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Instituto Superior T́ecnico,

Universidade T́ecnica de Lisboa, Portugal
nunompleite@gmail.com; adb,jag@isr.ist.utl.pt

Keywords: Camera Network, Visual Odometry, Calibration, and Estimation of CameraPose.

Abstract: This paper presents a methodology to estimate the calibration of a network ofcameras, possibly with non-
overlapping fields of view. Calibration comprises both the intrinsic and extrinsic parameters of the cameras
and is based on a mobile robot with the capability of estimating of its pose in a global frame. The robot is
equipped with one calibrated camera which we assume that can be orientedin a manner to observe world
points also seen by the network of cameras.
Our methodology is based on matched scale invariant features (SIFT) reconstructed to 3D points using e.g.
SLAM, and focus on the problem of transporting the robot coordinate system to the fixed cameras. The
reconstructed 3D points and their images on the fixed cameras are proposed as a solution for the calibration
problem. In order to test the validity of our methodology we constructed a VRML scenario, thus having low
noise images and ground truth information. Results show the successfulcalibration of three fixed cameras
using a mobile camera that acquired about thirty images.

1 INTRODUCTION

The increasing need of surveillance of public
spaces and the recent technological advances on em-
bedded video compression and communications made
camera networks ubiquitous. Typical environments
include single rooms, complete buildings, streets,
highways, tunnels, etc. While the technological ad-
vances already allowed such a wide installation of
camera networks, the automatic understanding and
processing of the video streams is still an active re-
search area.

One of the crucial problems in camera networks
is to obtain a correct calibration of each camera in
terms of a unique reference frames. This condition is
a fundamental feature required for further higher level
processing (i.e. people/car tracking, event detection,
metrology) and nowadays one of the most complex
problems in Computer Vision. The problematics gen-
erally arise from the lack of overlapping field of views
(FOV) of the camera which does not allow the estima-
tion of a common reference frame for each camera.
In such scenario, exactly geolocating each sensor is

extremely complex without the aid of special equip-
ment (moving calibration patterns or GPS) or a priori
reference images such as a panorama of the given en-
vironment.

Previous approaches are mainly focused in de-
tecting enough common features between images in
order to link each cameras to the reference coordi-
nate systems. This can be achieved using a set of
panorama images which links the non-overlapping
field of views or by a mobile platform which set
the reference by navigating into each camera field of
view. The first case is usually followed by a pre-
generation of a panorama using a standard Pan-Tilt-
Zoom (PTZ) cameras [14] which is then followed by
pairwise and global alignment of the set of cameras
using standard bundle adjustment [16]. In the case
of a mobile platform, the reference is always given
by the mobile platform which carries a calibration
pattern or takes snapshots of the scene thus obtain-
ing an overlapping FOV. In [15, 1] a set of images
taken from a mobile platform are registered to a wide
set of omnidirectional cameras which allows a con-
sistent overlaps in the given scene. Differently in [13]

jag
Typewritten Text
in Proc. of IV Jornadas de Engenharia Electrónica 
e Telecomunicações e de Computadores, pp174-179
November 2008, Lisbon, Portugal




a robotic platform carries a pattern represented by a
set of markers. Calibration is given by registering the
pattern to each view given the reference of the robot.
This solution however requires each camera seeing
the mobile robot.

In our methodology we use of the robot in a dif-
ferent manner of other works [12, 15, 1, 13]: in-
stead of building large calibration patterns to transport
with the robot, and imposing the constraint that the
fixed cameras can effectively see the robot, the robot
equipped with the camera just has to see scene points
also observed by the fixed cameras. This is simpler,
considering that the camera on-board can even be a
versatile PTZ camera.

In order to calibrate the camera network we follow
the approach of reconstructing some points of the sce-
nario. These points are expressed in a global (world)
coordinate frame provided by self-localization infor-
mation assumed to exist in the mobile robot. Given
the reconstructed 3D-points of the environment and
their images we can calibrate the network of cameras
using standard computer vision methodologies [7].

The reconstruction of 3D points comprises two
main steps, namely matching image points and com-
puting their locations. We do the matching based on
SIFT features, state of the art features well known to
provide a very robust matching procedure [10], and
the computation of the 3D locations is based on vS-
LAM [5, 8].

