
Collaborative Localization of Vehicle Formations
Based on Ranges and Bearings

Beatriz Quintino Ferreira João Gomes Cláudia Soares João P. Costeira
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Abstract—We examine the problem of jointly determining
the positions of multiple underwater vehicles based on a set
of pairwise range and bearing measurements taken over time.
This extends prior work on the so-called (static) collaborative
localization paradigm where a hybrid approach was proposed
for seamless instantaneous fusion (i.e., no time dependence)
of range and bearing measurements. To incorporate time we
add to the original convexified least-squares cost function a
regularizing term that penalizes deviations between predicted
and computed vehicle positions at a given instant. The method
operates progressively over time, with past estimates used for
prediction at the current instant assuming a very simple quasi-
linear motion model. The method is amenable to parallelization,
with simple gradient-like updates. Numerical results demonstrate
promising accuracy gains (reduction on the order of 10 %
in terms of root-mean-square positioning error) in simulations
inspired by an underwater geoacoustic surveying application.

I. INTRODUCTION

The development of networked systems of agents that can
interact with the physical world and carry out complex tasks
in various contexts is currently a major driver for research
and technological development [1]. This trend is also seen
in contemporary ocean applications [2], and motivates the
present work, which falls under the scope of EU H2020 project
WiMUST. The goal of this project is to develop advanced
control, communication and signal processing tools to enable
a team of marine robots, either on the surface or submerged,
to jointly conduct geoacoustic surveys and eventually replace
current systems where a single vessel tows very long and
cumbersome arrays of streamers [3] (Fig. 1). In this type of
survey a powerful towed source produces acoustic waves that
penetrate the sea bottom, and its layered structure is inferred
from the pattern of echoes in the reflected acoustic field
observed at a set of hydrophones over an extended period and
wide geographic area. Such surveys are routinely carried out to
characterize the sea bottom prior to underwater construction,
for monitoring the condition of pipelines and submerged
structures, and for exploration/exploitation of offshore oil and
gas fields.

Unlike conventional systems, the absence of long physical
ties between the surface ship and the data acquisition devices
makes it easy to adjust the spatial sampling configuration in
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Fig. 1. Geoacoustic surveying in WiMUST using a team of autonomous
vehicles to tow multiple streamer arrays (a) 2D surface configuration (b) 3D
submerged configuration

WiMUST by changing the shape and trajectory of the vehicle
formation. This flexibility provides potentially useful addi-
tional degrees of freedom for estimating the layered structure
of the bottom.

Coordinated operation of vehicles requires the existence
of a communication network to share data, most critically,
those related to navigation and positioning [4]. This work
is concerned with localization of (underwater) vehicles, a
key subsystem needed in the absence of GPS to properly
georeference any acquired data and also used in multi-vehicle
cooperative control algorithms. In WiMUST, e.g., the acoustic
signals acquired by streamers must be georeferenced to high
precision to enable successful inference of deep sub-bottom
layers. Shared positioning data may include measurements
such as inter-vehicle distances or bearings, needed to compute
spatial coordinates. Designing efficient sharing methods in
low-rate (broadcast) acoustic channels1 is practically impor-
tant [6], [7], but here we take the existence of such physical-
level mechanisms for granted, and assume that measurements
are available as needed for vehicles to compute their positions.

1The existence of alternative vehicle-to-vehicle data links operating at
distances on the order of 10 m (e.g., optical [5]) is quite helpful in scenarios
that are relevant to WiMUST.



The problem class of interest here is collaborative, or
network, localization, where multiple vehicles jointly deter-
mine their positions by sharing pairwise measurements and
measurements to a set of reference points (anchors). These
measurements are typically ranges in GPS-like systems [6],
while in recent work we have developed a hybrid fusion
method based on convex relaxation that seamlessly integrates
range and bearing measurements to attain more accurate and
robust operation [8]. The algorithm itself is readily paral-
lelizable, computationally very simple, and attains superior
accuracy when compared with other formulations of collab-
orative optimization based on convex relaxation — their main
advantage being the existence of a single (global) minimum
that can usually be found numerically in a robust way. When
vehicles are equipped with inertial sensors that allow them to
determine the absolute bearing to any other vehicle within
visual range, as in WiMUST, the algorithm becomes fully
distributed in the classic sense: In an underlying connectivity
graph nodes acquire local measurements and the algorithm
proceeds through exchanges between neighbouring nodes. The
presence of short-range inter-vehicle optical communication
links [5] is useful not only for enabling fast data exchanges,
but also as an additional means to determine relative bearings,
due to the need for proper alignment in such links.

