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Abstract. Recent stereo cameras provide reliable 3D reconstructions.
These are useful for selecting ground-plane points, register them and
building mosaics of cluttered ground planes. In this paper we propose
a 2D Iterated Closest Point (ICP) registration method, based on the
distance transform, combined with a fine-tuning-registration step using
directly the image data. Experiments with real data show that ICP is
robust to 3D reconstruction differences due to motion and the fine tuning
step minimizes the effect of the uncertainty in the 3D reconstructions.

1 Introduction

In this paper we approach the problem of building mosaics, i.e. image montages,
of cluttered ground planes, using stereo vision on-board of a wheeled mobile
robot. Mosaics are useful for the navigation of robots and for building human-
robot interfaces. One clear advantage of mosaics is the simple representation of
robot localization and motion: they are simply 2D rigid transformations.

Many advances have been made recently in vision based navigation. Flexi-
ble (and precise) tracking and reconstruction of visual features, using particle
filters, allowed real time Simultaneous Localization and Map Building (SLAM)
[1]. The introduction of scale-invariant visual features brought more robustness
and allowed very inexpensive navigation solutions [2, 3]. Despite being effective,
these navigation modalities lack building dense scene representations convenient
for intuitive human-robot interfaces. Recent commercial stereo cameras came
to help by giving locally dense 3D scene reconstructions. Iterative methods for
matching points and estimation their rigid motion, allow registering the local
reconstructions and obtaining global scene representations. The Iterated Closest
Point (ICP) [4] is one such method that we explore in this work.

The ICP basic algorithm has been extended in a number of ways. Exam-
ples of improvements are robustifying the algorithm to the influence of features
lacking correspondences or using weighted metrics to trade-off distance and fea-
ture similarity [5]. More recent improvements target real time implementations,
matching shapes with defects or mixing probabilistic matching metrics with sat-
urations to minimize the effect of outliers [6–8]. In our case, the wheeled mobile
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Fig. 1. Mosaicking ground planes: Stereo camera, Image and BEV coordinate systems.

robots motion on the ground plane allows searching for 2D, instead of 3D, regis-
trations. Hence we follow a 2D ICP methodology, but we take a computer vision
approach, namely registering clouds of points using the distance transform [9].

Stereo cameras allow selecting ground-plane points, registering them and
then building the ground plane mosaic. Stereo reconstruction is therefore an
advantage, however some specific issues arise about its use. For example, the
discrete nature of the imaging process, and the variable imaging of objects and
occlusions due to robot motion, imply uncertainties on the 3D reconstruction.
Hence, the registration of 3D data propagates also some intrinsic uncertainty.
The selection of ground-plane data, is convenient for complexity reduction, how-
ever a question of the sparsity of data arises. In our work we investigate robust
methodologies to deal with these issues, and in particular we investigate whether
resorting to the raw image data can help minimizing error propagation.

The paper is structured as follows: Sec.2 details the mosaicking problem and
introduces our approach to solve it; Sec.3 shows how we build the orthographic
views of the ground plane; Sec.4 details the optimization functionals associated
to mosaic construction; Sec.5 is the results section; Finally in Sec.6 we draw
some conclusions and guidelines for future work.

2 Problem Description

The main objective of our work is mosaicking (mapping) the ground plane con-
sidering that it can be cluttered with objects such as furniture. The sensor is a
static trinocular-stereo camera mounted on a wheeled mobile robot. The stereo
camera gives 3D clouds of points in the camera coordinate system, i.e. a mobile
frame changed by the robot motion. See Fig.1

The ground plane constraint implies that the relationships between camera
coordinate systems are 2D rigid motions. As in general the camera is not aligned
with the floor, i.e. the camera coordinate system does not have two axis parallel
to the ground plane, the relationships do not clearly show their 2D nature. In
order to make clear the 2D nature of the problem, we define a new coordinate
system aligned with the ground plane (three user-selected well-separated ground
points are sufficient for this purpose).



Commercial stereo cameras give dense reconstructions. For example, for each
image feature, such as a corner or an edge point, there are usually about 20 to 30
reconstructed 3D points (the exact number depend on the size of the correlation
windows). Considering standard registration methods as Iterated Closest Point
(ICP, [4]), the large clouds of 3D points imply large computational costs. Hence,
we choose to work with a subset of the data, namely by selecting just points of
the ground plane. The 2D clouds of points can therefore be registered with a 2D
ICP method.

Noting that each 3D cloud of points results from stereo images registration,
the process of registering consecutive clouds of points has some error propagated
from the cloud reconstruction. In order to minimize the error propagation, we
add a fine tuning image-based registration process after the initial registration
by a 2D ICP method. The image-based registration is a 2D rigid transformation
in Bird’s Eye Views (BEV), i.e. orthographic images of the ground plane. BEV
images can be obtained also knowing some ground points and the projection
geometry. To maintain consistent units system, despite having metric values in
the 3D clouds of points, we choose to process both the 2D ICP and the image
registration in the pixel metric system, i.e. the same as the raw data.