In order to test the accuracy of the methodology
we followed the approach of creating one simulated
environment based on VRML. VRML allows creat-
ing different types of scenarios, rendered as images
with low levels of noise1, on which we can test fea-
ture detection and matching. The ground truth allows
also to evaluate the quality of both the reconstruction
of points and camera poses.

2 CAMERA NETWORK

In our work a camera network is defined as a set of
static cameras placed arbitrarily in the scenario (see
Fig.1). In general we will not assume any kind of
overlapping of the fields of view[3]. The main ob-
jective is than to estimate the calibration of the cam-
eras, more precisely their intrinsic and extrinsic (lo-
calization and orientation) parameters. The extrinsic
parameters are to be estimated in a global reference
frame.

1Mainly quantization noise associated to the rendering
methods of VRML browsers.

Figure 1: Camera network formed by three static cameras.
The mobile camera transported by the robot is used to cali-
brate the network.

The N cameras of the camera network are as-
sumed to be perspective (pinhole):

network= {Fi : i = 1. . .N}

i.e. Fi are projection matrices, which we generically
denoted asP in the following. In more detail, the pro-
jection of a 3D world point,M = [X Y Z 1]T to an
image point,m= [λu λv λ]T , in a camera,P, is repre-
sented as [4]:

m= PM, P = K[R t] = [P1:3,1:3 P1:3,4] (1)

whereP can be decomposed in the intrinsic parame-
ters matrixK, a rotationR and a translationt, and the
subscriptsPa:b,c:d denote selection of lines (a to b) or
columns (c to d). The intrinsics parameters matrix,K
is assumed to have an upper triangular form:

K =





αx s x0
0 αy y0
0 0 1



 (2)

where(αx,αy) represent scalings from meters to pixel
coordinates,s is the skew coefficient, and(x0,y0)

T

represent the coordinates of the principal point. Fi-
nally, the rotation matrixR is unitary and thus com-
bined withK implies that‖P3,1:3‖= 1.

In this work, the calibration methodology of the
camera network is based on reconstructed image
points. The points to reconstruct are first selected
from image points, using e.g. SIFT features [10],
which are seen both by the static,Fi and the mobile,Ci
cameras (see Fig.1). We assume that the mobile cam-
era is calibrated and can be placed (oriented) to see
sub-sets of scene points visible by the fixed cameras.
The robot itself does not need to be seen by the fixed



cameras. However, we assume that the robot has its
own global coordinate system and can estimate its lo-
calization while it moves. The localization method of
the robot can be based on e.g. odometry, differential
GPS, SLAM / vSLAM [5, 8], or any other method.
In this work we focus on the aspect of transporting
the localization information from the robot to the net-
worked (fixed) cameras.

The calibration methodology comprises in
essence two steps: (i) estimation of the projection
matrices representing the cameras,Fi in a global ref-
erence frame;(ii) obtaining the intrinsic and extrinsic
parameters by factorization. These steps are detailed
in Sec.3.

3 CAMERA POSE

In this section we propose a methodology for esti-
mating the pose of a fixed (networked) camera, know-
ing that the camera and the robot camera have over-
lapping FOVs. We follow an approach based on con-
ventional camera calibration assuming that we have
a good estimation of the scene structure provided by
e.g. a vSLAM algorithm.

3.1 Camera Calibration

In order to estimate the calibration of a fixed cam-
era we use 3D points reconstructed by the camera
mounted on the mobile robot. Those 3D points are
assumed to be visible, and matched, in both the mo-
bile and the fixed cameras. The 2D images on the
fixed cameras and the 3D knowledge of those points
allows estimating the camera calibration, or in other
words, its projection matrix.

The projection of a 3D world point,M to an image
point,m, described by Eq.1, can be re-written in order
to show explicitly a linear relationship with the entries
of the projection matrix,P. Despite having a system
of three equations in Eq.1, the equality up-to a scale
factor, λ implies that one equation is dependent on
the others. VectorizingP asp = [P1,1:4 P2,1:4 P3,1:4]

T ,
i.e. a twelve entries vector, and removing the scale
factorλ from Eq.1, one obtains a system with just two
equations:

[

MT 0T −uMT

0T MT −vMT

]

p =

[

0
0

]

(3)

Considering a set ofn 3D points and the correspond-
ing 2D projections on the image plane, one obtains a
2n×12 matrixA by stacking up the Eq.3 for each cor-
respondence. In order to avoid a trivial solution forp
in the systemA · p = 0, one can impose that‖p‖= 1.

