

Distributed and robust network localization

Cláudia Soares

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

 \triangleleft

 \bigcirc

Measurements with added white Gaussian noise

Measurements with added white Gaussian noise

$$r_{ik} = \|x_i^\star - a_k\| + \mathcal{N}(0, \sigma^2)$$

$$r_{ik} = \|x_i^\star - a_k\| + \mathcal{N}(0, \sigma^2)$$

Simple and fast convex relaxation method

Under synchronous and asynchronous time models

minimize
$$\sum_{i \sim j} \frac{1}{2} \left(\|x_i - x_j\| - d_{ij} \right)^2 + \sum_{i} \sum_{k \in \mathcal{A}_i} \frac{1}{2} \left(\|x_i - a_k\| - r_{ik} \right)^2$$

Convex relaxation

$$\underset{x}{\text{minimize }} \sum_{i \sim j} \frac{1}{2} \left(\|x_i - x_j\| - d_{ij} \right)^2 + \sum_{i} \sum_{k \in \mathcal{A}_i} \frac{1}{2} \left(\|x_i - a_k\| - r_{ik} \right)^2$$

$$\underbrace{(\|x_i - x_j\| - d_{ij})^2}_{d_{S_{ij}}^2(x_i - x_j)} = \underset{y}{\operatorname{minimize}} \|x_i - x_j - y\|^2$$
subject to $\|y\| = d_{ij}$

minimize
$$\sum_{i \sim j} \frac{1}{2} \left(\|x_i - x_j\| - d_{ij} \right)^2 + \sum_{i} \sum_{k \in \mathcal{A}_i} \frac{1}{2} \left(\|x_i - a_k\| - r_{ik} \right)^2$$

$$\underbrace{(\|x_i - x_j\| - d_{ij})^2}_{d_{S_{ij}}^2(x_i - x_j)} = \underset{y}{\operatorname{minimize}} \|x_i - x_j - y\|^2$$
subject to $\|y\| = d_{ij}$

 $d_{B_{ij}}^2(x_i - x_j) = \underset{y}{\text{minimize }} \|x_i - x_j - y\|^2$ subject to $\|y\| \le d_{ij}$

$$d_{B_{ij}}^2(x_i - x_j) = \underset{y}{\text{minimize }} \|x_i - x_j - y\|^2$$

subject to $\|y\| \le d_{ij}$

Convex relaxation: experimental results

$$\text{RMSE} = \sqrt{\frac{1}{n} \left(\frac{1}{M} \sum_{m=1}^{M} \|\hat{x}(m) - x^{\star}\|^2\right)}$$

Oguz-Ekim, *et al.,* TSP, 2011 Simonetto & Leus, TSP, 2014

It turns out that our function is:

It turns out that our function is:

1. Convex;

It turns out that our function is:

- 1. Convex;
- 2. Differentiable;

It turns out that our function is:

- 1. Convex;
- 2. Differentiable;
- 3. The gradient is Lipschitz continuous.

It turns out that our function is:

- 1. Convex;
- 2. Differentiable;
- 3. The gradient is Lipschitz continuous.

Gradient method with optimal convergence rate

The gradient is naturally distributed!

The gradient is naturally distributed!

The gradient is naturally distributed!

The gradient is naturally distributed!

$$\nabla \hat{f}(x) = \begin{bmatrix} x_1 - x_2 + P_{B_{12}}(x_1 - x_2) \\ 2x_2 - x_1 - x_3 - P_{B_{12}}(x_1 - x_2) + P_{B_{23}}(x_2 - x_3) \\ x_3 - x_2 - P_{B_{23}}(x_2 - x_3) \end{bmatrix}$$

The gradient is naturally distributed!

$$\nabla \hat{f}(x) = \begin{bmatrix} x_1 - x_2 + P_{B_{12}}(x_1 - x_2) \\ 2x_2 - x_1 - x_3 - P_{B_{12}}(x_1 - x_2) + P_{B_{23}}(x_2 - x_3) \\ x_3 - x_2 - P_{B_{23}}(x_2 - x_3) \end{bmatrix}$$

The gradient is naturally distributed!

$$\nabla \hat{f}(x) = \begin{bmatrix} x_1 + x_2 + P_{B_{12}}(x_1 - x_2) \\ 2x_2 - x_1 - x_3 - P_{B_{12}}(x_1 - x_2) + P_{B_{23}}(x_2 - x_3) \\ x_3 - x_2 - P_{B_{23}}(x_2 - x_3) \end{bmatrix}$$

The gradient is naturally distributed!

