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Abstract Being probably one of the oldest decision problems in queuing theory, the
single-server scheduling problem continues to be a challenging one. The original for-
mulations considered linear costs, and the resulting policy is puzzling in many ways.
The main one is that, either for preemptive or nonpreemptive problems, it results in a
priority ordering of the different classes of customers being served that is insensitive
to the individual load each class imposes on the server and insensitive to the overall
load the server experiences. This policy is known as the cμ-rule.

We claim and show that for convex costs, the optimal policy depends on the in-
dividual loads. Therefore, there is a need for an alternative generalization of the
cμ-rule. The main feature of our generalization consists on first-order differences
of the single stage cost function, rather than on its derivatives. The resulting policy is
able to reach near optimal performances and is a function of the individual loads.

Keywords Scheduling · Production control · Queuing systems · Dynamic
priorities · cμ-Rule

Mathematics Subject Classification 90B22 · 90C39 · 90C40

1 Introduction

The setting for the problem we address consists of a single server that can process
different classes of customers, which arrive from the outside world and queue up in
front of it, waiting for service. There will be one queue per class, and each queue is
served on a first-come-first-serve basis. The arrival process is noncontrollable, and
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each class requires different processing times that, in general, are assumed random
and a priori unknown to the server. Whenever the server concludes a service, it will
have to decide which of the classes to serve next, out of the ones which have cus-
tomers present. It is assumed that there is a cost associated with each queue that is
proportional to the number of customers in that queue or, conversely, proportional
to the waiting time of the customers. So, the growing of the queues constitutes the
incentive for the server to work.

In general, considering that there are xi(t) customers of class i for i = 1,2, . . . ,K ,
at the time instant t , the single-stage cost for class i can be defined to be Ci : N → R

such that Ci(xi) is nondecreasing in x and convex for x ∈ R. Here we dropped the
explicit time dependence for convenience. Furthermore, we will be interested in the
cases where these functions are convex. For a finite-time problem, under some de-
cision policy, one may take the expected value over all possible trajectories of the
integral over time of the single-stage cost functions sum for all classes. If the length
of the trajectory is unbounded, one may choose to take a series of fixed-length time
average of that expected integral with growing length, i.e., infinite-horizon average
costs, or take the expected integral of the discounted sum of the single-stage costs,
i.e., infinite-horizon discounted costs. That is,

lim
T →∞

1

T
E

[∫ T

0
C(x)dx

]
(1)

or

E

[∫ ∞

0
e−βtC(x) dx

]
. (2)

An optimal policy will be the set of decisions, a function of the k-tuple
(x1, x2, . . . , xk) at any decision point, that for each of the above cases will achieve
the minimal cost.

If the service can be preempted and later resumed for any class, there will be two
decision points, the completion of a service and the occurrence of an arrival. For the
nonpreemptive case, only a service conclusion is a decision point. The only exception
to this is when an arrival occurs while the server is idle because, prior to the arrival
and upon conclusion of the last service, there were no customers waiting for service.
We also focus on the case where there is no cost associated with activating the server,
i.e., no warm up cost, and no cost associated with switching from a class to another,
i.e., no set up, or change over, cost.

The classic approach to this problem assumed that the single-stage costs are lin-
ear, e.g., Ci(xi) = cixi . When such is the case, for both infinite cost versions, in
general, the optimal policy is known as the cμ-rule. That is, assuming that the aver-
age processing time for class i is 1/μi , the optimal policy is such that at any decision
point, the server will engage service with the head of the nonempty queue of the class
which possesses the highest value of ciμi . An easy way to interpret intuitively this
rule is to consider that if all the processing rates are the same, priority should be
given to the most costly queue, or to consider that if all the single-stage costs are the
same, priority should be awarded to the queue with the shortest average processing
time.
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The oldest known reference to a version of this problem dates back to 1956. It is
considered that Smith [19] was the first to suggest the optimality of the cμ-rule. His
setting was deterministic and static. That is, the processing times are fixed for each
class (deterministic), and all the customers are present at time 0, and no arrivals are
allowed after that (static). Outside the queuing theory community, in the scheduling
theory community, this is also referred to as the WSPT (Weighted Shortest Process-
ing Time) rule. Later, Cox and Smith [8] showed the cμ-rule to be optimal for a
stochastic, dynamic environment with arbitrary time horizon. Their setting was that
of a multiclass M/G/1 queue. They considered both preemptive and nonpreemp-
tive cases. Naturally, it came with not much surprise that this rule is also optimal for
stochastic and static settings; Pinedo [17] and Righter [18] are examples where such
result can be found.

The amount of extensions and variants of the problem that have been considered
after Cox and Smith is quite significant. For more references on related work, we refer
the reader to the literature review presented in [20]. We only consider a sample of the
ones that focus on the simpler problem, i.e., no feedback for instance. Out of those,
Harrison [13] considered a multiclass M/G/1 with the added feature that there are
also rewards for each service completion. His policy is slightly more complex than
the cμ-rule, as his β-optimal, β being the discount parameter of a continuous-time
problem, specifies a priority ranking also, but some classes may never be served.
The ranking is a function of β , which is not the case of the original problem. Also,
the ranking is not defined by the simple cμ-rule. We believe that these differences
are explained by the inclusion of rewards, which distorts the original problem sig-
nificantly. For the case of discrete-time problems, one example of optimality of the
cμ-rule was presented by Buyukkoc, Varaiya, and Walrand [6] for multiclass sys-
tems under arbitrary arrival processes, geometric service times, and preemptive disci-
pline. This followed the work of Baras, Dorsey, and Makowski [4], which established
the optimality of the cμ-rule, considering only two classes of customers, with arbi-
trary arrival processes and service completions generated by independent Bernoulli
streams.

One of the most intriguing features of this problem is the fact that the arrival rates
play no role on the optimal policy structure in all the above-mentioned variants under
linear costs. Defining as λi the average arrival rate for class i and defining as indi-
vidual load of class i the ratio λi/μi , the fact that each class may have a higher or
lower individual load is of no consequence on the optimal policy. This raises, in some
sense, an issue of fairness. Suppose that there are only two classes of customers and
the lower priority class has an individual load close to 10 %, say λ1 = 1 and μ1 = 10,
while the high priority class has an individual load close to 90 % (heavy traffic), say
λ2 = 90 and μ2 = 100, for instance costs are similar, but processing rates are differ-
ent. A customer of the nonpriority class may see many customers of the priority class
being served first, despite the fact that they may have arrived after. A consequence of
this is a high variance of the waiting time for the nonpriority customers. Naturally,
the nonpriority customers have more difficulty estimating when will they leave the
system, and, while waiting, each arrival they see occurring for the priority queue has
to be a source of disappointment. The linear cost model tells us that the marginal pa-
tience of the customers is always the same no matter how much time they have been
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waiting. That is, the willingness to wait an extra time unit is the same after a handful
of services that it was upon arrival. Whoever has stood in a nonpriority queue knows
that this is not true.

One natural consequence of customer’s impatience is a high abandonment rate, or
worse. Naturally, one could argue that the abandonment behavior could be incorpo-
rated in the model and the appropriate policy could be afterwards derived. Although
our paper will take a different approach by considering convex costs, an instance of
work incorporating abandonments is [14], where an asymptotically optimal policy is
derived. More recent examples of asymptotically optimal policies where abandon-
ment is included in the model are presented in [2] and [3]. Optimal policies are also
studied in [3], e.g., a two-user optimal policy is given, where indices are not separa-
ble anymore, and in [11], where a sufficient condition for optimality of the cμ-rule is
given.

Another interesting feature of the linear cost problem is the fact that the optimal
policy, cμ-rule, is intrinsically myopic. That is, what appears to be the best short-
term decision agrees with the long-term best decision. Associated with this, given
its simple structure, it appears that the processing rate should be multiplied by the
derivative of the cost function when the single-stage costs are linear.