The solution forp is then the singular vector corre-
sponding to the least singular value ofA. Sincep has
twelve entries, and knowing that each 3D-2D pair of
points gives two equations, than one needs at least six
3D-2D pairs of points.

Finally, in order to impose thatK3,3 = 1 and that
the rotation component inP is unitary, we set a unit
norm toP3,1:3 with:

P← P/‖P3,1:3‖ . (4)

3.2 Pose Estimation

Given the projection matrix,P representing a gen-
eral perspective camera, Eq.1, and estimated using the
method detailed in the previous section, we want to
find explicitly the camera’s position,t and orientation,
R. This implies removing the intrinsic parameters in-
formation,K from P.

In other words, we want to decompose the projec-
tion matrix in its intrinsic and extrinsic parameters. In
[7], there is proposed a direct factorization method of
P using Givens matrices, however we follow an ap-
proach closer to the one in [6] which is based on (i)
QR factorization ofP, (ii) transformation from the QR
to the RQ factorization, and (iii) sign correction ofK.

QR based on Gram-Schmidt orthonormalization
As noted in [6], many numerical packages provide the
RQ factorization. Nevertheless, in case there is a need
to write code from scratch, there are several methods
to do the QR factorization. Most common methods
are based on Householder matrices, Givens matrices
or simply on the Gram-Schmidt orthonormalization.
In this work we use the Gram-Schmidt process which
proposes as the unity matrix just the orthonormal vec-
tors found from the matrix being factorized:

P1:3,1:3 = Q·R=
[

q1 q2 q3
]





r11 r12 r13
0 r22 r23
0 0 r33





(5)
where qi denote the orthonormalized vectors of
P1:3,1:3, for instanceq1 = P1:3,1/‖P1:3,1‖, andr i, j are
weighting factors found in the orthonormalization
process2.

Converting QR to RQ The QR decomposition fac-
torizesP1:3,1:3 as a unique product of an orthonormal
(unity) matrix and an upper-triangular matrix, pro-
vided that the upper-triangular has the main diagonal
entries all positive. Note that we want the reverse, i.e.

2See for examplehttp://www.tomzap.com/notes/
MatricesM340L/Gram-Schmidt.pdf .



an upper-triangular times an orthonormal, as in the
projection equation Eq.1. We will see next that the
QR factorization can be easily transformed to RQ.

Defining a matrixSas:

S=





0 0 1
0 1 0
1 0 0





Shas the property that left (right) multiplying a 3×3
matrix swaps its lines (columns). In additionST =
S and S·S= I (i.e. S−1 = S). Then applying QR
factorization toPT

1:3,1:3 ·S,

PT
1:3,1:3 ·S= Q·U

and doing some algebraic operations starting with
a transpose and then using the properties ofS, one
has P1:3,1:3 = S.UT .QT = S.UT .S.S.QT = (SUTS) ·
(SQ) = K ·R. Note that this is already a RQ factoriza-
tion asK = S.UT .Scomprises the necessary line and
column swapping to change the lower-left-triangular
UT to upper-triangular, and theR= S.QT is still unity
as the transpose and the operation ofS do not affect
the unity property.

Correcting the diagonal of K In general the QR
and RQ factorizations can leave a sign ambiguity,
which is removed by requiring thatK has positive di-
agonal entries [7]. Defining a diagonal matrix,D hav-
ing the signs of the main diagonal ofK,

D = diag{sign(K1,1),sign(K2,2),sign(K3,3)}

one can correct the signs ofK, and consequently up-
date all the terms of the factorization with:

K← K.D, R← D.R, t = K−1.P1:3,4.

The algorithm of decomposing a projection ma-
trix, symplified by using Matlab’s QR factorization,
is the following:

function [K, R, t]= proj_decomp(P)

% RQ from QR factorization
%
S= [0 0 1; 0 1 0; 1 0 0];
[Q,U]= qr(P(1:3,1:3)’*S); K=S*U’*S; R=S*Q’;

% Correcting signs and computing t
%
D= diag(sign(diag(K)));
K= K*D; R= D*R; t= inv(K)*P(:,4);

4 RESULTS

In order to test our methodology, we built a simu-
lated setup, comprising one mobile camera and three
fixed cameras. The mobile camera moves in a way
that its FOV has a large overlapping with the FOV of
the fixed (networked) camera.

