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Abstract

Articulatory speech synthesis has been used recently to em-
ulate in robots the speech production and learning capabil-
ities of human infants. Acoustic to motor maps are created
by babbling strategies, exploring the available motor de-
grees of freedom and creating associations to the listened
sounds. However, the physiology of the human vocal tract
contains many redundant parameters, which poses prob-
lems in sensor-motor map learning. In this paper we show
that vocalic speech requires, in fact, a very reduced num-
ber of parameters and, based on linguistic knowledge, pro-
pose a two-dimensional articulatory space. The proposed
space is generated through the convex combination of pro-
totype vowels representing extremal points in the articula-
tory parameters. We show experimentally, using a known
articulatory synthesizer, that the proposed model produc-
tion space is enough to generate most of the vowel acoustic
subspace, in terms of the Mel Cepstral Coefficients’ vari-
ance. This provides a low-dimensional and intuitive vowel
production space, suited for automatic production, recog-
nition and learning of speech in articulatory models.

Introduction

Developmental robotics aims at studying how knowledge
on human cognitive development can be exploited to al-
low robot to learn and adapt continuously to its morphol-
ogy and environment (Lungarella et al., 2003). The de-
velopment of speech production involves the exploration
of the vocal tract capabilities during the infants early de-
velopmental stages. Also for speech perception develop-
ment, the vocal tracts articulatory information may be of
fundamental importance. The Motor Theory of Speech
Perception (Liberman and Mattingly, 1985) supports that
the basic units of speech perception are the intended pho-
netic gestures of the speaker, represented in the brain as
invariant motor commands that call for movements of the
articulator. According to this theory, speech would be per-
ceived by inferring the articulatory shape of the vocal tract
from the acoustic signal, and performing recognition in the
motor space. The rationale for this approach comes from
the fact that motor commands, on the contrary of acoustic
signals, are invariant to the environmental conditions, thus
providing stable references for recognition.

⇤This work was supported by EU NEST Project 5010 - Con-
tact, and by Fundação para a Ciência e a Tecnologia (ISR/IST
plurianual funding) through the POS Conhecimento Program
that includes FEDER funds.

Initial experimental evidence for the importance of mo-
tor information in recognition tasks started with neuro-
physiological recordings in neurons of the pre-motor cor-
tex of primates, which led to the discovery of Mirror neu-
rons (Gallese et al., 1996). These neurons show spik-
ing activity both when the monkey executes and observes
a grasping movement. An experimental study, with a
robotic artifact, for the recognition of grasping gestures
(Lopes and Santos-Victor, 2005), showed drastic improve-
ments when recognition was based on the motor space
rather than the visual space. Mirror neurons are located
in the ventral premotor cortex, possibly the homologue
of Broca’s area in humans, which led to the speculation
that action recognition and language production share a
common system. Neuroimaging studies of the Broca’s re-
gion have recently supported this hypothesis in a joint ac-
tion recognition, language production and grasping task
(Hamzei et al., 2003).

Such a theory represents a novel paradigm for speech
perception but poses novel challenges since it requires
the availability of the agents’ motor signals and learn-
ing mechanisms for associating the motor and auditory
spaces. This can be achieved by exploratory learning
(spanning the agent’s motor space and observing the out-
come in auditory terms), or by imitative learning (listen-
ing to other agent’s produced sounds and trying to imi-
tate). But, depending on the dimensionality on the in-
volved spaces, this may be too complex to do in prac-
tice. A recent model for the control of speech produc-
tion in humans, the Diva Model (Guenther et al., 2006),
follows the motor theory paradigm and accounts for a
wide range of acoustic, kinematic and neuroimaging hu-
man data. Sensory-motor association is done locally by
computing the tangent spaces to the synthesis function at
some prototypical points. Mapping the whole articulatory
space would require a lot of exploratory learning which,
in high dimension spaces, becomes impractical.