The first work on this problem that addresses the concern of fairness is that of Van
Mieghem [20], who considers the single-stage cost to be a convex function of the
delay for multiclass single-server systems. Then, he proposes to use the generalized
cμ-rule, where c is replaced by the first derivative with respect to delay of the single-
stage cost function. By performing a heavy traffic analysis, the author shows that this
generalized rule is asymptotically optimal, in the sense that the cost achieved under
this policy approaches the cost of the optimal policy as the sum of the individual
loads approaches unity. Following this work, Mandelbaum and Stolyar [16] extend
the analysis to a case where the single server is replaced by a pool of multiskilled
servers that work in parallel, considering convex single-stage costs as functions of
the individual queue lengths. They also establish the asymptotic optimality of the
generalized cμ-rule by means of conducting a heavy traffic analysis. The maximum
pressure policies of [9, 10] for general stochastic processing networks produce ex-
actly Van Mieghem’s generalized cμ-rule for single-server problems.

While agreeing with the inclusion of convex costs to better reflect the marginal
patience of the waiting customers, we believe that there are two points on the gen-
eralization that deserve further discussion. The first point concerns using the deriva-
tive of the single-stage cost function to generalize the cμ-rule. Firstly, we stress that
each Ci : N → R and one can construct many convex such functions which have
no derivative when assuming their domain to be the set of real numbers. Second
and probably the most relevant issue is that one can formulate this as a continuous-
time Markov Decision Problem, assuming Poisson arrivals, exponentially distributed
service times, and apply Dynamic Programming to compute the optimal policy, for
instance, through a policy iteration algorithm. Given the fact that the state space is a
k-tuple of integers and that through its successive iterations the algorithm only pro-
duces valid state space transitions, one should wonder how would it be possible to
converge to derivatives. In other words, is the simplicity of the linear costs hiding
something else?
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The second point concerns the fact that the individual loads are still not playing
any role on the structure of the optimal or suboptimal policies, which is intriguing,
to say the least. One exception to this is the work of [1, 12], where the authors de-
rive an index heuristic for convex costs by formulating a restless-bandit problem.
Their approach considers preemptive service [1] or nonpreemptive service [12], and
the resulting index is a function of the individual arrival rates. In both cases it only
considers the cost gain of reducing the queue length of the served class.

It is the purpose of the work presented here to further our knowledge on this prob-
lem, and to accomplish this, we will show that the optimal policy does depend on the
individual loads and that a better generalization of the cμ-rule relies on first-order
differences of the single-stage cost function. Our generalization includes also the in-
fluence of cost increases when a queue gets an extra customer while being served, not
just the cost reduction due to a departing customer, as in [1, 12]. On this last finding,
note that for linear costs, they are exactly the same, thus justifying that the linear
costs may be hiding a more interesting feature.

Naturally, these findings will have to be reconciled with [10, 16, 20], as our work
does not question the validity of the results there reported. In fact, the asymptotical
optimality of their generalized cμ-rule, which we will term as the Gcμ-rule, does
not conflict with the fact that, in general, we get costs no further from the optimal
costs with our proposed suboptimal policies and even achieve better results than the
Gcμ-rule.

In what follows, we will first formulate an MDP for a two-class single server with
convex single-stage costs in Sect. 2. The restriction to two classes is done due to the
fact that we intend to numerically compute the optimal policy and do not want to be
overwhelmed by the curse of dimensionality [5]. Also, in Sect. 2, we will address the
issue of state representation of MDPs that constitutes a generalization of the com-
monly accepted standard form. Then, in Sect. 3, we establish a set of very interesting
results for particular instances of the single-server scheduling problem that will help
us identifying how should the cμ-rule be generalized. These results are valid per se,
as some of the systems considered can occur in real life. Following this, in Sect. 4, we
present some numerical examples that illustrate that the optimal policy is a function
of the individual loads. Inspired by the results of Sect. 3, we propose a generalization
of the cμ-rule and present numerical data to support our claim that it is possible to
have a better generalization than the existing ones. Finally, we conclude in Sect. 5,
establishing a bridge between our work and previous work, and pointing directions
for further research.

2 The model

To avoid excessive clutter, we are going to restrict the derivation to a system serv-
ing only two classes of customers. The extension of the model to more queues is
straightforward. Let λi be the average arrival rate for class i for i = 1,2, and assume
that customers arrive according to independent Poisson processes. The processing
requirements of each customer are assumed to be statistically the same within each
class, with service times being exponentially distributed with mean 1/μi . Each ser-
vice duration is independent of previous service durations and independent of the
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number of customers waiting in the system. Once started, a service may or may not
be preempted and later resumed with no penalty. We will address both cases where
preemption is and is not allowed, because there are some issues worth discussion
concerning the later. Upon conclusion of a service, the customer being served leaves
the system.

We define as X(t) = [x1(t) x2(t)]′ the amount of customers of both classes present
in the system at time t . Given that there is only one server, it may be the case that
either a customer of class 1 or of class 2 is being served when X(t) is in the positive
quadrant, while all the others are waiting. Also, we assume idleness as a possible
decision for the server, although it will be seen later that the server never chooses
to remain idle if there is at least one customer in one of the two queues. Given the
fact that customers in the same queue are undistinguishable, each queue is served by
the order of their arrival to the system, although customers of a given queue may be
served prior to customers of the other queue that arrived earlier to the system.

Our state description will also have to include the state of the server when we
consider the no-preemption model. Therefore, we define as Z(t) = [X′(t) y(t)]′ the
state of the system, where y(t) ∈ {0,1,2} is the server state at time t . If y(t) = 0, the
server is idle, or serving a customer of class i if y(t) = i.

We will consider an infinite-horizon discounted cost criterion with discount pa-
rameter β > 0 and will be interested in obtaining a stationary Markov policy. A pol-
icy is defined as a function that maps the state into one of the three options for the
server state. If the decision is not a function of the time instant, the policy is said to
be stationary.

With the instantaneous cost rate defined earlier, we can define the expected present
value of future costs, under a policy π , as follows:

J
(
Z(0),π

) = Eπ
Z(0)

{∫ ∞

0
e−βtC

(
Z(t)

)
dt

}
, (3)

where Eπ
Z(0)

{·} denotes the expectation with respect to the probability distribution of
the path space of Z that corresponds to initial state Z(0) and control policy π , and
C(Z(t)) = C1(x1(t)) + C2(x2(t)). We then define the value function as

V
(
Z(0)

) = inf
π∈Π

J
(
Z(0),π

)
for Z(0) ∈ S, (4)

where S defines the set of all possible states, and Π defines the set of all station-
ary policies. We will use V (X(0)) in the preemptive case and V (X(0), y(0)) in the
nonpreemptive case. In what follows, we will first detail the preemptive case fol-
lowed by the detail of the nonpreemptive case. Afterwards, we compare the equa-
tions and show that the standard formulation of MDP needs to be changed to ac-
commodate systems where the server state needs to be captured in the overall state
description.

2.1 Detail for the preemptive case

When preemption is allowed, any service conclusion event and any arrival event con-
stitute decision epochs, i.e., will trigger the decision maker. For the first type of events
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the server will have to decide which of the queues to serve if both of them have cus-
tomers or to remain idle. In the event of an arrival while the server is busy, it has
to decide if it should switch to the class of the newly arrived customer or continue
with the customer with which it has engaged previously. Under these circumstances,
there is no need to explicitly include the server state for stationary policies. Given
the fact that the policy produces always the same decision for the same values of xi ,
knowing the queue lengths is enough to know what are the feasible transitions out of
that state.