$$\nabla \hat{f}(x) = \begin{bmatrix} x_1 - x_2 + P_{B_{12}}(x_1 - x_2) \\ 2x_2 - x_1 - x_3 - P_{B_{12}}(x_1 - x_2) + P_{B_{23}}(x_2 - x_3) \\ x_3 - x_2 - P_{B_{23}}(x_2 - x_3) \end{bmatrix}$$

Experimental results

Number of communications per sensorESDP methodProposed method216002000

Asynchronous time model

 $T_i \sim PoissonProcess(\lambda)$

$$\{Z_i^{k+1} - Z_i^k\} \sim Exp(\lambda)$$

Asynchronous time model

 $T_i \sim PoissonProcess(\lambda)$

 $\{Z_i^{k+1} - Z_i^k\} \sim Exp(\lambda)$

$T_i \sim PoissonProcess(\lambda)$

 $\{Z_i^{k+1} - Z_i^k\} \sim Exp(\lambda)$

 $T_i \sim PoissonProcess(\lambda)$

 $\{Z_i^{k+1} - Z_i^k\} \sim Exp(\lambda)$

 $T \sim PoissonProcess(N\lambda)$

 $T_i \sim PoissonProcess(\lambda)$

 $\{Z_i^{k+1} - Z_i^k\} \sim Exp(\lambda)$

 $T \sim PoissonProcess(N\lambda)$

 $\{Z^{k+1} - Z^k\} \sim Exp(N\lambda)$

 $\xi_k \in \mathcal{V}$ $\xi_k \sim Uniform(\{1, \cdots, N\})$

Asynchronous time algorithms

Algorithm I: The cost is minimized along one of the coordinates at a time k

Algorithm II: One gradient step

Asynchronous time algorithms

Experimental results

Main contributions

- Optimal gradient distributed algorithm in a synchronous time model to minimize the convexified function;
- Asynchronous randomized algorithm, with proof of almost sure convergence, and expected number of iterations to achieve a desired accuracy;
- Extension for range and angle measurements (submitted to the TSP).

ML localization

Imagine you have a rough idea of where your nodes are located, but you need more precision...

minimize
$$\sum_{i \sim j} \frac{1}{2} \left(\|x_i - x_j\| - d_{ij} \right)^2 + \sum_{i} \sum_{k \in \mathcal{A}_i} \frac{1}{2} \left(\|x_i - a_k\| - r_{ik} \right)^2$$

$$S_{ij}$$

$$x_i - x_j$$

$$d_{ij}$$

$$d_{S_{ij}}(x_i - x_j)$$

$$\underbrace{(\|x_i - x_j\| - d_{ij})^2}_{d_{S_{ij}}^2(x_i - x_j)} = \underset{y}{\text{minimize }} \|x_i - x_j - y\|^2$$
subject to $\|y\| = d_{ij}$

Nonconvexities on the constraints

$$\underset{x_i, y_{ij}, w_{ik}}{\text{minimize}} \sum_{i \sim j} \frac{1}{2} \|x_i - x_j - y_{ij}\|^2 + \sum_i \sum_{k \in \mathcal{A}_i} \frac{1}{2} \|x_i - a_k - w_{ik}\|^2$$

subject to $\|y_{ij}\| = d_{ij}, \|w_{ik}\| = r_{ik}$

Recognize a quadratic cost

$$\underset{x_i, y_{ij}, w_{ik}}{\text{minimize}} \sum_{i \sim j} \frac{1}{2} \|x_i - x_j - y_{ij}\|^2 + \sum_i \sum_{k \in \mathcal{A}_i} \frac{1}{2} \|x_i - a_k - w_{ik}\|^2$$
subject to $\|y_{ij}\| = d_{ij}, \|w_{ik}\| = r_{ik}$

minimize
$$f(z) = \frac{1}{2}z^T M z - b^T z$$

subject to $z \in \mathbb{Z}$

Recognize a quadratic cost

$$\underset{x_i, y_{ij}, w_{ik}}{\text{minimize}} \sum_{i \sim j} \frac{1}{2} \|x_i - x_j - y_{ij}\|^2 + \sum_i \sum_{k \in \mathcal{A}_i} \frac{1}{2} \|x_i - a_k - w_{ik}\|^2$$
subject to $\|y_{ij}\| = d_{ij}, \|w_{ik}\| = r_{ik}$

minimize
$$f(z) = \frac{1}{2}z^T M z - b^T z$$

subject to $z \in \mathbb{Z}$

$$\mathcal{Z} = \{ z = (x, y, w) : \|y_{ij}\| = d_{ij}, i \sim j, \|w_{ik}\| = r_{ik}, i \in \mathcal{V}, k \in \mathcal{A}_i \}$$