In summary our approach encompasses two main steps: (i) selection of ground
points and 2D ICP, (ii) BEV image registration. Despite the 2D methodology
notice that the 3D data is a principal component. The 3D sensor allows select-
ing the ground plane data, which is useful not only for using a faster 2D ICP
method but mainly for registering the ground plane images without considering
the distracting (biasing) non-ground regions.

3 Obtaining Bird’s Eye Views (BEV)

The motion of the robot implies a motion of the trinocular camera which we
denote as 2T1. The indexes 1 and 2 indicate two consecutive times, and tag also
the coordinate systems at the different times, e.g. the camera frames {cam1} and
{cam2}. The image plane defines new coordinate systems, {img1} and {img2},
and the BEV defines another ones, {bev1} and {bev2}. See Fig.1.

The projection matrix, P relating {cami} and {imgi} is given by the camera
manufacturer or by a standard calibration procedure [10]. In this section we are
mainly concerned with obtaining the homography, H relating the image plane
with the BEV.

The BEV dewarping, H is defined by back-projecting to the ground plane
four image points (appendix A details the back-projection matrix, P ∗). The
four image points are chosen so to comprehend most of the field of view imaging
the ground plane. The region close to the horizon line is discarded due to poor
resolution. Scaling is chosen such that it preserves the largest resolution available,
i.e. no image-data loss due to sub sampling.

Is interesting to note that the knowledge of the 3D camera-motion, 2T1 di-
rectly gives the BEV 2D rigid transformation, 2H1 (see Fig.1):

2H1 = H.P.2T1.P
∗.H−1 (1)



The inverse transformation, i.e. obtaining 2T1 from 2H1, is also possible since
the motion is constrained to the ground plane: a 2D frame is transformed using
2H1, and the missing dimension can be recoved e.g. by the relationship of the
cross products of the vectors of the frame. In other words, estimating the camera
motion in the camera frame is equivalent to estimating motion in the BEV frame.

4 Mosaic Construction

The input data for mosaic creation consists of BEV images, It and It+1, and
clouds of ground-points projected in the BEV coordinate system, {[u v]Tt,i} and

{[u v]Tt+1,i}. In this frame, the camera motion is a 2D rigid translation, 2H1,
which can be represented by three parameters µ = [δu δv δθ]. We want to find
µ such that the clouds of points match as close as possible:

µ∗ = argµ min
∑

i

∥

∥[u v]Tt+1,j − Rot(δθ).[u v]Tt,i − [δu δv]T
∥

∥

2
(2)

The correspondence between points of the clouds, i.e. finding the index j match-
ing i, is based on the nearest neighbor rule, as with ICP. However in our case the
matching is implemented using a distance transform. Using a distance transform
allows matching 2D shapes as a 2D lookup-table reading of nearest neighbors
and distances to them, instead of a combinatorial search between the clouds of
points [9]. In order to smooth the cost functional and deal with the small shape
differences (e.g. locally regular patterns generated by dense stereo reconstruc-
tion) we read interpolated-distance-values from the distance transform, and in
order to deal with large differences (e.g. clouds leaving the field of view) we place
a saturation on the distance transform (constant distances imply no influence in
the optimization process).

Given the first estimation of the 2D motion and the knowledge of ground
points, we can now fine tune the registration using ground plane image data:

µ∗ = argµ min
∑

i

∥

∥It+1(Rot(δθ).[u v]Tt,i + [δu δv]T ) − It([u v]Tt,i)
∥

∥

2
(3)

Despite the fine tuning nature of this process, there is still possible to have
regions of one image that got out of the field of view in the next image. The
non-matched pixels get comparison values given by the closest matchings in
an initial stage. These values are updated in the optimization process only if
true matchings become possible, i.e. a new hypothetical 2D rigid motion be-
tween BEV images can bring to visibility unmatched points. This allows further
smoothing the optimization process for points near the border of the field of
view.

Finally, given the 2D rigid motion, the mosaic composition is just an accu-
mulation of images. A growing 2D image buffer is defined such as to hold image
points of the ground plane along the robot traveled path.



(a) Trinocular (b) Reference camera (c) Reference camera
camera. time t. time t + 1.

(d) Dewarping (e) Superposition (f) Distance
BEV of (b). without registration. transform of (c).

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

F
1
(δθ)

F
2
(δθ)

(g) Superposition (h) Cost functionals vs perturbation δθ

after registration. (costs normalized to [0, 1], δθ in [−100, 100]).