The collaborative localization algorithm of [8], termed
CLORIS, operates on measurement snapshots, i.e., at a given
instant in time pairwise ranges and bearings are collected (in
practice, time skews between measurements are inevitable due
to the limitations of ranging over a shared acoustic channel),
and CLORIS is invoked to jointly determine the unknown
positions. At the next snapshot the whole process starts anew,
ignoring previous estimates.

In the present work we incorporate time into the estimation
process, the goal being to further improve the accuracy of
CLORIS by mitigating discrepancies between the estimated
positions of individual vehicles over consecutive snapshots.
We adopt a simple strategy from [9] that adds a regularizing
term to the cost function used for collaborative localization
in a given snapshot, penalizing deviations between estimated
vehicle positions and those predicted based on previous snap-
shots. Prediction is very simple, based on a quasi-constant
velocity model updated on a sliding time window. While the
penalization and prediction strategy is inspired by [9], our re-
laxation approach for convexifying the problem is completely
different, and therefore estimation algorithms are unrelated to
those given in [9].

The quasi-constant velocity model is somewhat restrictive,
but it provides significant gains in accuracy (about 10 %
reduction in root mean-square error relative to localization
with a single snapshot in our simulations) when individual
vehicle trajectories are predominantly linear. While more so-
phisticated prediction methods could be devised, the linear
motion model is well suited to WiMUST, as geoacoustic
surveys usually require streamers to be towed along (parallel)
linear trajectories most of the time.

II. HYBRID COLLABORATIVE LOCALIZATION

Abstracting the processes through which range and bearing
measurements are acquired and made available to localization
algorithms [6], [7], we represent the vehicle formation at
a given instant as an undirected graph G = (V, E), whose
nodes are the sensors/vehicles and the arcs represent pairwise
measurements. We also assume the existence of a set of
reference points (anchors) deployed at fixed positions in the
environment, relative to which measurements are taken, to
address translation and rotation ambiguities in our formulation.
Below, we will discuss manual and automatic calibration of
anchor positions.

Let xi ∈ Rn, i ∈ V denote the position of node i
at a given time (n = 2 or 3 for 2D or 3D localization,
respectively), and similarly let ak ∈ Rn be the position of
anchor k. We define Ai as the subset of anchors visible to
node i, which is further split into those providing range (Ri)
or bearing (Ti) measurements. The ranges between node i
and node j or anchor k are given by dij = ‖xi − xj‖ or
dik = ‖xi − ak‖. Similarly, bearings are encoded by unit-
norm vectors, uij =

xi−xj

‖xi−xj‖ or uik = xi−ak

‖xi−ak‖ , depending on
the measurement being relative to node j or anchor k. Actual
measurements are corrupted by noise.

The collaborative hybrid localization problem consists in
estimating, for each time instant t, the node positions xi ∈ V
from the available measurements dij , dik and uij , uik. In
previous work [10] we have proposed a hybrid method for
single-source localization seamlessly fusing ranges and bear-
ings (FLORIS). Later, we have extended it to the collabora-
tive paradigm [8] (CLORIS). We adopt a least-squares (LS)
formulation motivated by the form of the likelihood function
for range-based localization under Gaussian noise. The key
feature of our approach is to replace nonlinear/non-convex LS
range-based terms of the form (‖∆x‖ − d)2 by the convex

underestimator D2
Bd

(∆x) =

{
(‖∆x‖ − d)2, if ‖∆x‖ ≥ d
0, otherwise.

.

The notation D2
Bd

(∆x) emphasizes that this is the squared
distance of the difference of coordinates ∆x to Bd, a ball of
radius d centered at the origin. This so-called disk relaxation
is very precise and leads to a simple, fast and parallelizable
range-based localization algorithm using gradient descent [11].

For hybrid localization, we add to the cost function new
quadratic terms that quantify the squared distance from ∆x
to lines L going through the origin. For bearing u we have
D2

Lu
(∆x) = ‖(I− uuT )∆x‖2 [10]. The hybrid cost function

of CLORIS for static cooperative localization is thus [8]

f(x(t)) =
∑
i
R∼j

D2
Bij

(xi − xj) +
∑
i

∑
k∈Ri

D2
Bik

(xi − ak)

+
∑
i
T∼j

D2
Lij

(xi − xj) +
∑
i

∑
k∈Ti

D2
Lik

(xi − ak) ,

(1)
in which x is the vector of concatenated node coordinates and
i ∼ j denotes the existence of measurements involving nodes



i and j, more specifically of range measurements, i R∼ j, or
angle measurements i T∼ j.

