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Abstract. What does a blind entity need in order to determine the geometry of
the set of photocells that it carries through a changing lightfield? In thisrpae
show that very crude knowledge of some statistical properties of theoanvent

is sufficient for this task.

We show that some dissimilarity measures between pairs of signals pbdyic
photocells are strongly related to the angular separation between the gltsotoc
Based on real-world data, we model this relation quantitatively, using dlasim

ity measures based on the correlation and conditional entropy. We shothith
model allows to estimate the angular separation from the dissimilarity. Although
the resulting estimators are not very accurate, they maintain their penficem
throughout different visual environments, suggesting that the mentsdes a
very general property of our visual world.

Finally, leveraging this method to estimate angles from signal pairs, we lstow
distance geometry techniques allow to recover the complete sensortggome

1 Introduction

This paper departs from traditional computer vision by rotsidering images or image
features as input. Instead, we take signals generated bipg#iis with unknown ori-
entation and a common center of projection, and explorertfogrnation these signals
can shed on the sensor and its surrounding world.

We are particularly interested in determining whether tgeas allow to determine
the geometry of the sensor, that is, to calibrate a sensotHi& one shown in Figure 1.
Psychological experiments [1] showed that a person wealistprting glasses for a
few days, after a very confusing and disturbing period, d¢egrn the necessary image
correction to restart interacting effectively with the @omment. Can a computer do the
same when, rather than distorted images, it is given thesgmroduced by individual
photocells? In this situation, it is clear that traditiogalibration techniques [2, 3] are
out of the question.

Less traditional non-parametric methods that assume atbrimoage mapping and
smooth motion [4] can obviously not be applied either. Usingtrolled-light stimuli
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Fig. 1. A discrete camera consists of a number of photocells (pixels) that meetulight trav-
eling along pencil of lines.

or known calibration, matches could be obtained, allowimgi$e match-based non-
parametric techniques [5]. In this study however, we wiséxdude known calibration
objects and other controlled stimuli.

Our approach is inspired from the work of Pierce and Kuip&fsfho measure the
dissimilarity, or distance, between sensor elements teat@ necessarily light sensors.
The elements are then embedded in a metric space using reetliog [7], which
also determines the dimension of the space. A relaxatiomadethen improves this
embedding, so that the Euclidean distance between semsoerls better matches the
dissimilarity between the sensor inputs. Getting closénéproblem addressed in the
present paper, the authors use this method to reconstiteigebmetry of a rectangular
array of visual sensors that scans a fronto-parallel image.

Going further, Olsson et al. [8] use the information dis&nt[9] as a more appro-
priate method to measure the distance between visual or s¢imsor elements. They
also show how visual sensors -the pixels of the camera of demolbot- can be mapped
to a plane, either using the method of [6], or their own, thabeds sensor elements
specifically in a square grid.

The works of Olsson et al. and of Pierce and Kuipers are vegyasting to com-
puter vision researchers, but they cannot calibrate atranpdiscrete camera, since the
embedding space is either abstract or fixed to a grid. In badles; it lacks an explicit
connection to the geometry of the sensor.

Grossmann et al [10] partially fill this gap by showing thag thformation distance
can be used to estimate the angular separation betweenopai®tocells, and from
there, estimate the geometry of a sensor of limited angatiius.

Because the present work exploits statistical properfitreedight-field of the world
surrounding a light sensor, it is also related to researctherstatistical properties of
real-world images. In that area, a model of image formatsamsied, but images, rather
than sequences, are studied. That research has put in exifieTdamental properties,
in terms of local, global and spectral statistics, of reakd images, and found ways
to exploit these properties for computer vision tasks, aghlassification [11], image
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restoration [12] and 3D inference [13]. Although these lssare of great interest, they
are not directly applicable in our case, mainly because wleitaages.

Moreover, these statistics are about planar images, whialhindrance in our case:
first, we do not want to exclude the case of visual sensor elenthat are separated
by more than 180 degrees, such as the increasingly populaidoettional cameras.
Also, the local statistical properties of perspective iemdepend of the orientation of
the image plane with respect to the scene, except in spetistr@ined cases such as the
fronto-parallel “leaf world” of Wu et al. [14]. Defining imas on the unit sphere thus
appears as a natural way to render image statistics indepeofthe sensor orientation,
at least with proper assumptions on the surrounding wortticarthe motion of the
sensor.