4.1 Simulated Setup

In this section we describe the VRML world built
for our experiments. The VRML world is composed
by one room with an exposition of Picasso paintings.
The room is 10 meters long, 5 meters wide and 3 me-
ters high. The paintings are located on the walls and
spread in the middle of the room. See Fig. 2.

Figure 2: Simulated setup: VRML room with an exposition
of Picasso paintings (top; removed ceiling and one wall),
and an image acquired inside the room (bottom).

In our calibration methodology we use re-
constructed 3D points, obtained in these experi-
ments from a SLAM process using a demonstration
toolbox[11]. In order to run the SLAM process, one
needs the intrinsic parameters of the mobile camera.

The rendering of VRML depends significantly on
the browser. One aspect that usually varies signifi-
cantly is the size of the browsing window, which im-
plies that the intrinsic parameters of the virtual cam-
era also vary significantly.

In order to overcome this variability, we perform
a calibration procedure as usual with a normal cam-
era. More precisely, we place a calibration pattern in
the scene and move it in the field of view of the cam-
era. Then we use the Jean-Yves Bouguet’s calibration
toolbox [2].

The results of the calibration toolbox allow es-
timating the intrinsics matrixK with the structure



shown in Eq.2. The intrinsics matrix allows then
to realize euclidean reconstructions of image points
matched or tracked in two or more images, and to
calibrate the camera network. The following section
shows results based on this idea.

4.2 Pose estimation

In this section we describe the estimation of the pose
of three fixed cameras, given the images acquired by
a (calibrated) mobile camera. The pose estimation is
based on the calibration of fixed cameras as described
in Sec.3.

The three static cameras are placed in a line 0.1
meters in front to the back wall, 2 meters above the
floor. The cameras are separated by 2 meters. The
middle camera is exactly in the center of the two most
distant walls (i.e. 5 meters to the left and right walls).
Fig. 3(a,b,c) shows the images acquired by the static
cameras.

The camera on the robot moves on a line paral-
lel to the baseline of the static cameras, 0.5 meters
down and 0.4 meters ahead. Its first position is 3.5
meters from the left wall and it moves 3 meters more
to the right. It captures one image every 0.1 meters.
Fig. 3(d,e,f) shows the first, the second and the last
images captured by the mobile camera.

After acquiring the static and the mobile im-
ages, we proceeded to detect and match SIFT fea-
tures among all pairs of images, using the demon-
stration software [9]. The points identified by the
SIFT are represented in the figures by yellow circles
in Fig. 3(a,b,c,d,e,f).

Given the positions of the features in the im-
ages acquired by the mobile camera, we use the
SLAM demonstration software[11] to estimate the
3D-position of the points in the world. The esti-
mated 3D-positions of the points are represented in
Fig. 3(g) by the green points. The purple points rep-
resent ground-truth data (reconstructed and ground-
truth points are connected by blue lines). The
ground-truth positions have been estimated by back-
projecting the image points toward the known facets
composing the VRML world. The alignment of the
SLAM reconstruction and the VRML coordinate sys-
tems is done using a simple Procrustes procedure.

Finally, the reconstructed 3D points and their im-
ages in the fixed cameras are used to calibrate the
fixed cameras. Fig. 3(g) shows the estimated posi-
tions and the orientations of the mobile camera (red),
and of the static cameras (blue). Fig. 3(h) zooms the
poses of the cameras. Ground-truth poses of the mo-
bile and the static cameras, were again computed from
the VRML, and are represented by cyan-lines (z axis)

and black-dots (camera centers). The average error in
the estimation position of cameras in each axis is less
than 0.05 meters.

5 CONCLUSIONS

In this work we proposed a methodology for cal-
ibrating a network of cameras with non overlapping
fields of view. The camera network is linked together
by a mobile robot equipped with a camera. The ac-
curacy of the estimated structure information of the
scene is the key to our calibration procedure. Our
experiments show that robot motions parallel to the
baselines of the fixed cameras, with lengths on the or-
der of magnitude of those of the baselines, provide
good accuracy.
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