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Abstract

In this paper we address the problem of tracking multiple

targets across a network of cameras with non-overlapping

fields of view. Existing methods to measure similarity be-

tween detected targets and the ones previously encountered

in the network (the re-identification problem) frequently

produce incorrect correspondences between observations

and existing targets. We show that these issues can be cor-

rected byMultiple Hypothesis Tracking (MHT), using its ca-

pability of disambiguation when new information is avail-

able. MHT is recognized in the multi-target tracking field

by its ability to solve difficult assignment problems. Experi-

ments both in simulation and in real world present clear ad-

vantages when using MHT with respect to the simpler MAP

approach.

1. Introduction

The problem of tracking several targets moving across a

network of cameras with non-overlapping fields of view is

a hard and still open problem. This problem is often ad-

dressed recurring only to re-identification. That is, com-

puting distinctive features in the images of people obtained

from the camera network, and associating instances of the

same people according to appropriate metrics in the fea-

ture space. This is a challenging problem because current

research has not yet discovered the ideal features for de-

scribing people (common approaches use simple color his-

tograms, or multi-purpose features such as SIFT or SURF)

and the variability of people’s appearance in different parts

of the camera network may vary dramatically due to illu-

mination, scale, perspective conditions and different cam-

era characteristics. Furthermore, for similar reasons, per-

son detectors are still very prone to failures such as mis-

detections, false positives and split detections (one person

detection being split in more than one piece), and such un-

certainty in the decision process must be taken into account.

It is, therefore, too ambitious to try to make crisp deci-

(a) t = 1 (b) t = 2 (c) t = 3

(d) Same person (e) Same person
Figure 1. Given images acquired by the camera network at differ-

ent time stamps (a, b, c), the MHT algorithm allows tracking the

same person (d, e) even in cases that the clothing changes dramat-

ically (e).

sions about the identification of people in the network based

only on simple instantaneous similarity measurements (re-

identification). Longer time spans are required to accumu-

late evidence about the identity of people to reduce ambi-

guities as much as possible. It is, thus, necessary to use a

tracking algorithm able to take assignment decisions based

on noisy measurements received at multiple time steps, as

well as the associated correspondence probabilities, in order

to produce the most probable prediction through the aggre-

gation of this information globally over time.

Several such algorithms are well known in the multiple

target tracking literature, for situations such as single cam-

eras or radars, and will be reviewed in the following subsec-

tion. The preferred method for difficult tracking situations

is the the Multiple Hypothesis Tracking (MHT) algorithm

[7], proposed by Donald Reid in his seminal work [21].

The main contribution of our work is the formulation of

the MHT algorithm for tracking multiple targets across a

camera network. We have extended the MHT algorithm

[21] to graph-based representations and performed both
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simulations and real world experiments that illustrate the

performance gains obtained with MHT. In application to the

re-identification problem, MHT is more robust to detector

failures, noise in the target representation and instantaneous

incorrect assignments. An example of a situation prone to

failure in standard approaches is shown in Fig. 1, where a

person wears a jacket during the experiment. The instanta-

neous matching hypothesis has a low likelihood but given

the measurements on the remaining time steps, the correct

association gets the highest score.

The paper is organized as follows. In section 2 the MHT

algorithm is described and later applied to tracking in a

camera network in section 3. Section 4 details the exper-

imental results obtained. Finally Section 5 draws the main

conclusions of the work.

1.1. Related Work

The problem of tracking targets in camera networks is

usually composed of three main stages: (i) detection, (ii)

representation and (iii) tracking. In fixed camera settings,

target detection is classically done with one of a class of

background modeling and foreground detection algorithms

such as [8, 22, 14]. In real scenarios, state-of-the-art meth-

ods still present non-negligible rates of mis-detections and

false alarms, which are often disruptive for simple forms of

tracking.

For target representation, the detected target bounding

boxes are analyzed to extract target features, several types

of which have been proposed in the literature. Teixeira and

Corte-Real [23], Omar et al. [20] and Aziz et al. [2] use the

general purpose feature descriptors SIFT [16] and SURF

[4], while Javed et al. [15] and Cong et al. [24] use color

histograms. Figueira et al., Zheng et al. and Berdugo et al.

[12, 25, 5] provide a wide review on the different features

which can be used for people appearance, and the various

distances and similarity measures for matching those fea-

tures in different images.