The present article elaborates and improves over our prswimrk [10]. We in-
novate by showing that the correlation, like the informatiistance, can be used to
provide geometric information about a sensor. Also, we usienpler method to model
to relation between angles and signal statistics.

More important, we go much beyond [15] in showing that thisdel@generalizes
well to diverse visual environments, and can thus be corsiti® be a reliable charac-
teristic of our visual world. In addition, we show that thegented calibration method
performs much better, for example by allowing to calibr&esors that cover more than
one hemisphere.

1.1 Proposed approach

The present work relies on statistical properties of the daeams produced by pairs
of sensor elements that depend only onahgular separation between the photocells.
For example, if the sampled lightfield is a homogeneous nanfield defined on the
sphere [16], then the covariance between observationsndepanly on the angular
separation between the sampled points.

This assumption does not hold in general in our anisotropiddybut it does hold,
e.g. if the orientation of the sensor is uniformly distridiamongst all unitary transfor-
mations of the sphere, that is, if the sensor is randomlyntets so that each photocell
is just as likely to sample the light-field in any direction.

Inter-Signal Distance-to- Pairwise Sensor Geometry

Environment Sensing > Distances Angle model Angles » Estimate

Fig. 2. The process of estimating the geometry of an unknown discrete camera.

This assumption of homogeneity -or isotropy- of the samfiilghutfield is of great
practical utility, in conjunction with a few other assunguts of good behavior: in this
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work, we only use statistics that converge properly (e.grabability or more strongly)
when signal lengths tend to infinity.

Perhaps more importantly we are only interested in stesittiat have an expectancy
that is a strictly monotonous function of the angular sejpamnaof the pair of photocells.
That s, ifz, y are two signals (random variables) generated by two phiiésmparated
by an angle, andd (z, y) is the considered statistic, then the expectancy(af, ) is
a strictly monotonous function @f for 0 < 6 < 7. The importance of this last point is
that this function can be inverted, resulting in a functionadel that links the value of
the statistic to the angle.

The statistic-to-angle graph of such statistics is theiarpknowledge about the
world that we leverage to estimate the geometry of discrateecas. In the present
work, we use discrepancy measures based on the correlatioonditional entropy,
defined in Section 3. In Section 4, we show how to build the iclemed graph.

Having obtained angle estimates, we recover the sensorajggiin Section 5.1, by
embedding the angles in a sphere. This is done using simghaitpies from distance
geometry [17]. Experimental results are presented in &edi2. Finally, Section 6
presents some conclusions and possible directions forefuasearch. The calibration
process considered in the present work is outlined in FiQurEhe statistic-to-angle
modeling produces the crucial functional relation usechthird-from right element
of Figure 2.

2 Discrete camera model and simulation

Before entering into the details of our methodology forresting the sensor geometry,
we define the discrete camera and explain how to simulaténigy@ omnidirectional
image sensor.

We define a discrete camera [10] as a séYgfhotocells indexed by {1,..., N},
pointing in directionsX; € R? and having a unique center of projection. These photo-
cells acquire along the timebrightness measurementsi, ¢) in the rang€0, . . ., 255}.
The directions of the light rays, contrarily to conventibcameras, are not necessarily
organized in a regular grid. Many examples of cameras caouredfunder these def-
initions. One example is the linear camera, where all Xheare co-planar. Another
example is the conventional perspective camera which dsewa rectangular grid of
photocells that are enumerated in our model by a single index

{Xi | X~ K Wm O§i<HW}

where W, H are the image width and heighk is the intrinsic parameters matrix,
% represents the integer modulo operation andis the lower-rounding operation.
Cameras equipped with fisheye lenses, or having log- pataoss, can also be modeled
again by settingX; to represent the directions of the light-rays associatedg¢amage
pixels. In the same vein, omnidirectional cameras havinghgles projection center,
as the ones represented by the unified projection model §8j, fit in the proposed
model. In this paper we use a calibrated omnidirectionalezanto simulate various
discrete cameras.
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2.1 Image sensor

We simulate a discrete camera with known Euclidean geonistrgampling a cal-
ibrated panoramic image with unique projection center adfilocations. Since the
camera is calibrated, it is straightforward to locate thsitpan («, v) in the panoramic
image corresponding to the 3D directidh of a photocell that is part of the simu-
lated discrete camera. In the present work, we use biliméardolation to measure the
graylevel value at non-integer coordinatesv).