Because we are dealing with a continuous-time Markov process, we resort to the
uniformization procedure to convert it into a discrete-time problem. Defining the uni-
form rate as γ ≥ λ1 + λ2 + μ1 + μ2 ≥ 0, α = γ /(β + γ ) and omitting the explicit
time dependency to avoid an excessively cumbersome notation, the value iteration
algorithm [5] for this problem becomes

Vk+1(X) = 1

β + γ

[
C1(x1) + C2(x2)

]

+ α min
{
Ṽk

(
X,u | u = 0

)
, Ṽk

(
X,u | u = 1

)
, Ṽk

(
X,u | u = 2

)}
, (5)

where u represents the control decision, V0(X) = 0 for all X ∈ S, with

Ṽk

(
X,u | u = 0

) = λ1

γ
Vk(X + e1) + λ2

γ
Vk(X + e2) +

(
1 − λ1 + λ2

γ

)
Vk(X),

Ṽk

(
X,u | u = 1

) = λ1

γ
Vk(X + e1) + λ2

γ
Vk(X + e2) + μ1

γ
Vk(X − e1)

+
(

1 − λ1 + λ2 + μ1

γ

)
Vk(X),

Ṽk

(
X,u | u = 2

) = λ1

γ
Vk(X + e1) + λ2

γ
Vk(X + e2) + μ2

γ
Vk(X − e2)

+
(

1 − λ1 + λ2 + μ2

γ

)
Vk(X),

(6)

with ei the unit vector along direction i. We omit the details concerning trans-
forming (3) into (5) and (6). The interested reader may find this in [5] for general
cases. Note that the above set of equations is only valid when both x1 and x2 are
nonzero. If one or both are zero, then the min operator will not have the correspond-
ing term.

We can rewrite (5) as follows:

Vk+1(X) = 1

β + γ

[
C1(x1) + C2(x2)

]

+ α

{
λ1

γ
Vk(X + e1) + λ2

γ
Vk(X + e2) +

(
1 − λ1 + λ2

γ

)
Vk(X)

}
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+ α min

{
0,

μ1

γ

[
Vk(X − e1) − Vk(X)

]
,
μ2

γ

[
Vk(X − e2) − Vk(X)

]}
.

(7)

Letting k → ∞, it is known that the value function is the fixed point of the proce-
dure defined by (7), [5]. So, the following holds:

V (X) = 1

β + γ

[
C1(x1) + C2(x2)

]

+ α

{
λ1

γ
V (X + e1) + λ2

γ
V (X + e2) +

(
1 − λ1 + λ2

γ

)
V (X)

}

+ α min

{
0,

μ1

γ

[
V (X − e1) − V (X)

]
,
μ2

γ

[
V (X − e2) − V (X)

]}
. (8)

This last equation allows us to conclude easily that idleness is never the optimal
decision when one or both queues are not empty, due to the following theorem.

Theorem 1 If the single-stage cost is nondecreasing in x, then V (X) is also nonde-
creasing.

Proof The proof goes by induction on Vk(·). Given C(X + ei) ≥ C(X) and
V0(X) = 0, it follows trivially that V1(X + ei) ≥ V1(X) for all X ∈ S. Assuming
that the result holds for all n = 1,2, . . . , k, let us compute Vk+1(·).

By the induction assumption the following holds:

Ṽk

(
X + ei, u | u = 0

) = λ1

γ
Vk(X + ei + e1) + λ2

γ
Vk(X + ei + e2)

+
(

1 − λ1 + λ2

γ

)
Vk(X + ei)

≥ λ1

γ
Vk(X + e1) + λ2

γ
Vk(X + e2) +

(
1 − λ1 + λ2

γ

)
Vk(X)

= Ṽk

(
X,u | u = 0

)
,

Ṽk

(
X + ei, u | u = 1

) = λ1

γ
Vk(X + ei + e1) + λ2

γ
Vk(X + ei + e2)

+ μ1

γ
Vk(X + ei − e1) +

(
1 − λ1 + λ2 + μ1

γ

)
Vk(X + ei)

≥ λ1

γ
Vk(X + e1) + λ2

γ
Vk(X + e2) + μ1

γ
Vk(X − e1)

+
(

1 − λ1 + λ2 + μ1

γ

)
Vk(X)

= Ṽk

(
X,u | u = 1

)
,
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Ṽk

(
X + ei, u | u = 2

) = λ1

γ
Vk(X + ei + e1) + λ2

γ
Vk(X + ei + e2)

+ μ2

γ
Vk(X + ei − e2) +

(
1 − λ1 + λ2 + μ2

γ

)
Vk(X + ei)

≥ λ1

γ
Vk(X + e1) + λ2

γ
Vk(X + e2) + μ2

γ
Vk(X − e2)

+
(

1 − λ1 + λ2 + μ2

γ

)
Vk(X)

= Ṽk

(
X,u | u = 2

)
.

Given that min{a, b, c} ≥ min{a′, b′, c′} when a ≥ a′, b ≥ b′, and c ≥ c′, it follows
from (5) and from the nondecreasing nature of C(X) that Vk+1(X + ei) ≥ Vk+1(X)

for all X ∈ S.
Since V (X) = limk→∞ Vk(X), the result holds. �

Therefore, due to Theorem 1, the second and third terms of the min operator in
(8) are negative, implying that the first term is never the lowest of the three. That is,
under the optimal policy, the server is never idle in the presence of customers.

Another observation on the nature of the optimal policy, taken from (8), is that
when both queues are nonempty, one chooses to serve class 1 if

μ1
[
V (X) − V (X − e1)

] ≥ μ2
[
V (X) − V (X − e2)

]
(9)

and to serve class 2 otherwise. As a final note, we should stress that these equations
refer to decision points. In the case of the model being addressed here, those are all
arrival and departure instants.

2.2 Detail for the nonpreemptive case

When preemption is not allowed, the only decision points are arrivals at an empty
system or conclusions of service. So, only for y = 0, we have choices to make, which
means that we cannot drop the explicit dependence on the server state. Therefore,
after the uniformization procedure we get

Vk+1(X,0)

= 1

β + γ

[
C1(x1) + C2(x2)

]

+ α min
{
Ṽk

(
X,0, u | u = 0

)
, Ṽk

(
X,0, u | u = 1

)
, Ṽk

(
X,0, u | u = 2

)}
, (10)

where

Ṽk

(
X,0, u | u = 0

) = λ1

γ
Vk(X + e1,0) + λ2

γ
Vk(X + e2,0)

+
(

1 − λ1 + λ2

γ

)
Vk(X,0),
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Ṽk

(
X,0, u | u = 1

) = λ1

γ
Vk(X + e1,1) + λ2

γ
Vk(X + e2,1) + μ1

γ
Vk(X − e1,0)

+
(

1 − λ1 + λ2 + μ1

γ

)
Vk(X,1), (11)

Ṽk

(
X,0, u | u = 2

) = λ1

γ
Vk(X + e1,2) + λ2

γ
Vk(X + e2,2) + μ2

γ
Vk(X − e2,0)

+
(

1 − λ1 + λ2 + μ2

γ

)
Vk(X,2).

Again, note that the number of terms in the min operator depends on the number
of nonempty queues. Comparing expressions (6) and (11) should shed a light into the
impact the nonpreemptive assumption has on the dynamic programming recursions.
The last term of each equation in (6) represents no transition due to lack of arrivals
or service conclusion. The same is the case for the last term of each equation in (11).
Let us call that term the self-loop. In the preemptive model, the self-loop keeps the
system in the same state. However, in the nonpreemptive model, the self-loop out of
a decision point sends the system to a state which is different from the state before
the transition. That is, if for Z = [X,0], the system decides to serve class i, the self-
loop has to account for the fact that the server is still busy with a customer of class i.
Thus the self-loop represents transitions to state Z = [X, i]. Therefore, given that
the decision epochs coincide with service conclusions or arrivals while the server is
idle, it is the case that such state transitions will include a second instantaneous state
transition due to the decision that is made. This state transition reflects the fact that
the server is no longer idle.