Simple matching is ambiguous, therefore researchers

have looked at modeling spatial constraints on the possi-

ble locations of targets in the camera network. Gilbert and

Bowden [13] were pioneering in automatically extracting

the camera topology and using it to weight the coarse color

similarity measures while tracking people across cameras.

Loy et al. [17] uses a simpler approach, not doing any track-

ing, but simply dividing the camera image planes into cor-

related regions, and then spectral clustering these together,

to form priors which will weight the similarity measure be-

tween two person detections.

Our approach will enforce not only spatial but also tem-

poral constraints1 in a multiple target tracking framework.

1Some works use short-term temporal data-association to represent

tracks of the same person in a single camera. We aim at cross-camera

longer term time-spans (tens of frames).

Several tracking algorithms are available in the literature.

Perhaps the most simple is the local nearest neighbor algo-

rithm [6] which associates each target with the most sim-

ilar measure in a local manner, as such, a measure may be

incorrectly attributed to more than one target. Global near-

est neighbors algorithms find the least cost association be-

tween all detections and targets considering them all in a

global manner. Maximum a Posteriori (MAP) approaches

find the most probable set of associations between detec-

tions and targets over all possible sets. Other algorithms

include particle filters or the probabilistic data association

(PDA) filter [3]. Finally, the the Multiple Hypothesis Track-

ing (MHT) algorithm [7] keeps several hypothesis in paral-

lel for an extended time period in order to take a decision

with the largest possible amount of information.

1.2. Outline of Approach

We propose detecting targets using standard background

subtraction [8]. The targets are represented by color his-

tograms. The tracking is based in the MHT algorithm,

whose disambiguation capabilities allow the resolution of

past mis-associations when more information is available.

The granularity of the detections is defined by coarse zones,

usually one zone for each camera. In other words, we

propose doing tracking in a graph and thus do not require

precise incremental-locations as needed for example with

(x, y) tracking in the field of view of a single camera. With

a large coarse resolution for tracking, misdetections are

more tolerable, allowing the detector to be tuned to signifi-

cantly reduce false positives.

2. Multiple hypothesis tracking algorithm

In its usual formulation, the MHT is used to track vari-

ous targets over two or three dimensional spaces [21]. The

algorithm continuously maintains a set of hypotheses on the

various possible states of the world. Each hypothesis con-

tains information on the existing targets, and their tracks.

Each has a probability of being correct. The system period-

ically receives a new scan containing data from the sensors.

All the measurements in time k are denoted by Zk, and the

measurement l of time k is denoted by Zkl . Each measure-

ment corresponds to an observation, and is usually associ-

ated with a (x, y) or (x, y, z) position in space and possibly

other additional target features, such as target size. Let Ωki
denote the hypothesis i in scan k. Each hypothesis Ωki con-

tains a set of existing targets ιT ki (ι ∈ 1..n targets), the state

estimate for each target, the state estimate covariance, and

the association ψki , between the measurements Zk and the

hypothesized targets T ki . Every hypothesis Ωki is associated

with a probability pki .

In each k, the hypotheses Ωk−1 are used to produce the

hypotheses Ωk. For each hypothesis Ωk−1
j a new set of hy-

potheses is generated jΩk which have Ωk−1
j as parent (su-



perscript j indicates hypothesis with parent j). In the gen-

eration of the new set of hypotheses jΩk, each observation

Zkl is considered to be either a false alarm (FA), a new tar-

get (NT), or a detection of an existing target. However, an

observation Zkl is only considered to have origin in a tar-

get ιT ki of hypothesis Ωk−1
j if it falls in the target’s gate

(area around target’s expected position) – which is calcu-

lated based on the covariance of the state estimate. Further-

more, each observation can usually only be assigned to at

most one target, and each target can only be assigned to at

most one observation (group tracking is addressed by Mu-

cientes and Burgard [18]). A target track is terminated if the

target is not detected after n time steps.