Fig.3. Left: The camera used to sample omnidirectional images (image mirrdRéght: A
calibrated omnidirectional image mapped to a sphere.

Images are acquired by a VStone catadiopric camera comngisfia perspective
camera fitted to a hyperbolic mirror, shown in Figure 3, I&fiis system is modeled as
single projection center camera [18] witl360° x 210° field of view and a~ 45° blind
spot at the south pole (Fig. 3, right). The mirror occupie$a x 453 pixel region of
the image. The angular separation between neighboringspixéhe panoramic image
is usually slightly smaller than 0?5Also, some mild vignetting occurs, that could be
corrected. Apart for these minor inconveniences, simdaé discrete camera by an
omnidirectional camera presents many advantages: no spiemialized hardware is
needed and each omnidirectional image can be used to senwakaty discrete camera
“images”, as in Fig. 4, right. With respect to perspectivmesaas, the available field of
view allows to study very-wide-angle discrete cameras.

3 Distances between pairsof signals

In this section, we define the measures of distance betwemalsj correlation and
information distance, that will later be used to estimatgles

3.1 Correlation distance

We call correlation distance between signalg) andy (¢), 1 < ¢ < T, the quantity

dc(xay) :%(I*C(I‘,y)),
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whereC (z,y) is the correlation between the signals. It is easy to vehifitd, (., .) is
a distance.

For the task considered in this paper, it is natural to préfercorrelation dis-
tance over the variance or the (squared) Euclidean distaneey||*, because both
vary with signal amplitude (and offset, for the latter), wesd.. (., .) is offset- and
scale-invariant.

3.2 Information distance

Given two random variableg andy (in our case, the values produced by individual
pixels of a discrete camera) taking values in a discreté set . , }, theinformation
distance betweenr andy is [9]:

d(z,y) = H (zly) + H (ylz) = 2H (x,y) — H (y) — H (x) 1)

whereH (z,y) is the Shannon entropy of the paired random variéble), andH (z)
andH (y) are the entropies af andy, respectively. It is easy to show that Eq. (1) de-
fines a distance over random variables. This distance isdealbyH (x,y) < log, @,
and is conveniently replaced thereafter by toemalized information distance :

dy (.’L’,y):d(l’,y>/H(l’,y), 2

which is bounded by 1, independently@f[9].

It should be noted that estimating the information distaac®n-trivial: naively re-
placing unknown probabilities, (¢) by sample frequencies. (q) =|{t|z (t) = q}| /T,
whereT is the signal length and| denotes the set cardinal, yields a biased estimator
H (z). This estimator has expectancy

_ _1
E{H}:H—Q_l—i—l Zq“(q>+o<1). 3)

2T 1272 T3

This expression shows the slow convergence rate and stias@bf! (). We some-
what alleviate these problems by first, correcting for thet fiias term(Q — 1) /27T,

i.e. applying the Miller-Madow correction; and by re-quaintg the signal to a much
smaller number of bins) = 4. Extensive benchmarking in [15] has shown these
choices to be beneficial.

4 Estimating angular separation from inter-signal distance

As explained earlier, our a-priori knowledge of the worldlwe encoded in a graph
mapping a measure of discrepancy between two signals, anidpelar separation be-
tween the photocells that generated the signals. We now kbaxto build this graph,
and assess its effectiveness at estimating angles.

For this purpose, we use the 31-pixel planar discrete cafoefgrobe”) shown in
Fig. 4, left. This probe design allows to study the effect nfj@ar separations rang-
ing from 0.5 to 180 degrees and each sample provides 465£3)(3 pixel pairs. In
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Fig. 4. Left: Geometry of a discrete camera consisting of a planar array of thirty3iepixels,
spanning 180 in the plane. The first two pixels are separated by Otbe separation between
consecutive photocells increases geometrically (ratid.14), so that the 3t photocell is an-
tipodal with respect to the firsRight: Two instances of the linear discrete camera, inserted in an
omnidirectional image. Pixels locations are indicated by small crosseectad by white lines.

the “tighter” part of the discrete camera layout, there tsxésslight linear dependence
between the values of consecutive pixels due to aliasing.