Recognize a quadratic cost

$$\underset{x_{i}, y_{ij}, w_{ik}}{\text{minimize}} \sum_{i \sim j} \frac{1}{2} \|x_{i} - x_{j} - y_{ij}\|^{2} + \sum_{i} \sum_{k \in \mathcal{A}_{i}} \frac{1}{2} \|x_{i} - a_{k} - w_{ik}\|^{2}$$
subject to $\|y_{ij}\| = d_{ij}, \|w_{ik}\| = r_{ik}$

$$\mathcal{Z} = \{ z = (x, y, w) : \|y_{ij}\| = d_{ij}, i \sim j, \|w_{ik}\| = r_{ik}, i \in \mathcal{V}, k \in \mathcal{A}_i \}$$

minimize $f(z) = \frac{1}{2}z^T M z - b^T z$ subject to $z \in \mathbb{Z}$

 $\begin{array}{l} \underset{z}{\text{minimize } f(z) = \frac{1}{2} z^T M z - b^T z}\\ \text{subject to } z \in \mathcal{Z} \end{array}$ $f(z) \leq f(z^t) + \left\langle \nabla f(z^t), z - z^t \right\rangle + \frac{L}{2} \left\| z - z^t \right\|^2 \end{array}$

Diagonal quadratic term

$$f(z) \le f(z^t) + \left\langle \nabla f(z^t), z - z^t \right\rangle + \frac{L}{2} \left\| z - z^t \right\|^2$$

 $\begin{array}{l} \text{Diagonal}\\ \text{quadratic}\\ \text{term} \end{array}$ $f(z) \leq f(z^t) + \left< \nabla f(z^t), z - z^t \right> + \frac{L}{2} \left\| z - z^t \right\|^2 \end{array}$

Majorizer decouples the variables and allows for a distributed solution!

Nice properties

/M/

computations

28

NM

point

Experimental results

Noise standard deviation	Proposed method	Gradient descent with Barzilai-Borwain steps
0.01	0.0053	0.0059
0.05	0.0143	0.0154
0.10	0.0210	0.0221

MPE
$$= \frac{1}{M} \sum_{m=1}^{M} \|\hat{x}(m) - x^{\star}\|$$

In a square with 1 Km sides, we improve the accuracy of the benchmark by about 1m per sensor, even under high power noise.

Experimental results

Our proposed method improves the state of the art method by about 60 cm in mean positioning error per sensor, delivering a no surprises, stable progression of the error of the estimates.

Main contributions

- No parameter tuning;
- Stable algorithm: the cost value decreases at each iteration;
- Simple to implement, distributed, and efficient algorithm for the nonconvex ML estimator.

IEEE GlobalSIP, 2014

With more computations we can do better

Nonconvex term $\phi_d(u) = (||u|| - d)^2$

Nonconvex term $\phi_d(u) = (||u|| - d)^2$

Nonconvex term $\phi_d(u) = (||u|| - d)^2$ Best quadratic majorizer $Q_d(u|v) = ||u||^2 + d^2 - 2d \frac{v^\top u}{||v||}$

The proposed majorizer

The proposed majorizer

Tighter majorizer

The proposed majorizer $\Phi_d(u|v) = \max \{g_d(u), h_d(v^\top u/||v|| - d)\}$

Tighter majorizer

The proposed majorizer $\Phi_d(u|v) = \max \{g_d(u), h_d(v^\top u/||v|| - d)\}$

Tighter majorizer

The proposed majorizer $\Phi_d(u|v) = \max\{g_d(u), h_d(v^\top u/||v|| - d)\}$

Experimental results on majorization function quality

Main contributions

- A tight convex majorization function for the ML problem;
- Useful for other contexts (e.g. molecular geometry);
- A distributed method to solve each resulting MM problem.

To be submitted

Robust network localization

 $f_Q(z) = (\|z\| - d)^2$

 $f_Q(z) = (||z|| - d)^2 \qquad \qquad f_{|\cdot|}(z) = |||z|| - d|$

 $f_Q(z) = (||z|| - d)^2 \qquad f_{|\cdot|}(z) = |||z|| - d| \qquad f_R(z) = h_R(||z|| - d)$

Convex underestimators

 $\hat{f}(x) = f(\max\{0, (\|z\| - d)\})$

Convex underestimators

 $\hat{f}(x) = f(\max\{0, (\|z\| - d)\})$

Optimality gap

Optimality gap

44

Experimental results

Experimental results

Main contributions

- General purpose approach: no outlier model is assumed;
- Tightness analysis of the convex underestimator;
- Novel convex formulation resilient to data outliers;
- Distributed synchronous algorithm with optimal conference rate;
- Distributed asynchronous algorithm with proven convergence.