In this paper we propose a methodology to create an ar-
ticulatory subspace in vowel production, allowing a com-
plete characterization of the speech synthesis function and
its properties, permitting an feasible online speech pro-
cessing and learning for robots as Chico and Chica (de-
picted in Figure 1). The method is motivated by results
of Linguistics and Phonetics, where the vowel space is
represented in motor terms in a 2D representation. We
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Figure 1: Humanoid robots must interact with each other
and with humans by spoken language. These are the
robotic platforms for the implementation of the algo-
rithm. Some work has been already done with these robots
in speech perception (vide (Hörnstein and Santos-Victor,
2007))

show that a 2-dimensional plane generated by the convex
combination of 3 extremal motor primitives is able to ade-
quately represent the vowel acoustic space. An additional
advantage is that, since the synthesis is based on two sole
articulatory parameters, it is easy and intuitive to graphi-
cally visualize the motor-to-acoustic manifold, allowing a
better characterization of its properties.

The paper is organized as follows. Section Linguis-
tic Motivation briefly presents the linguistics and pho-
netics results motivating our approach. Then, in Section
The Speech Production Model we describe the articula-
tory speech synthesizer used in this work and mathemat-
ically formulate the proposed articulatory dimensionality
reduction principle. We have performed several experi-
ments illustrating the validity of the approach, presented
in Section Experimental Results. Finally, Section Conclu-
sions present some conclusions and directions for future
research.

Linguistic Motivation

Since the beginning of Linguistics and Phonetics speech
sounds are classified mainly by articulatory parameters.
One of the pioneer works in defining where are vowels lo-
cated in the articulatory space was (Jones, 1917) in which
the mathematician and phonetician Daniel Jones first pro-
posed the Cardinal Vowel Diagram. This diagram was
subject of discussion and contributions from the phonet-
ics community and gave rise to the unanimously accepted
representation for oral vowels today.

The schematic in the International Phonetic Alphabet
(IPA) for oral vowels in Figure 2(a) shows the distribu-
tion of vocalic sounds in three dimensions relative to the
human vocal tract: height (vertical axis), backness (hori-
zontal axis) and roundedness (lip rounding)(Association,

(a) International Phonetic Alphabet chart for oral vowels.

(b) Main degrees of freedom represented in the
IPA chart. Figure from (Gray, 1918), with our
labels.

Figure 2: Articulatory degrees of freedom in the IPA chart
representation.

1999) as illustrated in Figure 2(b).
This choice of reference frame has roots in the physi-

ology of the phonatory system. The vocal tract configu-
ration for oral vowels is function of the tongue, the jaw
and the lips. The jaw and lips can have several degrees
of openness, the tongue can assume the articulatory po-
sitions in front, center or back of the oral cavity and the
lips can also change the vocal tract by rounding. So, these
three articulatory parameters are considered the main de-
grees of freedom of vocalic speech sounds, and represent
the directions that better explain the inter-vowel variation.
Nevertheless, there are other static articulatory parameters
that influence oral vowel quality, although they are not de-
terminant in most spoken languages.
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In most languages, rounded and unrounded vowels are
not minimal pairs, i.e., for the same articulatory config-
uration, roundedness alone does not create two different
phonological vowels. In addition to this, some studies
support that roundedness is perceived mainly by vision
in normal hearing-seeing subjects (Traunmüller, 2006),
For these reasons, the main articulatory dimensions con-
sidered for oral vocalic sounds in the human vocal tract
are the height and backness, motivating the approxima-
tion proposed in this paper — whatever the dimensional-
ity of the articulatory space we consider, there is an two-
dimensional subspace approximation that maps the vowel
system of most languages. The phones [i], [a] and [u] de-
fine a set of axis in the 2D plane of the articulatory parame-
ters of height and backness. These three vowels are called
corner vowels because they represent extreme placements
of the tongue forming the corners of a triangle in articula-
tory space. They also form a triangle in formant space (F1
– F2)(Titze, 1994). Therefore, we consider these phones
the extremal points in our model, and will produce the re-
maining ones by their convex combination. This will be
detailed in the following Section.

The Speech Production Model

To test and validate our proposal we use a well-known ar-
ticulatory speech synthesizer. This will allow us to do sys-
tematic tests and quantify the errors arising from the pro-
posed approximation. From realizations of the extremal
phones [i], [a] and [u], we generate a dense representa-
tion of the feasible acoustic signals. Then, to evaluate the
model, we compute the acoustic errors outside the feasible
set.

