Proot sketches



Asynchronous algorithms:
analysis

Lemma A:

Let {z(k)}zeny S€QuUeNce of points produced by the
asynchronous algorithms | or ||

then,

D Yo IV (k) |* < o0,a.5;
2) Vf(xz(k)) — 0,a.s.



Asynchronous algorithms:
analysis

Lemma B:

Let {z(k)}reny S€Quence generated according to
Lemma A, with probabillity one

then,
f(z(k)) L f*

and there exists a subsequence converging
to a point In the solution set:

z(k) > y,y € X*



Proof of almost sure
CONVergence

Suppose dx+(z(k)) /0

Then, there is an € > 0 and a subsequencei1z(k;) jien
such that dx-(z(k;)) > e

As the function is coercive, continuous, and convex,
and whose gradient by Lemma A vanishes, then, by
Lemma B there is a subsequence of {z(ki) fien
converging to a point in X*



Sketch of proof for the almost
sure convergence to a point

Fixan z* € X~

Firstly, we prove {||z(k) — z*||*}re~ is convergent.
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Sketch of proof for the almost
sure convergence to a point

(x(k —1) —2*) TV f(z(k —1) = (x(k—=1) — )" (Vf(z(k - 1)) = Vf(z*)) >0
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As proved in Lemma A, the sum ) IV (@(k)[* < o0, a.s.

so we can invoke the result in Robbins, 1985 to state the
convergence of the squared distance.