For the nonpreemptive case, the model needs to capture the fact that a decision to
serve a given class will remain until the service is concluded. Therefore, the conver-
sion from continuous to discrete time needs to account for the fact that when a service
is initiated and there are no immediate transitions, due to service or arrivals, the state
has nevertheless changed due to the earlier decision to initiate service. Whereas in the
preemptive case knowing the queue length is enough to know which class is being
served, for the nonpreemptive case, it is possible for the server to be working on dif-
ferent classes for states where the customers in all queues are the same. The majority
of textbooks on dynamic programming for MDPs fail to address this fact. Markov
models build on the notion that there are no simultaneous events. However, in the
context of nonpreemptive queuing models, every time a state changes to a decision
point, there will be a second state change due to the decision being taken. The general
value iteration recursions have to account for the instantaneous state transitions due
to the decision maker. We have to take into account that there are states Z(t−k ) and
Z(t+k ) representing the state immediately before the kth decision epoch and immedi-
ately following that same decision epoch, respectively. Naturally, Z(t+k ) is a function
of the state Z and of the control decision taken, that is, Z(t+k ) = f (Z(t−k ), uk). One
first consequence of this is that we no longer can simplify (11) like we did transform
(6) into (7).

To complete the model, we need to present the operator for the states which do
not correspond to decision epochs. These recursions follow the standard MDP for-
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mulations, except for the fact that there is no decision to be made that affects the
immediate transition probabilities, because they do not refer to decision epochs:

Vk+1(X,1) = 1

β + γ

[
C1(x1) + C2(x2)

] + α

{
λ1

γ
Vk(X + e1,1) + λ2

γ
Vk(X + e2,1)

+ μ1

γ
Vk(X − e1,0) +

(
1 − λ1 + λ2 + μ1

γ

)
Vk(X,1)

}
, (12)

Vk+1(X,2) = 1

β + γ

[
C1(x1) + C2(x2)

] + α

{
λ1

γ
Vk(X + e1,2) + λ2

γ
Vk(X + e2,2)

+ μ2

γ
Vk(X − e2,0) +

(
1 − λ1 + λ2 + μ2

γ

)
Vk(X,2)

}
. (13)

Naturally, (12) is only applicable for states where x1 > 0 and (13) for states where
x2 > 0.

3 Exact results on specific systems

In an effort to better understand the nature of the optimal policy for the problem
addressed in this paper, we are now going to analyze four particular problems that
have some connection with it. We start by defining the problems in a somewhat lose
manner. All considered cases will be assumed to be nonpreemptive.

Problem 1 Take a static version of the problem addressed in this paper, with K

classes of customers. That is, all customers are present at time zero, and no arrivals
will occur afterward. Assume there are xi customers in queue i with i = 1, . . . ,K

and that the single-stage cost is convex as defined earlier. The objective is to clear the
system of customers with the lowest cost possible.

Problem 2 Consider a closed queuing network with a single server, two classes of
customers, and fixed population. At the conclusion of a service on a given class, a
new customer of the other class is allowed to enter. Initially, there are xi customers of
class i with i = 1,2. The objective is to identify the stationary policy that minimizes
the infinite-horizon discounted cost.

Problem 3 Consider a closed queuing network with a single server, two classes of
customers, and fixed population. At the conclusion of a service on any given class,
a new customer will be allowed to enter the system. The new customer is of class i

according to the ratio pi = λi/(
∑2

i=1 λi). With the single-state cost defined earlier
and xi customers of class i present in the system at time zero, the objective is to
identify the policy that minimizes the infinite-horizon discounted cost.

Problem 4 Consider an open queuing network with a single server and two classes
of customers. At the conclusion of a service, two customers enter the system, one
for each class. Assuming there are xi customers of class i at time zero and using the
single-stage cost defined earlier, the objective is to identify the policy that ensures the
minimum infinite-horizon discounted cost.
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Before analyzing each of the four problems individually, we offer some remarks
on each problem. Firstly note that the arrival process is no longer uncontrollable. Nat-
urally, knowing that no customers will arrive or that they only arrive when a service
is concluded drastically changes the nature of the problem. An intrinsic feature of the
single-server scheduling problem we are addressing is the fact that only the stochastic
nature of the arrival process is known, not the specific arrival instants.

Problem 1 can be seen as the convex cost successor, with stochastic services, of
the original problem addressed by Smith [19]. Also, in many service contexts, there
is such a thing as the closing hours, after which only the customers already inside the
system will be served. At that point in time, when the doors are closed, the problem
to be solved no longer is an infinite-horizon dynamic problem, becoming static as
Problem 1. Problems 2 and 3 are examples of manufacturing contexts where there is
a fixed number of pallets where parts are mounted on for processing. So, only when
a part is completed, another one will use the available pallet. Problem 4 is naturally
the oddest of them all, given the fact that it is unstable, whereas Problems 2 and 3
are marginally stable. Therefore, the concept of minimal cost needs to be clarified
here. No matter what customer is served, two new customers will enter the system.
Therefore, for any policy chosen, the population will grow to infinity. We are look-
ing for the policy that achieves the infimum of cost relative to all possible policies,
in other words, the policy that approaches infinity the cheapest way. Although this
problem has no real-life application, we hope that its usefulness for our discussion
will become clear by the end of this section. For the four problems, we are able to
characterize the structure of the optimal policy.

Lemma 1 In a situation where there are no arrivals during service, either because
arrivals are switched off or because they only occur at the conclusion of a service, and
assuming the first and second services will serve different queues, the value function
for a given policy π can be written as

J
(
Z(0),π

) = C(Z(0))

μi + β
+ Eπ

Z(0){C(Z(s1))}
(μi + β)(μj + β)

μi

+ Eπ
Z(0)

{∫ ∞

s1+s2

e−βtC
(
Z(t)

)
dt

}
, (14)

where Z(0) is the initial state, μi is the processing rate of the first class served, μj is
the processing rate of the second class served, s1 is the duration of the first service,
and s2 is the duration of the second service.

Proof First, note that (3) can be written as

J
(
Z(0),π

) = Eπ
Z(0)

{∫ s1

0
e−βtC

(
Z(t)

)
dt +

∫ s1+s2

s1

e−βtC
(
Z(t)

)
dt

+
∫ ∞

s1+s2

e−βtC
(
Z(t)

)
dt

}

= E[Z(0),s1]
{∫ s1

0
e−βtC

(
Z(t)

)
dt

}
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+ E[Z(0),s1,s2]
{∫ s1+s2

s1

e−βtC
(
Z(t)

)
dt

}

+ Eπ
Z(0)

{∫ ∞

s1+s2

e−βtC
(
Z(t)

)
dt

}
. (15)

We will now derive the expressions for the first two terms.

A1 = E[Z(0),s1]
{∫ s1

0
e−βtC

(
Z(t)

)
dt

}

=
∫ ∞

0

∫ s1

0
e−βtC

(
Z(t)

)
dt μie

−μis1 ds1

= C
(
Z(0)

) ∫ ∞

0

∫ s1

0
e−βt dt μie

−μis1 ds1

= C(Z(0))

μi + β
. (16)

The above relation is valid if and only if there are no arrivals during service, which
is the case of any of the four problems presented. Moreover, the number of customers
on all queues equals those present at time zero, and the service on any of the queues
is exponentially distributed.