Articulatory Synthesizer

The synthesizer in use1 is a Matlab version of Shinji
Maeda’s Vocal Tract Calculator (VTCalcs) (Maeda, 1990).
The seven articulatory parameters are jaw, tongue, shape,
apex, lip ht (lip hight), lip pr, (lip protrusion), larynx.
Each one can assume any value in [�3;3]. The articu-
lator parameters are presumed independent, which is not
the case in the human vocal tract, leading sometimes to
improbable configurations of the articulators, producing a
non human sound or even no sound at all. In fact, after
a dense sampling of the six-dimensional hypercube and
feeding the samples to the synthesizer, as explained later
in this section, we realized that only 44.22% of the artic-
ulatory vectors generated sound, even if not a human-like
one.

The space of the articulators in VTCalcs is homographic
toR7, but to produce vocalic voiced sounds only 6 param-
eters are distinctive, since larynx controls the voicing.

The synthesizer’s output is a sound represented by its
temporal amplitude. To analyze the sound waveform
we use the Mel Frequency Cepstral Coefficients (MFCC)
(Davis and Mermelstein, 1980), using 12 coefficients.

1Available at the CNS Speech Lab webpage
http://speechlab.bu.edu/VTCalcs.php

Let vector v 2 V ⇢R6 represent a configuration of the
six-dimensional synthesizer’s articulatory space and a 2
A ⇢R12 be a vector of MFCC coefficients in the acoustic
space. We define the synthesis function as:

f : V 7! A , a = f (v) (1)

The function is not invertible — distinct articulatory
configurations may lead to very similar sounds (in particu-
lar, many configurations generate no sound at all). There-
fore, there is ambiguity in the identification of motor con-
figurations corresponding to the listened acoustic signals,
which may pose problems to motor-based learning and
recognition algorithms. To deal with this we define a sub-
space of V where the restriction of f to this subspace is
assumed invertible.

Dimensionality Reduction

We define a two-dimensional subspace of the full articu-
latory space, generated by a convex combination of vow-
els corresponding to extremal positions in the articulatory
space. There are two major arguments that support this
approach: a linguistic argument, and a experimental one.
As mentioned in Section Linguistic Motivation, according
to Linguistics and Phonetics knowledge, most of the vowel
production capabilities of the human vocal tract can be ex-
plained by two parameters related to the height and back-
ness of the articulators. The experimental argument is that
the Isomap, as discussed in Section Experimental Results,
shows that there is a good two dimensional approximation
to the image of f .

Considering the R6 prototypes for the extremal phones
[i],[a] and [u], it is possible to generate an affine space
with all the properties of a convex space. Let a0,u0 and
i0 2R6 be the chosen vowel prototypes for [i], [u] and [a]
and a two-dimensional vector p 2 V : p = (a,b), with a
and b real parameters. A convex combination of the given
points forming a 2-dimensional triangle, can be defined by
the function:

v : P ⇢R2 7!M ⇢ V
v(a,b) = a i0 +b a0 +(1�a�b) u0

where the input space P is defined as:

P = {(a,b) : a+b 1^a,b� 0}

Let M be the image of v, and denote it the Motor Space.
We define the function f2 as the restriction of the synthe-
sizer’s function f to the motor space, and call it’s image
A2

f2 : M 7! A2 ⇢ A . (2)

We will denote f2 as the Motor-Acoustic Map. The im-
age of this function will produce a 2D manifold A2 in the
MFCC acoustic space. Given the choice of the Motor-
Space, the properties of the used synthesizer (assuming
smoothness), and the dense sampling made on M , there
are strong reasons to believe that f2 is invertible. There-
fore, the inverse function of f2, f�1

2 is an acoustic to motor
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Figure 3: Vowel generation diagram.

map. A schematic representation of the proposed vowel
production model is shown in Figure 3.

The twelve-dimensional acoustic space was sampled
twice; one representing the span of the reduced articula-
tory space (using the motor map f2 from the motor space
M ), and another representing the span of the full artic-
ulatory space (from V ). We will show that the former
contains most of the information present in the latter.

To estimate the acoustic manifold A2 we have sampled
the parameter space P in steps of 0.01 in the a and b pa-
rameters, generating a discrete set of 5000 samples:

Pd = {pi, i = 1, . . . ,5000}

These samples were then used to generate a motor-space
sample set, using function v:

Md = {mi = v(mi), i = 1, . . . ,5000}

Thus a discrete sampling of the acoustic manifold was cre-
ated using the synthesizer’s function:

A2d = {ai = f2(mi), i = 1, . . . ,5000} (3)

The first three coordinates of the sampled acoustic mani-
fold are plotted in Figure 4.