Therefore, on the one hand, (1) penalizes deviations of
the node position estimates xi from balls with radii dij , dik
centered at other nodes or anchors, and, on the other hand,
penalizes deviations of xi from lines with orientation uij , uik
going through other nodes or anchors.

III. LOCALIZATION OF MOVING VEHICLE FORMATIONS

In dynamic settings, anchors maintain their positions2, while
sensors move freely over time according to the model

x(t) = x(t− 1) + v(t)∆T, (2)

where, similarly to x(t), vector v(t) stacks the velocity vectors
for all nodes at (discrete) time t ∈ Z, and ∆T is the time
difference (in seconds) between snapshots.

We address the dynamic collaborative localization problem
by estimating x(t) for each t in much the same way as in
the static case, but using knowledge of previous estimates to
form a prior on expected positions. Specifically, we follow the
approach of [9] and modify the cost function (1) to obtain the
optimization problem

minimize
x(t)

f(x(t)) + λ‖x(t)− x̂(t)‖2, (3)

where x̂(t) denotes the prediction of x(t) based on previous
snapshots and parameter λ ∈ R+ controls the amount of
regularization. The prediction x̂(t) uses (2), but with velocities
estimated from coordinate differences in a number of previous
snapshots. Filtering to obtain estimated velocities, v̂(t), could
be done in a number of ways, but here we follow the polar
representation of [9] and compute magnitudes and phases
through Weighted Moving Averages (WMA) as

‖v̂i‖(t) =

∑t−1
j=1 w‖v‖,j‖xi(t− j)− xi(t− j − 1)‖

∆T
∑t−1

j=1 w‖v‖,j
, (4)

∠v̂i(t) =

∑t−1
j=1 w∠v,j∠(xi(t− j)− xi(t− j − 1)‖

∆T
∑t−1

j=1 w∠v,j

, (5)

where w‖v‖,j , w∠v,j are weights that emphasize recent con-
tributions, as they decay to zero for older position estimates.
The weights used for magnitudes and phases need not be the
same, and may be set to attain suitable tracking for various
node trajectories. Still, we keep these weights static for the
ensemble of our simulations.

Prediction by averaging is most effective if the terms in
the sums (4), (5) are approximately constant, i.e., individual
velocities are approximately constant (trajectories are approx-
imately linear), but not necessarily equal across nodes. Our
simulations confirm that best performance is indeed attained
for linear trajectories, even if the magnitudes of velocity
vectors vary moderately over time. By contrast, regularization
in (3) becomes significantly less effective when, e.g., node
trajectories are circular, even for constant velocity magnitudes.

2This simplification is not actually required. In our formulation anchors can
move, as long as their position/attitude remains known over time.

Regarding solution algorithms for problem (3), note that the
regularizer is separable and therefore introduces no coupling
between different node coordinates. Then, the gradient of
the modified cost function retains the same structure found
for CLORIS, which enables it to be efficiently computed in
parallel for each node using only information obtainable from
neighbouring nodes. This property may be relevant to obtain
a truly distributed collaborative localization solution involving
physical vehicles, or simply as a convenient computational
device for efficiently solving the optimization problem (3) at
a central location. Development of tailored solution algorithms
is beyond the scope of this paper, so in our simulations we
use a general-purpose convex solver.

IV. SIMULATION RESULTS

We characterize the performance of the newly proposed
method benchmarking it against CLORIS [8] in simulation.
CLORIS minimizes (1) for each time instant t, whereas the
proposed method solves (3) with velocities and node positions
predicted according to (2), (4), (5).

We perform our tests in pre-defined networks, rather than on
randomly generated ones, due to the fact that random graphs
arising from pairwise measurements in collaborative scenarios
often lead to ill-posed localization problems, in which a unique
solution compatible with the data cannot be found [12].

In order to generate both range and bearing measurements
we first add white Gaussian noise w ∼ N (0, η2‖δ0‖2I), where
η denotes the noise factor, to the nominal difference of node-
node or node-anchor position vectors, δ0 = xi − xj or δ0 =
xi − ak, respectively, yielding δ = δ0 + w. The noisy range
and bearing measurements are generated according to d = ‖δ‖
and u = δ/‖δ‖.