Fig. 2. BEV dewarping and registration. (a) Stereo camera. (b) and (c) show recon-
structed ground-points (blue-points) in the reference camera of the stereo setup. (d)
BEV dewarping of (b). (e) superposition of BEVs without registration (notice the blur).
(f) distance transform of the ground points seen in (c). (g) correct superposition of all
ground points after registration. (h) comparison of the cost functionals by perturbing
δθ about the minimizing point: registration using Eq.2 has a larger convergence region
(dots plot) but the image-based registration, Eq.3 is more precise (circles plot).

5 Experimental Results

In our experiments we use the Point Grey’s Digiclops trinocular camera (Fig.2a).
This stereo camera encompasses three 640×480 color cameras arranged in an L-
shape form (top-left, bottom-left and bottom-right), with 10 cm baselines. The
robot carrying the camera follows a circular path with a 9.4 meters perimeter.
215 stereo images are acquired along the path.

Figure 2 illustrates the dewarping to BEV images and the registration of
the dewarped images. The BEV images are 1568 × 855. One meter measured
in the ground plane is equivalent to 318 pixels the BEV (this calibration in-
formation derives directly from the stereo-camera calibration). The registration
is illustrated by super-imposing consecutive BEV images after applying to the
first image the estimated 2D rigid motion. Notice in particular in Fig.2c the



(a) View of the working space and of the robot.

(b) Ground points used (c) Mosaic with all imaging
for registration (landmarks) data superimposed

Fig. 3. View of the working area (a), mosaic of the ground points chosen as landmarks
while registering the sequence of BEV images (b) and a mosaic with all the visual
information superimposed (c).

significant shape differences of the clouds of points as compared to Fig.2b, and
in Fig.2g the graceful degradation of the superposition for points progressively
more distant to the ground plane. Fig.2f shows the distance transform used for
matching ground-points. The matching is performed repeatedly in Eq.2 in order
to obtain the optimal registration shown in Fig.2g. The existence of local-clusters
of points, instead of isolated points, motivates a wider-convergence but less pre-
cise registration which can be improved resorting to image data (Eq.3) as shown
in figure Fig.2h.

The mosaicking of BEVs shows clearly the precision of the registration pro-
cess. In particular shows that the image-based registration improves significantly
the 2D motion estimation. After one complete circle described by the robot, the
2D ICP registration gives about 2.7 meters localization error (28% error over
path length) which is improved to about 0.23 meters (2.3% error over path
length) when using image-based registration. This allows obtaining a mosaic



closing almost perfectly a circular path (see Fig.3c). Notice that only the ground
points are registered in the mosaic, and thus all other points should exhibit
artifacts due to parallax.

6 Conclusions

In this paper we proposed a method for creating mosaics of cluttered ground
planes. Current stereo cameras provide 3D information and allow selecting ground
points reliably. 3D data has been shown to be convenient as it allows selecting
ground points, that can be registered and then used for building mosaics of
cluttered ground planes.

The input of the mosaicking process consists mainly of many points forming
local sparse clouds. This implied using robust registration methods designed for
clouds instead of well separated features. We proposed using computer vision
techniques such as distance transform to compare shapes and image correlation
for fine tuning the registration. Results shown that the distance transform copes
well with the sparse nature of the clouds. The saturation of the distance trans-
form is useful for coping with the outliers. 3D reconstructed clouds were found
to be useful for an initial registration, but fine tuning required resorting to the
original image data.

Future work - The proposed mosaicking method will be used for benchmarking
other registration methods based on the same input data (monocular or stereo
vision). Combining reconstructed 3D information, accounting for variable local-
densities of features and including color information, guaranteeing at the same
time good convergence properties, is still a research topic within ICP registration.

As noted in the introduction, we plan to use the mosaics for navigation.
The pairwise registration of the 2D ground features, acquired at consecutive
time stamps, still suffers the error accumulation problem typical of odometry.
However, from the point of view of keeping the robot localised, the image pairwise
registration is enough, as the robot can always navigate on the mosaic and roll-
back to its starting location by local registration over the mosaic.

A Back-projection to the ground plane

Consider the projection equation in homogeneous coordinates m ≈ PM =
[A b]M , where M = [x y z 1]T is a generic 3D point, m = [u v 1]T is the
image point projection of M and the sign ≈ denotes equality up to a scale factor
[11]. We have that the camera projection center is C = −A−1b and the 3D direc-
tion associated to m (point at infinity) is D = A−1m. Thus the back-projection
comes M = [C; 1]+α[D; 0] = [A−1(αm−b); 1] where α is a scaling factor setting
the distance from the 3D point to the camera center and ”;” denotes vertical
stacking of vectors [12].

Representing the ground plane by a normal vector, n and a distance to the
coordinate system origin, d, the factor α in the back-projection equation can be



computed by enforcing MT
1:3.n = d. The back-projection equation can now be

arranged to a single 4×3 matrix, P ∗ converting an image point m to a 3D point
M on the ground plane:

M ≈ P ∗m =

[

(d + bT A−T n)A−1 −A−1b

nT A−1 0

] [

I3

0 0 1

]

m. (4)
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