yes yes
Fitzgibbon [6] yes yes
Steele and Jaynes [1] yes yes

Table 1. Comparing calibration methodologies

4 Calibration considering both Radial Distortion and Multip le
Zoom Levels

In this section we propose an auto-calibration methodolbgy estimates radial dis-
tortion, allows multiple zoom levels, and can be implemdreéficiently (processing
time). This methodology builds on the methodologies atélan the literature that
were described in the previous section. Before presentiagdmplete calibration al-
gorithm, we will firstly introduce the calibration proce@uor one zoom level given the
calibration of the preceding zoom level.

Considering that the radial distortion varies with the zdewel, one has to modify
Eqg. 10 to represent both distortion levelg,andA,:

(xi+)\12;)®H(xj+)\gzj) =0 a7
Expanding Eq. 17 one obtains:
X @ HXj + A1z @ HXj + A2(% @ Hzj + A1z ® HZ;) =0 (18)

here factorized foh,. The equation can be further expanded to factorize the hemog
raphy as a column vecton = [hy hpy ---hgg]", pre-multiplied by matrice®; and



Dj:

(Dj_ —|—)\2D2)h =0 (19)
where
. — 0 0 0 X = Mr?x —y My —1-Mr% oy oy y
Y2 X 4 A12X y+Ar2y 14 Aqr'2 0 0 0 —xxX —xy —x
(20)
and

00 0 00-r2—\r2r200 yr?

D2=14 OMr2r241200 0 00-Xr2|"

(21)

Note that Eq. 19 can be once more solved usingthgei g function of Matlab, or
using the iterative method proposed by Steele and Jayneg@smtions 15 and 16).

Now that one has a methodology to calibrate a zoom level gikiencalibration
of another zoom level, it is possible to design a completéiaion algorithm. Our
proposal of a complete calibration methodology encompabssfollowing main steps:

1. Calibration at minimum zoom using the methodology of Btemd Jaynes (sec-
tion 3.4)

2. Calibration of one zoom level after another using the wadhogy introduced in
this section (Eq. 19).

Doing calibration at minimum zoom (i.e. maximumom out) involves moving
(panning and tilting) the camera with a fixed zoom, detectindg matching features. In
our case we use SIFT features [11]. The calibration for varizoom levels involves
fixating the pan and tilt angles while increasing the zoonelleBetween each pair of
zoom levels one has to find once more corresponding SIFTrEsatu

5 Experiments and Results

This section describes two experiments: (i) comparing gréopmance of Fitzgibbon'’s
calibration algorithm against the Steele and Jaynes’ imatittssequence created from
a synthetic scenario, and comparing the performance of@amzalgorithm combined
with both algorithms; (ii) qualitatively assessment of fegformance of our methodol-
ogy on real data, namely mosaics built from pan-and-tilt foch zoom sequences.

5.1 Noise Analysis

This experiment is based on synthetic data, generated faodom ® points imaged
by a virtual pan-tilt-zoom camera with radial distortion. ¥éhGaussian noise is added
to the position of the features observed by the camera. Tise maries from zero pixels
of standard deviation up to two pixels.

The first part of the experiment involves comparing the gemnce of Fitzgibbon’s
and Steele and Jaynes’ algorithms in estimating the radtdrtion from a set of im-
ages with constant zoom. The Fitzgibbon’s algorithm isséstith a set of 50 pair of
images and the Steele and Jaynes’ algorithm is tested veiti jpairs of images. Both



algorithms performed well with no noise, as they both foumel ¢orrect radial distor-
tion parameteh = 0.1278 (see fig. 1, green line). However as the noise increhses t
Fitzgibbon algorithm (left plot, A) tends to go away from tleal value of the parame-
ter. On the other hand Steele and Jaynes’ algorithm (left Blostays close to the real
solution even in a presence of a considerable noise. Dasgiitg a lesser number of
image pairs, Steele and Janeys’ algorithm performs better.
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Fig. 1. Estimated distortion vs noise in the data. Comparing two estimation methodsiremga
tilt sequence (left plot) and in a zoom sequence (right plot). The greerrdipresents the true
distortion value in both plots. Noise is white Gaussian noise varying from 0 ixels(standard
deviation).

In the second part of the first experiment we assess our matimdfor calibrating
the radial distortion given images taken at different zoenels. More precisely, this
experiment involves generating randoi Boints and capturing two images with dif-
ferent zooms. One of the two images has known radial distarirhe imaged points,
matched between the two images, are corrupted with whitessau noise with 0 to 2
pixels pixels of standard deviation. Figure 1(right plathgpares usingol yei g once
(C) with usingSVD iteratively (D), as proposed by Steele and Jaynes’ for tmstamt
zoom case (the horizontal green line denotes the grourttvaliie). One observes that
the iterative algorithm is beneficial for estimating theiahdlistortion in the case of
multiple zoom levels, as it was in the single zoom level.

5.2 Mosaics

The second experiment involves testing the proposed atiliior methodologies with
real data acquired with an Axis 215 PTZ camera. The calimadif the intrinsic pa-
rameters and the radial distortion is performed using a sé6dmages, captured at
different orientations, with the same zoom level. Firstitidial distortion is estimated
using Steel and Jaynes’ algorithm. After correcting thegesathe algorithm of Agapito
et al. is used to estimate the intrinsic parametéfsFigure 2 (a) shows that both algo-
rithms work well together since the texture is qualitatvebnsistent at stitching image
seams.



(a) Pan and tilt mosaic (b) Zooming on mosaic

Fig. 2. (a) Mosaic build from sequence of 16 pan and tilt images. (b) Mosam &sequence 4
images with different levels of zoom.

The experiment on real data continues with a sequence ofdsnagth varying
zoom. Four images were acquired with different zoom levEte radial distortion pa-
rameters are known (estimated in the previews step) jushéofirst image. The param-
eters of the other images are estimated using our methoddlbg result of the radial
distortion correction and pasting of the images is showna@r2fib).

6 Conclusions and Future Work

In this paper we approach the problem of auto-calibratingtgezoom cameras. The
auto-calibration comprises estimating intrinsic andaadistortion parameters over the
camera’s full zoom range.

Fitzgibbon [6] proposed a method for calibrating the radislortion without know-
ing anything besides matching features between imagesle@ted Jaynes [7] improved
the method by making it more robust. In both works the zoorellexas considered to
be fixed, and thus the radial distortion was constant fonadiges acquired by the cam-
era. In our methodology we show that auto-calibration cagdreeralized to the case
of multiple zoom levels while still effectively includindné estimation of radial distor-
tion. We propose solving the problem of different zoom Isug} estimating the radial
distortion at one zoom level given the radial distortion obtner level.

Future work will focus on investigating even more complexdelings of pan-tilt-
zoom cameras, while keeping computationally time-efficgiutions. Recently work
by Kukelova and Pajdla [8] is already pointing towards thigction.
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