Figure 4: Representation of the first three Mel coefficients
of the acoustic manifold.

The VTCalcs parameter’s six-dimensional V space was
also sampled in steps of 0.6 obtaining a grid with 10 sam-
ples per dimension. The point cloud has 106 samples:

Vd =
n

vi, i = 1, . . . ,106
o

Again, the synthesizer’s function was applied to the data;

Ad =
n

ai = f (vi), i = 1, . . . ,106
o

(4)

From this data it was removed the set of samples with
zero sound amplitude, retaining 44.22% of the initial num-
ber.

Experimental Results

To validate the proposed model we generate a set of test
vowels a

t and compute the error in acoustic space (MFCC
coefficients) between each one and its projection on the
manifold A2d . We also consider the residual variance in-
curred in a two dimensional approximation of A .

Since we do not have a analytic expression for the A2
surface, we use its sampled version defined by equation
(3). To compute the projection of each point we use the
nearest neighbor operator:

nn(at) =
⇢

ai 2 A2d : i = argmin
i

�

kai�a

tk2
 

�

(5)

The acoustic approximation error is then computed by:

Ea(at) = ka

t �nn(at)k2 (6)

The acoustic approximation error relative to the size of
the manifold is defined as

da(at) =
Ea(at)

max(length(A2d))
100% (7)

This measure is dimensionless and gives an indication
of how good is the approximation relative to the size of the
approximating surface. We consider acceptable to use the
maximum length of A2d to normalize the error because the
manifold’s shape is not too discrepant, as it is possible to
confirm in the Isomap embedding shown in Figure 5. This
embedding was determined with the Isomap algorithm
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Figure 5: Isomap embedding for the two-dimensional
manifold A2d .

as described in (Tenenbaum et al., 2000). The isomet-
ric feature mapping procedure or Isomap recovers low-
dimensional nonlinear structure in perceptual datasets. It
finds a space embedding for the data, preserving its in-
trinsic metrics, by conserving distances measured through
geodesic paths along the observation manifold. For A2d ,
Isomap created a reproduction, in the two-dimensional
space, of the pairwise distances measured in the acoustic
twelve-dimensional space.

Dimensionality reduction: validation

To validate the goodness of a two-dimensional approxima-
tion for the full space A , the dimensionality of the sampled
space Ad , defined in equation (4), was investigated.

Through Isomap we estimate that the dimensionality of
the image of f is 2, with a residual variance of 0.197, as
illustrated in Figure 6.

The global articulatory space M is six-dimensional,
thus the maximum possible dimensionality for A is six
because f is continuous. The residual variance of the data
for six or more dimensions can be interpreted with regard
to phenomena such as noise and numerical problems in
the MFCCs calculation.

This experimental result confirms that there is a good
two dimensional approximation to the overall acoustic
space A . The residual variance present in the 2D approx-
imation is partially due to the model simplification but its
slow decrease with dimensionality leads to the conclusion
that it is caused mainly by non informative phenomena.

Vowel prototypes: appropriateness

To investigate the performance of the approximating space
with speech sounds of real languages, some experiments
have been conducted with synthesized prototypes of sev-
eral languages. Those prototypes may lie outside the mo-

Figure 6: The Isomap algorithm provides the residual vari-
ance of the fit to the model’s dimensionality. The greatest
decrease in variance happens from one to two dimensions
of the manifold representing the global acoustic space A .

tor space M because there are many redundant articula-
tory configurations that generate the same vocalic sound.
We want to show here that M is complete, i.e. it contains
a configuration generating an (almost) identical sound.

Some prototype vowels used in the tests are included
in the VTCalcs matlab package and are preexistent to the
experiment; the other sets were constructed by us and val-
idated by naive native speakers. The speech sounds inten-
sity, fundamental frequency and duration were kept con-
stant so to validate strictly the model for vocal tract con-
figuration.

In the VTCalcs package there are eleven prototypes for
oral vowels which are found outside the two-dimensional
polygon M . They were used to evaluate the amount of er-
ror introduced in the two-dimensional approximation. The
error was measured as described above, and the results are
shown in Table 1. The oral vowels from two very distinct
european languages were also used for the same purpose:
vowels from Portuguese, an indo-european, romanic lan-
guage, and vowels from Finnish, a finno-ungric language.
Nine Portuguese prototype vowels were used. The errors
are shown in Table 2. From Finnish, the eight short vowels
were investigated, with results that can be seen in Table 3.