The camera is hand-held and undergoes “random” genergiomo&nd translation,
according to the author’s whim, while remaining near thedtei@f the room, at 1.0 to
1.8 meters from the ground. We acquired three sequencesadigly, in very similar
conditions and joined them in a single sequence totaling liB&ges, i.e. approxi-
mately 5 minutes of video at "4.5 frames per second.

To simulate the discrete camera, we randomly choose antatiiem (i.e. half a
great circle) such that all pixels of the discrete cameriirfathe field of view of the
panoramic camera. Figure 4 shows two such choices of otiensa For each choice of
orientation, we produce a sequence3bfsamples: (i,t), 1 < i < 31,1 < t < 1359,
where eachr (i,t) € {0,...,255}. Choosing 100 different orientations, we obtain 100
discrete sensors and 100 arrays of daf&i, t), 1 < n < 100. Appending these arrays
we obtain 31 signals (i, t) of length to 135900.

We then compute, for each pair of pixels (indicésX i,;j < 31, the correlation
and information distanced.. (¢, j) andd; (4,7). Joining to these the known angular
separation$; ;, we obtain a set of pair®; ;,d (i,7)), 1 < i,j < 31.

From this dataset, we build a constant by parts model of tipeaancy of the
distance, knowing the angle. For the correlation distawedimit the abscissa to values
in [0,1/2]. After verifying and, if needed enforcing, the monotonjaitf this model,
we invert it, obtaining a graph of angles as a function of glation or information)
distances. Strict monotonicity has to be enforced for threetation-based data, owing
to the relatively small number of data points used for eacntjmed angle.

Figure 5 shows the resulting graphs. This figure shows onleeofriajor issues that
appear when estimating the angular separation betweels fiigen the correlation or
information distance: the graphs become very steep foelaeajues of the distance,
indicating that small changes of the distance result irdl@aftanges in the estimated an-
gle. On the other hand, for small distance values, the cameemuch flatter, suggesting
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Fig.5. Models relating correlation (left) or information distance (right) to anguépasation
between photocells. These models were build from simulated signalsgawdy the linear
probe of Fig. 4, left. Signals of lengthi = 135900, acquired indoors were used.

that small angles can be determined with greater accuranti. tBends are particularly
true for the information distance.

4.1 Experimental validation

We now assess how well angles can be estimated from the goaypdised in the pre-
vious section. For this purpose, we use 100 sets of 31 signalst), 1 < n < 100,
1<i<31,1<t <1359 acquired in the same conditions as above. We compute the
correlation and information distances of pairs of sigralé, i, ) andd; (n,,7) and,
using the models in Fig. 5, angular estimaigén, i, j) andd; (n, i, ).

Figure 6 shows the precision and accuracy of the estimatgdsarT his figure shows
that the estimated angles are fairly accurate for angufarations smaller thasf, but
degrades sharply for greater values. As could be expeabed dur comments at the
beginning of the section, the curves confirm that the infdiomadistance yields better
estimates of small angles, while correlation distance thess (but still not very well)
for larger angles.

We now turn to the generalization ability of the models in.FgFor this purpose,
we use 100 31-uplets of signals of length 2349, taken fronu&remd indoor sequence,
four images of which are shown in Fig. 7. In this sequence canttarily to the previous
sequence, the camera remains mostly horizontal. Alsoctireess usually farther away
and more textured. A lot of saturation is also apparent.

Following the previous procedure, we estimate angles fituesd new signals and
show the precision and accuracy statistics in Figure 8.