The probability of a new hypothesis jΩki given the parent

hypothesis Ωk−1
j and the measurements Zk, is

jpki =
1

c
× Pd

Nd × (1− Pd)
Nt−Nd × (PFA)

Nfa×

(PNT )
Nnt ×

∏

(Zk
l
,ιTk

i
)∈ψk

i

PZk
l
,ιTk

i
× pk−1

j

(1)

where Nd corresponds to the number of measurements and

Nt to the number of targets in Ωk−1
j , Nfa is the number of

false alarms andNnt is the number of new targets [21]. Fur-

thermore, Pd is the probability of detecting a target, PFA
the probability of a measurement being a false alarm, and

PNT the probably of detecting a new target (all three fixed

priors throughout this work). The probability of the par-

ent hypothesis is pk−1
j , and PZk

l
,ιTk

i
denotes the probability

that measurement Zkl is a detection of target ιT ki , which is

usually calculated based on the target position estimate, and

the covariance of this estimate.

The algorithm generates a combinatorial explosion of

hypotheses. This exponential growth of the number of hy-

potheses can be controlled by pruning the hypothesis tree.

Usual pruning strategies include limiting the number of

leaves, or the depth of the tree [3]. However, while generat-

ing the hypotheses jΩk, for a single leaf (Ωk−1
j ), the number

of hypotheses to generate can be too large to process in real

time. For example, if there were 30 targets in Ωk−1
j , and

Zk contains 30 measurements there will be 6.2 × 1037 hy-

potheses in jΩk (for more details on calculating the number

of generated hypotheses see Danchick and Newnam [11]).

These hypotheses will eventually be pruned, after the hy-

potheses for all leaves are generated, but the processing

time and memory space that the explicit enumeration of all

these hypotheses consumes is insupportable. A solution is

to use an algorithm due to Murty to find the ranked k-best

assignments for the association in each leaf [10], instead of

explicitly enumerating all the possible hypotheses. Cluster-

ing, which consists of dividing the hypothesis tree into sev-

eral trees taking advantage of the independence between the

tracks of some targets, can also be used to reduce the pro-

cessing requirements of MHT and increase its performance

[21].

To implement the MHT algorithm, we used the Multi-

ple Hypothesis Library, described by Antunes et al. in [1].

This library already handles clustering, and provides prun-

ing of the tree limiting both the tree depth and the number

of leaves. We also implemented the Murty algorithm for

finding the k-best assignments.

3. Tracking in Camera Networks

We will now describe the application of the MHT algo-

rithm to the specific problem of tracking on a multi-camera

network with non-overlapping fields of view, which is the

most common real life scenario.

3.1. Graph representation

We propose that the tracking area be represented as a

graph. Let G = (A,C) denote the graph representing the

tracking area, where A consists of a set of tracking zones

A = z1, ..., zn andC of a set of connections between zones.

Thus, (zi, zj) ∈ C if and only if zi and zj have a connection

[19]. The topology of the graph can be manually defined or

learned automatically [13].

Each zone is associated with one camera, and each cam-

era is associated with one zone. Even though, it is possible

to divide the field of view of a camera into different zones,

which may be useful in some specific situations, this possi-

bility is not addressed in this work.

A possible scenario is presented in figure 2 (a). Several

cameras are spread throughout the tracking area, and each

camera monitors a division or part of a division. The circles

represent the zones in the graph and the dotted lines the

connections between them.

Because the tracking area is a graph, each detection

Zkl ∈ Zk is associated with a z ∈ A, instead of (x, y) coor-

dinates. Each detection also contains a set of features which

describe the detected target, which will now be discussed.

3.2. Integration with the MHT

Each detection Zkl ∈ Z contains the zone z where it oc-

curred, and the upper and lower body histograms. The state

information about each target includes the target identifier,

the zone where the target is, the histograms of the upper

and lower parts of the body, and the time of the target’s last

detection.

The probability PZk
l
,ιTk

i
of measurement Zkl being a de-

tection of target ιT ki is calculated taking into consideration

the zone where the target was and the one where the mea-

surement is taken, and also the histograms associated with

the target and the ones associated with the measurement.

For a detection Zkl and a target ιT ki , let lhZ and uhZ be

the lower and upper histograms associated with the detec-

tion, and lhT and uhT the histograms associated with the
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(a) Floor map, cameras and zones graph

(b) Initial poses (c) Detections

(e) Hypothesis 1 (f) Hypothesis 2

Figure 2. Example of a tracking area and the zones graph. Each

camera has a field of view (gray area) which defines a single zone

(a). Given an initial configuration where two persons, A and B, are

in zone 4 (b), and then two target detections occur in zones 3 and 4
(c), one has various possibilities of localization of the two targets.