For the second term, assuming that the first and second services are on different
classes and that there are no arrivals during the second service, we get

A2 = E[Z(0),s1,s2]
{∫ s1+s2

s1

e−βtC
(
Z(t)

)
dt

}

=
∫ ∞

0

∫ ∞

0

∫ s1+s2

s1

e−βtC
(
Z(t)

)
dt μie

−μis1 ds1 μje
−μj s2 ds2

= C
(
Z(s1)

)∫ ∞

0

∫ ∞

0

∫ s1+s2

s1

e−βt dt μie
−μis1 ds1 μje

−μj s2 ds2

= C(Z(s1))

(μi + β)(μj + β)
μi. (17)

�

Definition 1 Let the first-order difference of the single-stage cost function along
direction i at state Z = (x1, x2, y) be defined as �i(xi) = C(Z) − C(Z − ei) =
Ci(xi) − Ci(xi − 1).

Now we are in a position to characterize the optimal policies for these four prob-
lems.

Theorem 2 For Problem 1, when there are xi customers in queue i for i = 1, . . . ,K ,
it is optimal to select for service the class for which μi�i(xi) is maximum.
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Proof We use a pairwise interchange argument. Assume that the optimal policy, π , is
such that the kth decision chooses class j , the (k + 1)th decision chooses class i, and
the condition of the theorem is violated. That is, μj�j (xj ) < μi�i(xi). We construct
an alternative policy π ′ where only those two decisions are altered, serving first class
i followed by class j .

Under both policies, all decisions taken prior to the kth decision and after the
(k + 1)th decision will incur the same cost. Given the nature of the problem, we can
assume with no loss of generality that k = 1 and make use of Lemma 1.

So, we can compare the costs of serving first class j followed by class i with the
costs of serving first class i followed by class j , and the remaining decisions taken
according to policy π .

For policy π ′ = [i, j,π], we get

J
(
Z(0),π ′) = C(Z(0))

μi + β
+ C(Z(0) − ei)

(μi + β)(μj + β)
μi + A

(
Z(0) − ei − ej ,π

′). (18)

The term A(Z(0) − ei − ej ,π
′) represents the cost to go after the second service

is concluded, and policy π is used from then on, taking into account that a class i

customer was served followed by a class j customer in the first two services.
For policy π = [j, i,π], we get

J
(
Z(0),π

) = C(Z(0))

μj + β
+ C(Z(0) − ej )

(μj + β)(μi + β)
μj + A

(
Z(0) − ei − ej ,π

)
. (19)

By the nature of the problem, A(Z(0) − ei − ej ,π
′) = A(Z(0) − ei − ej ,π).

Defining �J = J (Z(0),π ′) − J (Z(0),π), we have

�J = C(Z(0))

μi + β
+ C(Z(0) − ei)

(μi + β)(μj + β)
μi − C(Z(0))

μj + β
− C(Z(0) − ej )

(μj + β)(μi + β)
μj

= 1

(μi + β)(μj + β)

{
C

(
Z(0)

)
(μj − μi)C

(
Z(0) − ei

)
μi − C

(
Z(0) − ej

)
μj

}

= 1

(μi + β)(μj + β)

{−�i(xi)μi + �j(xj )μj

}
. (20)

Given that 1
(μi+β)(μj +β)

> 0 and μj�j (xj ) < μi�i(xi), it follows that �J < 0,
which contradicts the optimality assumption for policy π .

We can apply the same argument for all consecutive decisions where different
classes are served. Therefore, from the optimal policy π we can construct an alterna-
tive policy, π∗, for which costs are never worse that those achieved under policy π ,
by enforcing the stated rule whenever policy π fails to adhere to it, and the result
follows. �

Theorem 3 For Problem 2 with xi customers in queue i for i = 1,2, it is optimal to
select for service the class i if μi�i(xi) + μj�i(xi + 1) is maximum, where j is the
index for the other class.



Queueing Syst

Proof We use the same proof strategy as for the previous theorem. Assume that pol-
icy π is optimal and look for the first decision where the rule is violated. That is, class
j is served immediately before class i, with class i satisfying the condition of the the-
orem. Next, assume with no loss of generality that to be the first decision, construct a
new policy where those two decisions are reversed, π ′ = [i, j,π], and use Lemma 1
to obtain

J
(
Z(0),π ′) = C(Z(0))

μi + β
+ C(Z(0) − ei + ej )

(μi + β)(μj + β)
μi + A

(
Z(0),π ′), (21)

and for policy π = [j, i,π], we get

J
(
Z(0),π

) = C(Z(0))

μj + β
+ C(Z(0) − ej + ei)

(μi + β)(μj + β)
μj + A

(
Z(0),π

)
. (22)

Taking the difference of costs for both policies and noting that A(Z(0),π ′) =
A(Z(0),π), we have

�J = C(Z(0))

μi + β
− C(Z(0))

μj + β
+ C(Z(0) − ei + ej )

(μi + β)(μj + β)
μi − C(Z(0) − ej + ei)

(μi + β)(μj + β)
μj

= Ci(xi) + Cj (xj )

μi + β
− Ci(xi) + Cj (xj )

μj + β
+ Ci(xi − ei) + Cj(xj + ej )

(μi + β)(μj + β)
μi

− Ci(xi + ei) + Cj (xj − ej )

(μi + β)(μj + β)
μj

= 1

(μi + β)(μj + β)

{
Ci(xi)(μj + β − μi − β)+Ci(xi − 1)μi +Cj(xj + 1)μi

+ Cj (xj )(μj + β − μi − β) − Ci(xi + 1)μj − Cj (xj − 1)μj

}

= 1

(μi + β)(μj + β)

{
Ci(xi)(μj − μi) + Ci(xi − 1)μi + Cj(xj + 1)μ1

+ Cj (xj )(μj − μi) − Ci(xi + 1)μj − Cj (xj − 1)μj

}

= 1

(μi + β)(μj + β)

{−�i(xi + 1)μj − �i(xi)μi

+ �j(xj )μj + �j(xj + 1)μi

}
. (23)

Therefore, �J ≤ 0, contradicting the optimality assumption for policy π . The rest
of the proof follows the same reasoning presented earlier, and the result follows. �

Theorem 4 For Problem 3 with xi customers in queue i for i = 1,2, defining
pi = λi/

∑2
k=1(λk), it is optimal to select for service the class i if pjμi�i(xi) +

piμj�i(xi + 1) is maximum, where j is the index for the other class.



Queueing Syst

Proof As previously, we will use a pairwise interchange argument. For policy π ′ =
[i, j,π], we get

J
(
Z(0),π ′) = C(Z(0))

μi + β
+ piC(Z(0)) + pjC(Z(0) − ei + ej )

(μi + β)(μj + β)
μi

+ A
(
Z(0) − ei − ej + ζ,π ′), (24)

where

ζ =

⎧⎪⎨
⎪⎩

2e1 with probability p2
1,

e1 + e2 with probability 2p1p2,

2e2 with probability p2
2.