The sample mean over the percent error da(at) is 2.95%
in the portuguese vowels set, 3.87% in the finnish vowels,
and 2.23% in the VTCalcs set. The standard deviation is
2.22%, 2.81% and 2.02% in the portuguese, finnish and
VTCalcs sets, respectively. The maximum value for the
percent error is 9.17% in the finnish dataset.

So, in terms of the error, the two-dimensional convex
space performs well with linguistically relevant synthe-
sized speech sounds. Acoustically, the prototypes and the
projections are hardly distinguishable. Inverting the pro-
jected points through f�1

2 back to the two dimensional mo-
tor space M , and plotting the result (Figure 7) makes it

Proc. LangRo'2007 
978-972-96895-2-9

125



Table 1: Approximation error for the VTCalcs prototypes.

vowel symbol Ea(at) da(at)%
1 iy 0.40149 1.6295
2 ey 0.17829 0.72361
3 eh 0.1522 0.61771
4 ah 0.48633 1.9738
5 aa 0.24348 0.98818
6 ao 0.51035 2.0713
7 oh 0.58974 2.3935
8 uw 1.6111 6.5389
9 iw 1.4057 5.7053

10 ew 0.29547 1.1992
11 oe 0.18119 0.73536

Table 2: Approximation error for the portuguese proto-
types.

vowel IPA symbol Ea(at) da(at)%
1 1 0.13425 0.54487
2 5 1.2335 5.0061
3 E 0.37961 1.5406
4 O 0.50396 2.0453
5 e 0.61689 2.5037
6 o 1.4141 5.739
7 a 0.24161 0.98057
8 u 1.6211 6.5792
9 i 0.39633 1.6085

Figure 7: The inverse mapping of the vowel prototypes.
The Portuguese vowels are numbered as in Table 2, and
the Finnish as in Table 3. Some landmark IPA phonetic
symbols are also represented.

is possible to extract some similarities between the IPA
openness and backness and the motor space a and b pa-
rameters. The hypothesis that the restrictions in the con-

Table 3: Approximation error for the finnish prototypes.

vowel IPA symbol Ea(at) da(at)%
1 i 0.28764 1.1674
2 øfl 0.7918 3.2135
3 æ 0.99949 4.0564
4 ofl 0.87593 3.555
5 A 1.6373 6.645
6 u 0.5645 2.291
7 efl 0.21044 0.85406
8 y 2.2605 9.1741

struction of M can be used to simulate physiological con-
straints, is corroborated by these experimental results.

Conclusions

In this paper we have proposed a two dimensional param-
eterization for the motor space of an available speech syn-
thesizer, VTCalcs. The approach is able to generate acous-
tic signals that represent well all the vowels produced by
the synthesizer. Namely, the euclidean error relative to the
size of the two dimensional approximating surface has an
average of about 3% and a maximum of 9.17% in the used
test sets, and the Isomap analysis of the residual variance
versus the dimensionality of the approximating manifold
confirms the validity of a two-dimensional model for the
overall acoustic space.

The proposed model is important by two main reasons:

• The motor space is two-dimensional, thus can be
densely sampled with low computational requirements.
This simplifies creation and representation of the motor
acoustic map.

• The restriction of the synthesizer’s function to the pro-
posed motor-space is invertible, allowing to map signals
back from the acoustic to motor coordinates.

In future work we will apply the proposed model in the
early stages of autonomous speech learning of humanoid
robots. The fact that this space has low dimensionality
facilitates initial bootstrapping. We will also consider the
problem of Mel Coefficients robustness and normalization
procedures on the signals.

Since the acoustic manifold appears to be smooth, we
will provide it with a differential structure and use it for
local optimization, e.g. for guided exploratory learning in
imitation tasks. In the long term we intend to apply the
proposed model in the early stages of autonomous speech
learning of an humanoid robot. The fact that this space has
a dimensionality of two, facilitates its bootstrapping role
in autonomously to produce and recognize speech. Once
the system learns a good initial model of the motor-audio
map using the low dimensional manifold, it can expand
the available degrees of freedom and refine its production
capabilities. As in the ontogenesis of humans infants, such
a developmental strategy is more likely to succeed than
learning from scratch with the whole system’s complexity.
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