Assuming both detections are valid, and related to the targets A

and B, then one has two hypothesis, A in 3 and B in 4 (d), or vice

versa, B is in 3 and A is in 4.

target. Also, let zD and zT be respectively the zone associ-

ated with the detection and the zone where the target was in

the hypothesis Ωk−1
j .

The probability PZk
l
,ιTk

i
is calculated as:

PZk
l
,ιTk

i
= PhZ ,hT · PzD,zT (2)

The probability PhZ ,hT depends on the difference between

the histograms, which is calculated using the Bhattacharya

coefficient:

B(hZ , hT ) =

m
∑

i=1

√

(hZi · hTi ) (3)

where m is the number of bins in the color histograms. The

Bhattacharya coefficient is 1 if the histograms are equal,

and 0 if they are disjoint. A comparison between the Bhat-

tacharya similarity and other measures for the purpose of

re-identification is provided by [12]. The Bhattacharya co-

efficient is then used to calculate PhZ ,hT :

PhZ ,hT =

(

1 + λ ·
2−B(lhZ , lhT )−B(uhZ , uhT )

2

)−1

(4)

The probability PhZ ,hT will be in the interval [ 1
λ+1 , 1]. The

value of λ should be chosen to obtain the desired minimum

value for probability PhZ ,hT .

The probability PzD,zT is 1 when zD = zT . For other

cases, there are several manners in which PzD,zT can be

calculated. In the simplest form, PzD,zT = c, where c is

a constant probability of transition between zones, when

(zD, zT ) ∈ C (the zones have a connection), and PzD,zT =
0 when (zD, zT ) /∈ C. A more flexible approach includes a

probability transition matrix, M , such that Mzi,zj contains

the probability of transition between zones zi and zj , then

PzD,zT = MzD,zT when (zD, zT ) ∈ C. Gilbert and Bow-

den provide a method for the automatic learning of M [13].

The most complex case occurs when (zD, zT ) /∈ C and

PzD,zT 6= 0 is required, that is, the target is detected in a

zone which does not have a direct connection with the one

in which it was before, and a probability modeling which

does not simply assign 0 to PzD,zT is required. In this case,

the person crossed one or more zones without being de-

tected. Therefore, there is not a single path that he could

have taken from zT to zD, but many possible paths. Be-

cause it is impossible to determine exactly which of the

possible paths was taken, and no future information will

help with this task, the path with the greatest probability

of being the correct one should be chosen. This path will

naturally correspond to the one that maximizes the product

of the probability of transition between all the zones in the

path. This is the problem of finding the shortest path in a

graph, and is usually solved using the Dijkstra algorithm.

However, because the matrix M is constant over time, the

shortest paths between all the zones in the graph can be pre-

computed using the Floyd-Warshall algorithm [9].

3.3. Entry zone

When the tracking area of interest is in the interior of

a closed building or sealed area it is possible to greatly im-

prove the tracking results by defining one or more entry/exit

zones. In a closed building, new targets cannot appear in all

the tracking zones. Usually, there are a few entrances where

the targets can enter and leave the tracking area, which is

the case with the example in figure 2. In the tracking area

represented in the figure, a target track can only initiate and

terminate in zone 3. If this information is included in the

tracker, then detections in every other zone will only be at-

tributed to either false alarms or existing targets, and targets

in those zones will not be deleted, even if they are not de-

tected after a long period of time.

3.4. Tracking granularity

In the proposed approach, targets are tracked across mul-

tiple cameras, and not locally, in the (x, y) field of view of

each single camera. It would also be possible to perform

the tracking of the (x, y) position of targets in each camera,



which is the usual case for tracking. However, when track-

ing the exact position of targets in a single camera, it is nec-

essary to perform a fairly good background subtraction, but

background subtraction algorithms often performs poorly

due to shadows, reflections, wind moving objects like tree

leaves or paper sheets, illumination changes, among others.

This poor background subtraction performance is often re-

sponsible for poor tracking results.

Contrary to the fine (x, y) tracking, when tracking across

zones, the requirements on the background subtraction per-

formance can be reduced. This makes it possible to use

tighter thresholds for detection and finer filtering to reject

blobs which may be false detections, reducing the number

of false positives, but also the number of true positives as

well. This would not be possible if tracking was done in

the field of view of a single camera, as the reduction of true

positives would result in many lost tracks. On the contrary,

when tracking across cameras, it is not as necessary to have

many detections of the same target, in the same zone, in

sequence.