For policy π = [j, i,π], we get

J
(
Z(0),π

) = C(Z(0))

μj + β
+ piC(Z(0) − ej + ei) + pjC(Z(0))

(μi + β)(μj + β)
μj

+ A
(
Z(0) − ei − ej + ζ,π

)
. (25)

Taking the difference of costs for both policies, note that A(Z(0) − ei −
ej + ζ,π ′) = A(Z(0) − ei − ej + ζ,π), because ζ is independent of the process-
ing order and we are assuming that the choice of customers to enter will be the same
for the sample path under both policies. Therefore,

�J = Ci(xi) + Cj (xj )

μi + β
+ pi

Ci(xi) + Cj(xj )

(μi + β)(μj + β)
μi + pj

C1(xi − 1) + Cj (xj + 1)

(μi + β)(μj + β)
μi

− Ci(xi) + Cj (xj )

μj + β
− pi

Ci(xi + 1) + Cj(xj − 1)

(μi + β)(μj + β)
μj

− pj

Ci(xi) + Cj(xj )

(μi + β)(μj + β)
μj

= 1

(μi + β)(μj + β)

{
Ci(xi)(μj + β + piμi − μi − β − pjμj )

+ pjCi(xi − 1)μi + pjCj (xj + 1)μi

+ Cj (xj )(μj + β + piμi − μi − β − pjμj ) − piCi(xi + 1)μj

− piCj (xj − 1)μj

}

= 1

(μi + β)(μj + β)

{
Ci(xi)(piμj − pjμi) + pjCi(xi − 1)μi

+ pjCj (xj + 1)μi + Cj (xj )(piμj − pjμi) − piCi(xi + 1)μj

− piCj (xj − 1)μj

}

= 1

(μi + β)(μj + β)

{−�i(xi + 1)piμj − �i(xi)pjμi + �j(xj )piμj
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+ �j(xj + 1)pjμi

}
≤ 0. (26)

This contradicts the optimality assumption of policy π , and the result follows. �

Theorem 5 For Problem 4 with xi customers in queue i for i = 1,2, it is optimal to
select for service the class i if μj�i(xi + 1) is maximum, where j is the index for the
other class.

Proof Making use of the pairwise interchange argument once more, for policy π ′ =
[i, j,π], we get

J
(
Z(0),π ′) = C(Z(0))

μi + β
+ C(Z(0) + ej )

(μi + β)(μj + β)
μi + A

(
Z(0) + ei + ej ,π

′), (27)

and for the optimal policy π = [j, i,π], we get

J
(
Z(0),π

) = C(Z(0))

μj + β
+ C(Z(0) + ei)

(μi + β)(μj + β)
μj + A

(
Z(0) + ei + ej ,π

)
. (28)

Taking the difference of costs for both policies and noting that A(Z(0) + ei +
ej ,π

′) = A(Z(0) +
ei + ej ,π), we obtain

�J = Ci(xi)

μi + β
+ Cj (xj )

μi + β
+ Ci(xi)

(μi + β)(μj + β)
μi + Cj (xj + 1)

(μi + β)(μj + β)
μi

− Ci(xi)

μj + β
− Cj (xj )

μj + β
− Ci(xi + 1)

(μi + β)(μj + β)
μj − Cj(xj )

(μi + β)(μj + β)
μj

= 1

(μi + β)(μj + β)

{
Ci(xi)(μj + β + μi − μi − β) + Cj (xj + 1)μi

+ Cj (xj )(μj + β − μi − β − μj ) − Ci(xi + 1)μj

}

= 1

(μi + β)(μj + β)

{
Ci(xi)μj + Cj (xj + 1)μi − Cj (xj )μi − Ci(xi + 1)μj

}

= 1

(μi + β)(μj + β)

{−�i(xi + 1)μj + �j(xj + 1)μi

}
. (29)

Therefore, if class j violates the condition, it follows that �J < 0, contradicting
the optimality assumption of policy π , and the result follows. �

The relevance of Problem 4 to our discussion should now be obvious. For
any of the problems, we use a combination of the term μi�i(xi) with the term
μj�i(xi + 1). Apart from Problem 2, the other ones are covered by the whole set
of convex combinations of the two first-order differences. Table 1 contains the syn-
thesis of the results just established. The first remark we need to make concerns the
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Table 1 The optimality
conditions for the four problems
presented

Problem μi�i(xi ) μj�i(xi + 1)

1 1 0

2 1 1

3 pj pi

4 0 1

fact that any choice of pi and pj such that each is nonnegative and pi + pj = 1 will
result on the optimal policy for one instance of the above problems. If both multipli-
ers are equal to 1, then we are producing the optimal policy for Problem 2. Therefore,
if the optimal policy for the problem we address in this paper was also to be produced
by means of a combination of first-order differences, the multipliers to be used would
have to be such that one or both would take values outside the [0;1] interval. Al-
though one could argue that even for Problem 2, the optimal choice of multipliers
also adds up to one, given that their sum can be normalized without changing the
nature of the decisions, what we intend to stress here is that one of the multipliers
may have to assume negative values for other problems. We will provide numeric
evidence for this claim in what follows (Sect. 4).

Note that we are able to completely specify the optimal policies by means of a
combination of first-order differences of the single-stage cost function, which can be
easily computed, and the optimal policies do not depend on the discount parameter
being used. It is also relatively easy to prove the above results for the infinite-horizon
average costs. The proof scheme for these results is also based on a pairwise inter-
change argument. We do not present those to avoid redundancy of the proofs and
expect any interested reader to be able to produce them, as they are simpler because
there is no discount term to clutter the equations.

Finally, note that the convexity assumption for the single-stage cost function does
include the case of linear costs, meaning the above results to be valid also for those.
Also, the above results are trivially valid for the preemptive and nonpreemptive cases.
Since we know that the optimal policy for linear costs is the cμ-rule, it would appear
that the problem with linear costs is equivalent to our Problem 1. In a sense it is,
because the arrivals during service are irrelevant in a pairwise interchange argument,
as can be seen in [7, pp. 492–495], for the discrete-time preemptive version of the
problem. However, it is the claim of this paper that there is probably a little more to
it, as we will show in the following sections.

It is relatively trivial to show optimality of the cμ-rule for the nonpreemptive case
when costs are linear.

Theorem 6 Consider the single-server multiple-queue nonpreemptive problem with

linear costs, C(Z(t)) = ∑K
k=1 ckxk(t). The stationary optimal policy for infinite-

horizon discounted costs is an index policy such that whenever there is a choice
between more than a queue, service is given to the queue i with the highest index
μi�i(xi) = maxk,xk(t)	=0{μkck}.
Proof Consider the optimal policy π and assume that there is a decision point where
both classes i and j are present, μjcj < μici , and class j is served followed by a



Queueing Syst

service on class i. Without loss of generality, assume that decision point to be at time
zero. Therefore, the cost incurred under policy π is given by

J
(
Z(0),π

) = Eπ
Z(0)

{∫ ∞

0
e−βt

(
K∑

k=1

ckxk(t)

)
dt

}

= Eπ
Z(0)

{∫ sj

0
cixi(t)e

−βt dt +
∫ sj +si

sj

cixi(t)e
−βt dt

+
∫ ∞

sj +si

cixi(t)e
−βt dt

}

+ Eπ
Z(0)

{∫ sj

0
cjxj (t)e

−βt dt +
∫ sj +si

sj

cj xj (t)e
−βt dt

+
∫ ∞

sj +si

cj xj (t)e
−βt dt

}

+ Eπ
Z(0)

{∫ ∞

0

∑
k 	=i,j

ckxk(t)e
−βt dt

}
, (30)

where si denotes the service duration on a customer of class i, and sj the same for
a customer of class j . Now consider the alternative policy π ′ obtained from policy
π just by reversing the order of the first two services and keeping everything else
unchanged. The cost under policy π ′ is given by

J ′(Z(0),π ′) = Eπ ′
Z(0)

{∫ ∞

0
e−βt

(
K∑

k=1

ckx
′
k(t)

)
dt

}

= Eπ ′
Z(0)

{∫ si

0
cix

′
i (t)e

−βt dt +
∫ sj +si

si

cix
′
i (t)e

−βt dt

+
∫ ∞

sj +si

cix
′
i (t)e

−βt dt

}

+ Eπ ′
Z(0)

{∫ si

0
cj x

′
j (t)e

−βt dt +
∫ sj +si

si

cj x
′
j (t)e

−βt dt

+
∫ ∞

sj +si

cj x
′
j (t)e

−βt dt

}

+ Eπ ′
Z(0)

{∫ ∞

0

∑
k 	=i,j

ckx
′
k(t)e

−βt dt

}
. (31)

Clearly, x′
k(t) = xk(t) for all t ≥ 0 and k 	= i, j . Also, x′

i (t) = xi(t) for all t ≥
si + sj . The same holds for x′

j (t) and xj (t). Therefore, we only have to consider
four terms in each of the two cost functions above. For policy π , let us define the
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following terms:

A1 = Eπ
Z(0)

{∫ sj

0
cixi(t)e

−βt dt

}
,

A2 = Eπ
Z(0)

{∫ sj +si

sj

cixi(t)e
−βt dt

}
,

B1 = Eπ
Z(0)

{∫ sj

0
cj xj (t)e

−βt dt

}
,

B2 = Eπ
Z(0)

{∫ sj +si

sj

cj xj (t)e
−βt dt

}
.