We evaluate the estimation accuracy by the Root Mean-
Square Error (RMSE) for the total trajectory followed by the
vehicle formation. For a formation of N vehicles, moving
during T time instants, and for a set of MC Monte Carlo
runs, we define the RMSE as:

RMSE =

√√√√ 1

MC

1

N

1

T

MC∑
k=1

N∑
i=1

T∑
t=1

‖xi(t)− x̃i(t)k‖2, (6)

where xi(t) and x̃i(t)
k respectively denote the true and

estimated positions of the i-th node, for the t-th instant in
the k-th Monte Carlo run. We ran sets of MC = 100
Monte Carlo trials for each measurement noise factor η ∈
(0.001, 0.005, 0.01, 0.05, 0.1, 0.2), for 2D networks compris-
ing 4 anchors, placed at the corners of a unit square, and
N = 10 nodes animated with linear motion during T = 10
instants of time.

The following experiments were run using MATLAB
R2015a and the generic convex solver CVX.

Example 1: Fig. 2 shows a comparison of the RMSE of the
new method taking advantage of the network dynamics, and
CLORIS, for a network whose nodes move all with the same
constant linear velocity (0.1, 0.1). An improvement of approx-
imately 10% in the position estimation accuracy is achieved



0.25

0.3

0.35

0.4

0 0.05 0.1 0.15 0.2

R
M

S
E

Noise Factor

RMSE versus noise factor for all sensors with the 
same constant velocity

CLORIS
CLORIS with dynamics

Fig. 2. Performance of the proposed method and of CLORIS: RMSE vs.
noise factor for 4 anchors and 10 nodes moving at the same constant velocity
during 10 time instants
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Fig. 3. Performance of the proposed method and of CLORIS: RMSE vs. noise
factor for 4 anchors and 10 nodes moving at different but constant velocities
during 10 time instants

for almost all noise factors by introducing the regularization
term. Although this improvement seems to deteriorate when
increasing the noise factor, for a considerable noise of 10% in
the measurements, the new method still does better than the
previous one.

Example 2: The performance of the two compared methods
when the nodes move with different but constant rectilinear
velocities, randomly generated in the interval [0.05, 0.15], is
depicted in Fig. 3. In this scenario the new proposed method
also outperforms CLORIS in accuracy, for all noise factors.

Example 3: Fig. 4 depicts the performance results of both
methods for a network in which nodes move according to
different and varying linear velocities over time, in the interval
[0.05, 0.15]. Again, regularizing with motion information leads
to an improvement of about 10% over CLORIS, the gap being
larger for lower noise factors. A scenario mixing the conditions
of Examples 1 and 3, where a subset of nodes move with the
same constant velocity while the remaining ones move with
different and varying velocities over time, was also tested. The
obtained accuracy results were consistent with the previous
ones, with the proposed method outperforming CLORIS with
a similar behaviour.

Example 4: In practical deployments it is sometimes incon-
venient to assume that anchor positions are known. However,
if anchors only provide range measurements it is possible to
recover their geometric configuration up to a rotation and
translation3 through factorization of the Euclidean Distance

3Anchors help to disambiguate flip ambiguities in EDM formulations [6],
[13]. Their explicit inclusion in (1) also renders the proposed approach
immune to such ambiguities in most cases.
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Fig. 4. Performance of the proposed method and of CLORIS: RMSE vs. noise
factor for 4 anchors and 10 nodes moving at different and varying velocities,
during 10 time instants
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Fig. 5. Performance of the proposed method and of CLORIS: RMSE vs.
noise factor for 4 reconstructed anchors through Euclidean Distance matrix
factorization and 10 nodes moving at the same constant velocity, during 10
time instants

Matrix (EDM) generated by anchor-anchor ranges (see [13]).
These computed anchor coordinates are then used as surro-
gates for the true ones in collaborative localization methods,
enabling the determination of relative node positions and
trajectories. Fig. 5 shows the accuracy results of estimating
the node positions in a network under the same conditions of
Example 1 but with anchor coordinates reconstructed from the
Euclidean distance matrix. In this scenario, the new proposed
method introduces an improvement higher than 10% over
CLORIS up to noise factor η = 0.1.

V. CONCLUSIONS AND FUTURE WORK

Our convex relaxation strategy for collaborative localization
is markedly different from (range-based) semidefinite relax-
ation methods, as it allows us to retain node positions as
optimization variables. This enables the inclusion of hybrid
terms in the cost function, as well as regularization terms that
induce temporal filtering of node coordinates, smoothing the
estimated trajectories and reducing the RMSE by about 10%
relative to instantaneous localization over several simulated
scenarios with linear node velocities. Several improvements
can be envisaged, such as: Developing better velocity predic-
tion models to obtain similar performance gains over richer
trajectories; deriving efficient parallel minimization algorithms
for the regularized hybrid cost function; solving for multiple
snapshots in a single optimization for even better accuracy.
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