There are some particular situations where finer grained

tracking is necessary. This may happen with cameras cov-

ering a large field of view, with high resolution and several

small targets. In this case, the field of view of the camera

may be divided into a grid of separate zones, in which case

the proposed solution is directly applicable. Furthermore,

local tracking in each camera can always be performed if

necessary, in parallel with the proposed approach.

4. Experiments

The problem of tracking people across a camera network

is often addressed with re-identification only, i.e. matching

through the similarity between each detection and each ex-

isting target. Few works actually use inter-camera tracking

mechanisms. One such work, also in the context of tracking

in camera networks, is the work of Javed et al. [15], that

uses a MAP approach, similar to a global nearest neighbors

association [3]. In the conducted experiments the MHT al-

gorithm, in its standard implementation, is compared with

an MHT implementation with only one leaf, which is equiv-

alent to the MAP approach (as defined by [3]). MAP con-

siders all detections and existing targets at each scan and

chooses the best assignment. However, it does not account

for the possibility that the assignment may be erroneous [3].

4.1. Changing target

In this experiment, the tracking area includes three

zones, z1, z2, and z3, corresponding to the fields of view

of three cameras, Cam1, Cam2, and Cam3, respectively

(see figure 3(a)). Figure 3(b) shows just three images for

each camera, but in fact there are many more intermediate

images. The time stamps, t = 1, t = 2, and t = 3, indi-

cate relevant events, namely beginning of experiment and

appearance of novel objects in the cameras of the network.

The video frames captured by the three cameras are pro-

cessed in order to detect foreground objects and detected

objects are characterized by two histograms, one above and

one below the waist, performing a search for the point that

maximizes the distance between the upper and lower part

histogram, as described by Figueira and Bernardino [12].

In the beginning of the experiment two persons, A and

B, are visible in z1, and both walk away, leaving the field

of view of Cam1. Then, A appears in Cam2 and, shortly

after, B appears in Cam3. The person A is initially wear-

ing white clothes, while B is wearing dark clothes (see the

top-left image in figure 3(b)). When A reappears in Cam2
he is wearing a dark jacket, changing his color histogram

significantly. With the jacket he becomes more similar to

B, as seen in Cam1, than with himself.

Tables (c), (d) and (e), in figure 3, show the ground truth,

the tracker predictions of MAP and MHT respectively. At

t = 2, both MAP and MHT algorithms make an incorrect

association, placing B in z2. However, at t = 3, i.e., when

B later appears in Cam3 (z3), MHT is able to correct the

prediction, and thus concludes thatAwent to z2 andB went

to z3, while MAP maintains the incorrect association.

The rationale behind the correction of the MHT predic-

tion is as follows. The color description of the persons is not

expected to change, therefore, hypotheses in which the his-

tograms change receive a probability penalization. This pe-

nalization occurs via the PhZ ,hT term of PZk
l
,ιTk

i
. Assume

now a simplification with grey scale histograms having only

one bin, which will be used to give the reader the intuition

of what is being calculated by the MHT algorithm and why

it is able to correct its previous decision. In all experiments,

the targets’ gates are of size 1, thus the tracker assigns a

probability of 0 to the possibility of a target crossing a zone

undetected.

In Cam1, assume that A has a histogram of 0, and B
a histogram of 1. When A appears in Cam2 he has a his-

togram of 0.7. In the hypothesis according to which A is

in z2, the total change in histograms is of 0.7, but in the

hypothesis which places B in z2, the total change in his-

tograms is only 0.3. Thus, at this point, B would always be

placed in z2 by any algorithm. When B appears in Cam3,

his histogram in that detection is still 1. Because the target’s

gate is 1, when one of the persons is in z2, the algorithm will

place the other person in z3, that is, in the hypothesis where

A is in z2, B will be placed in z3 (z3 is not in A’s gate), in

the hypothesis where B is in z2, A will be placed in z3.