(32)

We define similar counterparts for policy π ′, denoting them as A′
1,A

′
2,B

′
1, and B ′

2,
respectively. Determining a closed-form expression for each of these eight terms is
impossible in general due to the fact that arrivals are uncontrollable. However, given
that x′

i (t) = xi(t) − 1 for t ∈ [si , sj + si] and x′
j (t) = xj (t) + 1 for t ∈ [sj , sj + si],

the change in service order does not affect the service duration, and costs are linear,
it is possible to determine the following:

(A1 +A2)− (
A′

1 +A′
2

) =
∫ ∞

0

∫ ∞

0

[∫ sj +si

si

(+ci)e
−βt dt

]
μje

−μj sj dsj μie
−μisi dsi

(33)
and

(B1 +B2)−
(
B ′

1 +B ′
2

) =
∫ ∞

0

∫ ∞

0

[∫ sj +si

sj

(−cj )e
−βt dt

]
μje

−μj sj dsj μie
−μisi dsi .

(34)
Both (33) and (34) are trivially solved to produce

(A1 + A2) − (
A′

1 + A′
2

) = − ciμiμj

β(β + μi)(β + μj )
+ ciμi

β(β + μi)
,

(B1 + B2) − (
B ′

1 + B ′
2

) = cjμiμj

β(β + μi)(β + μj )
− cjμj

β(β + μj )
.

(35)

Therefore,

J
(
Z(0),π

) − J ′(Z(0),π ′) = (A1 + A2) − (
A′

1 + A′
2

) + (B1 + B2) − (
B ′

1 + B ′
2

)

= −ciμiμj + ciμi(β + μj ) + cjμiμj − cjμj (β + μi)

β(β + μi)(β + μj )

= β(ciμi − cjμj )

β(β + μi)(β + μj )

> 0, (36)

which contradicts the optimality assumption for policy π and establishes the optimal-
ity of the cμ-rule for the nonpreemptive case. �
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Note that the key feature to establish the optimality of the cμ-rule above is the fact
that the costs are linear, (33)–(34). Also, the derivation of this result for average costs
follows similar arguments and produces the same policy. This is a special case of the
model in [15], where there is feedback. That is, customers can enter the queue of
another class after completing service. The result in [15] was established for infinite-
horizon average costs, and the proof presented here differs significantly from that
one.

4 Toward a generalization of the cμ-rule

In this section we present numeric evidence of the fact that the optimal policy for the
convex cost version of the scheduling problem depends on the individual load. Given
that we assume the buffers to be unbounded and we have to run the value iteration
algorithm for bounded state space, we ran a series of tests to define an acceptable
cutting point, so that the value of the optimal cost is as close as possible to the value
for unbounded state space. For all the systems, we run the value iteration algorithm
with xi ∈ [0 200] and make β = 0.001. For presentation of results, we further cut
the state space where we can be sure that the errors due to the approximation are
negligible. The results will be presented for xi ∈ [0 50]. After these results we will
propose an alternative generalization of the cμ-rule, discuss its structure, and will
present numeric evidence supporting its adequacy in terms of performance.

System 1 Consider a nonpreemptive system with C1(x1) = 2x1, C2(x2) = 1.001x2 +
0.1x2

2 , μ1 = 2, and μ2 = 1.

Mieghem’s generalized cμ-rule, which we will refer to as the Gcμ-rule, takes the
derivative of the single-stage cost function. For this case, the indexes for both classes
are μ1

∂C(x)
∂x1

= 2μ1 and μ2
∂C(x)
∂x2

= (1.001 + 0.2x2)μ2, respectively. The class to be
served is the one that has the highest index. Combining the two indexes will generate
the following policy:

u(x1, x2) =

⎧⎪⎨
⎪⎩

0 if xi = 0,

1 if x1 > 0 ∧ x2 ≤ 14.995,

2 if x2 > 0 ∧ (x1 = 0 ∨ x2 > 14.995),

which is a threshold policy on the value of x2, with threshold value of 14.995. Given
that the state space is discrete, whenever x2 is below 15, priority is given to class 1.
If x2 ≥ 15, class 2 has priority over class 1. For all practical purposes, the real thresh-
old for this system is 15. Note that this policy does not depend on the ρ1 = λ1/μ1 and
ρ2 = λ2/μ2, nor on ρ = ρ1 + ρ2. In terms of the queue lengths for both classes, the
policy can also be described as being of the switching type. That is, there is a switch-
ing curve above which it is optimal to serve one class and below which it is optimal to
serve the other. For state space values on the switching curve, it is indifferent which
class to serve, as the indexes for both have the same value.

If the quadratic term of the single-stage cost of class 2 were zero, then the optimal
policy would be to give priority to class 1 at all times. The existence of the quadratic
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Table 2 Optimal threshold
values for System 1 ρ1 ρ2 Threshold

ρ = 70 % ρ = 90 % ρ = 95 %

0.05 ρ − 0.05 14 10 7

0.10 ρ − 0.10 14 12 –

ρ/2 ρ/2 15 15 –

ρ − 0.10 0.10 16 16 –

ρ − 0.05 0.05 16 16 16

term for class 2 forces the decision maker to change priority when the population of
class 2 becomes higher than some amount. The higher the quadratic term, the lower
will the threshold.

If we compute the optimal policy, using the value iteration algorithm, we also get
a threshold-type policy as a function of x2. Table 2 presents the optimal threshold
values for a sample of values of ρi and a global load of 70 % and 90 %.

When the individual loads are the same, the optimal threshold equals the one ob-
tained by the Gcμ-rule. However, in the case of fixed global load, if the individual
load of, say, class 2 grows, the optimal threshold decreases. This behavior is consis-
tent with intuition in the following sense. There should be a threshold for x2 above
which class 2 gets priority over class 1. If the traffic for class 2 is heavier, then the
threshold should drop because there will be more customers of class 2. This threshold
drop does not affect the performance of class 1, given that their input rate is lower
and their queue does not get as many customers as often as queue 2 gets. Moreover,
we see that as the global load increases, there is a tendency for the span of the opti-
mal threshold to get wider as a function of the individual loads. We show this just by
presenting the optimal thresholds for the two extreme cases where the global load is
95 %.

System 2 Consider a nonpreemptive system with C1(x1) = 1.001x1 + 0.05x2
1 ,

C2(x2) = 5x2, μ1 = 2, and μ2 = 1.

Given that the quadratic term is present on the cost associated with class 1, the
Gcμ-rule will produce the following threshold policy for class 1:

u(x1, x2) =

⎧⎪⎨
⎪⎩

0 if xi = 0,

1 if x1 > 0 ∧ (x1 ≥ 14.99 ∨ x2 = 0),

2 if x2 > 0 ∧ x1 < 14.99.

Under this rule, the practical threshold value for this system is 15. That is, priority
is given to class 2 when x1 in under 15. Table 3 presents the threshold results for
a global load of 90 %. The behavior for this system follows the same principle as
for System 1, although the optimal threshold for equal loads is slightly off the level
obtained by the Gcμ-rule.