The striking resemblance between Figures 8 and 6 indidaa¢tte models in Fig. 5
generalize pretty well to outdoors scenes. We surmise liesfieict that the correlation
distance yields more accurate estimates outdoors thawisd® due to the extra tex-
ture, which increases the correlation distance for smajlear) and corrects the bias in
angular estimates observed near the origin of the top lefiecof Fig. 6.
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Fig. 6. Precision and accuracy of angles estimated from correlation (left) amiaition distance
(right). The boxplots at the top show th@'jaercentile, first quartile, median, third quartile and

gsth percentile of the estimated angles, plotted against the true angles. The battes show
the mean absolute error in the estimated angles. These statistics weregefrem 100 planar
probes (Fig. 4, left) and signals of lengfth= 1359. The angles were estimated using the models
of Fig. 5. The signals were acquired in the same conditions as those us&ittitthe models.

5 Calibrating a discrete camera

Having seen the qualities and shortcomings of the proposegle @stimators, we now
show how to use them to calibrate a discrete camera.

To stress the generalization ability of the angle estinsatall the reconstructions
produced by the above method are obtained from the in- andborg sequence of
Fig. 7, rather than from the indoors sequence used to bwldigiance-to-angle models.

5.1 Embedding pointsin the sphere

The last step we take to calibrate a discrete camera recagheisg the problem:

Problem 1) Spherical embedding problem: Given angle estimate®;;, 1 < ¢,j <
N, find pointsX; on the unit sphere, separated by angles approximately égual
0;,1.e. X, X; ~ cos;;, for all 4, j.

ij ij

This problem can be reduced to the classical problem ofriistgeometry [17]:
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Fig. 7. Four images from a sequence of 2349 images acquired indoors &mbosiat approxi-
mately 4.5FPS.

Problem 2) Euclidean embedding problem: Given distance estimatés;;, 1 <, j <
N, find pointsY; in a metric vector space, such that, foralf, ||Y; — Y| ~ D;;

Indeed, by defining an extra poilit = (0,0, 0), and distance®;; = /2 — 2 cos 6;;
fori,7 # 0 andD,; = 1, the mapping of the first problem to the second is imme-
diate. Solutions to both problems (with exact equalityheatthan approximate) were
published in 1935 [19] Schoenberg’s Theorem 2 [19] states that if the marixith
termsC;; = cos 0,5 is positive semidefinite with rank > 1, then there exist points on
the unit(r — 1) —dimensional sphere that verify,” X; = C;; for all i, 5. This result
directly suggests the following method for embedding mointthe 2-sphere:

1. Build the matrixC with termsC;; = cos0;5, 1 <i,j < N.

2. Compute, using the SVD decomposition, the rank-3 apprationC = UU " of
C,whereU is N x 3.

3. DefineXi = (Uila Ui2, Ulg) / ||(U7,1, Uvig7 Ulg)H

One should note that this very simple algorithm is not optimanany ways. In par-
ticular, it does not take into account that the error in thelesy;; is greater in some
cases than in others. It is easy to verify that the the prolidemot directly tractable by
variable-error factorization methods used in computdowis

Noting that the error in the estimated angles is approxilygieportional to the
actual angle suggests an embedding method that weighsdagyHarge angular esti-
mates. One such method is Sammon’s algorithm [20], whichdapteand modify for
the purpose of spherical embedding from our noisy data.ispidgper, we minimize the
sum

1 1 H
> wiy (XX - Cij)”, wherew;; = {max {07 g ﬁ} " C 7& !
— = otherwise
%] n
To reflect the fact that big angles are less well estimatedseté€’, = 0.9, so that
estimates greater than ag6s9) ~ 25° be ignored. The other parameter,is set
to 1, allowing the pointsX; to stray a little bit away from the unit sphere. Our im-
plementation is inspired by the second-order iterativehoetof Cawley and Talbot
(http://theoval . sys. uea. ac. uk/ ~gcc/ mat | ab/ def aul t . ht m ). For initializa-
tion, we use an adaptation of [21] to the spherical metric exaiding problem, which

will be described in detail elsewhere.
4 Schoenberg cites previous work by Klanfer and by Menger, to whicHidiéave access.
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Fig. 8. Precision and accuracy of angles estimated in the same conditions asénéigept that
signals extracted from an indoors-and-outdoors sequence (Figré)used. These figures show
that the models in Fig. 5 generalize fairly well to signals produced in conditiifferent from
that in which the models were produced. In particular, the angles estifftatedhe correlation
distance are improved w.r.t. those of Fig. 6 (see text).