The hypothesis which placed B in z2 has a total change

in histograms of 0.3 + 1 = 1.3, but the hypothesis which

correctly placed A in z2 has a total change in histograms

of only 0.7. Because greater change in histograms directly

translates into lower probability of an hypothesis, the hy-

pothesis which placed A in z2 will now be selected as the



t = 1 t = 2 t = 3

(a) (b)

Ground truth

localiz. t = 1 t = 2 t = 3
Zone 1 A,B
Zone 2 A A
Zone 3 B

MAP

localiz. t = 1 t = 2 t = 3
Zone 1 A,B
Zone 2 B B
Zone 3 A

MHT

localiz. t = 1 t = 2 t = 3
Zone 1 A,B
Zone 2 B A
Zone 3 B

(c) (d) (e)

Figure 3. Two people tracking with three non-overlapping cameras. Persons A and B start in the field of view of Cam1, and then both

move out. A puts on a jacket and enters the field of view of Cam2. After some delay, B enters in the field of view of Cam3 (a). Top,

middle and bottom rows show images acquired by Cam1, Cam2 and Cam3, respectively (b). Ground truth localization of people (c),

estimated localization using MAP (d) and using the proposed MHT (e).

best hypothesis, because it has a total change in the his-

tograms of only 0.7, versus 1.3 in the other hypothesis.

With MAP, person A would be incorrectly labeled as B
in z2, and when B really appeared in z3, the best assign-

ment would be to incorrectly place A in z3. Furthermore, if

no tracking algorithm was used, then B could possibly be

assigned to the detection in z2, and also to the detection in

z3.

4.2. Simulation

A large tracking area is simulated, consisting of 57

zones, each zone containing a camera (depicted in figure

4 (a)). During the simulation, 40 targets move in the track-

ing area. Each target initially chooses a random zone and

walks there by the shortest path. Upon arrival, he repeats

the same behavior, indefinitely.Two sources of uncertainty

are considered. One source of uncertainty models camera

noise, illumination changes, person pose and other changes

alike, as additive Gaussian noise in the targets’ histogram.

The other source of uncertainty models target detector reli-

ability issues by deleting from the simulation detections at

a certain mis-detection rate.

Several simulations were run, with varying values of his-

togram noise and mis-detection rates. Each simulation is

comprised of 5000 scans, with 1 second per scan, and the

simulated people take 3 to 6 scans to move between areas.

The history of the tracks produced by each tracker is ana-

lyzed and the average number of incorrect assignments per

scan during the simulation is used to measure the tracker’s

performance. If a target ιT k−1 was assigned an identifier i
in scan k−1 and an identifier j 6= i in scan k by the tracking

algorithm, then an assignment error occurred.

In figure 4 (e), the performance of MHT and MAP are

presented, with varying levels of noise added to the target’s

histograms, for a percentage of misdetections of 15%. In

figure 4 (f) the percentage of misdetections is varied, for an

added noise in the target’s histograms of 0.8.

Comparing the MHT’s performance with the MAP per-

formance, MAP makes the best assignment between mea-

surements and targets at each scan but, as it does not main-

tain multiple hypotheses on possible states of the world, it

cannot recover from past mistakes as well as MHT does.

Therefore, MHT consistently obtains better results than the

MAP approach.
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Figure 4. Simulated experiment involving the tracking of 40 targets in a 57 zones setup (a). All the targets can move to an adjacent node

at each time step (b). Distances 1 − B(hZ , hT ) (Eq.3) and the best matchings among all targets are shown in (c) and (d) for the same

time step indicated in (b). Correct and incorrect histogram matchings are marked with blue dots and red stars, respectively. Assessment

of target and measurement associations, using MAP and MHT considering noise in the observed histograms (e) or a varying percentage of

misdetections (f).

5. Conclusions and Future Work

In this paper, MHT was applied to the problem of peo-

ple tracking across a camera network. Experiments both in

real world and simulation show the improvements of using

multiple hypotheses over simpler approaches which make

irreversible decisions at each time-step. Without MHT, if a

re-identification assignment error occurs the system makes

an irrevocably wrong decision and holds to that decision in-

definitely. By taking into consideration multiple hypotheses

on the possible assignments between detections and targets,

MHT it is able to correct past association errors when new

information is received from the cameras. If new data is

available which cannot be explained in a feasible way by

the current best hypothesis, a different leaf in the hypothe-

sis tree is eventually selected, changing the decision of the

system towards past assignments.

By integrating MHT in camera network tracking

systems, the full potential of existing works on re-

identification, which focus on measuring the similarity be-

tween detections and existing targets can be leveraged, as

sporadic correspondence errors are corrected over time by

the MHT algorithm. In the future, we intend to scale the

live experiment to a large scale camera network.
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