5.2 Sensor calibration

We now evaluate the results of this embedding algorithm ¢ pl@duced by the angle-
estimating method of Sec. 4. For this purpose, we producees®gs of pixel signals
in the same conditions as previously, using the outdoorsradabrs sequence shown
in Figure 7, except that the sensor shape is different. Ttoenration and correlation
distances between pixels is then estimated from theselsjgha angular separation
between the pixels is estimated using Sec. 4, and the emigeddithod of Sec. 5.1 is
applied to these angle estimates.

Figure 10 shows the results of our calibration method on@srovering more than
a hemisphere, which thus cannot be embedded in a plane witymificant distortion.
It should be noted that, although the true sensor is eachrtiore than hemispheric,
the estimated calibration is in both cases smaller. Thigmkshge is a known effect of
some embedding algorithms, which we could attempt to cbrrec

Figure 11 shows how our method applies to signals produceddifferent sensor
from the one used to build the distance-to-angle modelseheam Olympus Stylus 300
camera. An 8-by-8 square grid pixels spanning 34 degreesamapled along a 22822
image sequence taken indoors and outdoors. From this segjube estimated angles
were generally greater than the true angles, which exptamsbsence of shrinkage.
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Fig. 9. Precision and accuracy of angles estimated in the same conditions as8néigept that
the planar probes are constrained to remain approximately horizontegeTlgures show that
the models in Fig. 5 are usable even if the isotropy assumption of the maviitgis not valid.

The higher angle estimates were possibly due to higherregantents of the sequence.
The estimated angles were also fairly noisy, possibly dubécsequence length, and
we surmise that longer sequences would yield better results

These results represent typical results that researafensducing our method may
encounter. Results from other experiments will be preskeisewhere.

6 Discussion

In this paper, we have shown that simple models exist thateaelignal discrepancy
to angular separation, and are valid in indoors and outdeweres. This suggests the
existence of near-universal properties of our visual wandine with other work show-
ing statistical properties of natural images. Contrarilyptevious works, we consider
statistics of the lightfield taken as a function defined orsifteere, rather than the plane,
a choice that allows us to consider fields of view greater tt&hdegrees.

We addressed the problem of determining the geometry of af ggtotocells in a
very general setting. We have confirmed that a discrete @aoeer be calibrated to a
large extent, using just two pieces of data: a table relatiggal distances to angles;
and a long enough signal produced by the camera.

The presented results are both superior and of a much widpeghan that of [15]:
we have shown that it is necessary neither to strictly eefthhe assumptions that the
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Fig. 10. Calibrations of two different sensors covering more than one henmispa the left,
a band-like sensor consisting of 85 photocells, calibrated from cornetafestimated: smaller,
true: bigger). On the right, a discrete camera covering more thar 380, of 168 photocells,
calibrated from the information distance (estimated: smaller, true: biggach ball represents a
photocell except the big black balls, representing the optical center.

Reconstruction using correlations (New sensor). Reconstruction using information distances (New sensor).
Signal length: 22822 Signal length: 22822
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Fig. 11. Reconstructed and true pixel layouts of a discrete camera consistimgtaigells lying
on a rectangular grid. The sensor used differs from that with which thaéeta of Fig 5 were
built. The reconstructions are obtained by first estimating the pairwisdangjstances, then
embedding the angles in the sphere (see text). For visualization, thestemions are aligned
by the usual procrustes method, mapped to the plane by projectivérmgagh unit focal length.
Added line segments show the true pixel neighborhood relations. Theld¢fis obtained from
the correlation distance, and the right from the information distance.

camera directs each pixel uniformly in all directions, nuattstatistically similar en-

vironments be used to build the statistic-to-angle table @ncalibrate the discrete
camera. This flexibility reinforces the impression that lsdsuch as those shown in
Figure 5 have a more general validity than the context obcation.

We showed also that angle estimators based on correlatibimnmmation distance
(entropy) have different performance characteristicsvduld be very interesting to
apply machine learning techniques to leverage the poweeofrauch weak estimators.

Finally a more curious question is worth asking in the futwan the problem of
angle estimation be altogether bypassed in a geometrizedgningful calibration pro-
cedure? Embedding methods based on rank or connectivitg®l,7e.g. correlation or
information distance, suggest that this is possible.
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