System 3 Consider a nonpreemptive system with C1(x1) = 2−9x3
1 , C2(x2) = 2−5x3

2 ,
μ1 = 4, and μ2 = 1.
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Table 3 Optimal threshold
values for System 2 ρ1 ρ2 Threshold

0.05 ρ − 0.05 16

0.10 ρ − 0.10 16

ρ/2 ρ/2 14

ρ − 0.10 0.10 10

ρ − 0.05 0.05 9

Fig. 1 Switching curves for
System 3

Applying the Gcμ-rule we get the following:

u(x1, x2) =

⎧⎪⎨
⎪⎩

0 if xi = 0,

1 if x1 > 0 ∧ x2 ≤ 0.5x1,

2 if x2 > 0 ∧ (x1 = 0 ∨ x2 > 0.5x1).

The optimal switching curves for ρ1 = 0.05 and ρ1 = 0.85, when the global load
is 90 %, are displayed in Fig. 1, together with the generalized Gcμ-rule switching
curve. Observing closely the optimal curves for low values of xi , we see that they are
not straight lines, although as |X| grows, they become straight lines parallel to the
generalized curve. This numeric evidence on the structure of the optimal policy and
its structural differences relative to the switching curve generated through taking the
derivative of the single-stage cost function calls for an attempt to propose a different
manner on how to generalize the cμ-rule. Before we move on to propose a new gen-
eralization, we need to analyze the performance achieved under the optimal policies
versus the performance achieved under the Gcμ-rule.

4.1 Suboptimality of the Gcμ-rule

Table 4 presents V (X,0) for X = [0 0]′ achieved with the optimal policy and with
Mieghem’s generalized rule, under Gcμ-rule, for the first two systems. The global
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Table 4 Policy performance for Systems 1 and 2

ρ1 System 1 System 2

Optimal Gcμ-rule Deviation Optimal Gcμ-rule Deviation

5 % 20 371.2 20 530.4 0.781 % 36 184.6 36 187.8 0.009 %

10 % 19 290.6 19 391.1 0.521 % 34 076.4 34 079.3 0.009 %

45 % 15 119.5 15 119.5 0.000 % 25 028.0 25 033.5 0.022 %

80 % 13 660.4 13 661.5 0.008 % 17 429.7 17 563.7 0.769 %

85 % 14 500.0 14 500.4 0.003 % 16 585.5 16 754.5 1.019 %

Table 5 Policy performance for
System 3 ρ1 Optimal Gcμ-rule Deviation

5 % 55 319.6 56 721.2 2.534 %

45 % 14 933.7 15 082.9 0.999 %

85 % 3 920.7 4 673.1 19.189 %

load is 90 %. Although the threshold levels may be significantly different in both
situations, as shown earlier, we see that the observed performance deviation is prac-
tically insignificant, agreeing with the claim of asymptotic optimality.

Turning again to System 3, we see in Table 5 that the performance deviation can be
significant. We recorded a little over 19 % deviation in performance for this particular
system, which is very significant.

Therefore, given the small sample of systems presented and the potential perfor-
mance deviation that may occur, we believe that there is room for improvement in an
attempt to produce alternative approximations to the optimal policy for convex costs.
Naturally, even if the performance deviations were not significant, the simple fact that
the optimal policy is a function of the individual loads is in itself an interesting aspect
of the problem we are addressing. This fact alone has escaped a long series of work
in the area for over half a century. Our challenge is to identify a better approximation
of the optimal policy that at the same time is compatible with the optimal policy for
linear costs. In order to achieve that, we will build on the results of Sect. 3 and on the
insights gained by the numeric examples of this section.

4.2 Alternative generalization

The motivation that led to the generalized cμ-rule based on derivatives has been the
coincidence between the fact that ci is the derivative of cost for class i, assuming
that Ci(xi) = cixi . Also, the heavy traffic analysis is partially responsible for this. In
fact, by scaling time and state space to convert a discrete problem into a continuous
problem, the emergence of derivatives is a natural consequence.

We propose to alternatively consider a combination of first-order differences, des-
ignated as the �cμ-rule, according to the following:

μi

[
qi�i(xi) + ri�i(xi + 1)

]
, (37)
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where qi + ri = 1, and both are real numbers. The fact that �i(xi) = �i(xi + 1) = ci

when costs are linear ensures the desired compatibility with the cμ-rule. Recalling
Table 1, we could rewrite the expression above as

μi

[
qi�i(xi) + μj

μi

r̂i�i(xi + 1)

]
, (38)

defining ri = r̂iμj /μi , which leads to

μiqi�i(xi) + μj r̂i�i(xi + 1). (39)

With qi taking the place of pj and r̂i taking the place of pi in Table 1, at the
end of Sect. 3, we observed that if qi + r̂i = 1 and both parameters are in [0;1], we
produce the optimal policy for some instance of Problems 1, 3 or 4. Then we claimed
that to address other problems, one would have to lift those constraints. Saying that
qi + ri = 1 is equivalent to saying that qi + r̂iμj /μi = 1, which in general means
that qi + r̂i 	= 1. We should stress that the only reason we are enforcing the constraint
qi + ri = 1 is to ensure compatibility with the index policy for linear costs.

Given the fact that the optimal policy depends on the individual loads, both qi

and ri will have to depend on the individual loads too. That is, we need to write
qi(ρ1, ρ2) and ri(ρ1, ρ2) in general. We omitted that dependence earlier to simplify
the presentation. We will now illustrate the structure of the switching curves produced
by this scheme for System 1.

Consider a system where C1(x1) = c11x1 and C2(x2) = c21x2 + c22x
2
2 . The equa-

tion defining the switching curve is given by

μ1c11 = μ2
[
q2(c21 + 2c22x2 − c22) + r2(c21 + 2c22x2 + c22)

]
= μ2

[
c21 + 2c22x2 + c22(r2 − q2)

]
, (40)

because �1(x1) = �1(x1 + 1) = c11, and taking arbitrary values for qi and ri such
that qi + ri = 1. Therefore, we can rewrite (40) to explicitly account for the threshold
level of x2 as follows:

x2 = μ1c11 − μ2c21

2μ2c22
− r2 − q2

2
. (41)

If q2 = r2, we get the same threshold as the Gcμ-rule. If q2 < r2, the threshold will
go down, and it will go up when q2 > r2. The essential feature we want to stress here
is the fact that this formulation produces a threshold that can be shifted up or down,
depending on the individual loads. To achieve the range displayed in Table 2, we
need to make q2 < 0 and q1 > 1 when ρ1 is low. More specifically, if r2 − q2 = 9.99,
we achieve a threshold of 10 for x2. With the assumption that q2 + r2 = 1, this is
accomplished with r2 = 5.495 and q2 = −4.495.

4.3 Numeric results

Once we have proposed a new generalization for the cμ-rule, it is necessary to evalu-
ate how close to the optimal performance is it possible to get by tuning the parameters



Queueing Syst

Fig. 2 Cost evolution

introduced previously. We will focus our analysis on System 3 exclusively. First, we
will take a fixed value for ρ1 and ρ2 and will show how the performance depends on
the parameters. After, we will present a map of the best achieved performances for a
range of individual loads, comparing with the Gcμ-rule. At the end of this section,
we will also compare the achieved performances with the index heuristic proposed
in [12]. All results are for infinite-horizon discounted costs.

Assume that for System 3, we have ρ = 0.90 and consider two cases for ρ1, 85 %
and 5 %, which are the cases of maximum observed deviation between the optimal
cost and the cost achieved under the Gcμ-rule. In Fig. 2 we present the evolution
of V (0,0,0) as a function of q1 for two pairs of values for q2 and r2. Values were
computed for steps of 0.1 for q1. The left plot displays the evolution for ρ1 = 85 %
and on the right for ρ1 = 5 %. The curve labeled “1-0” represents the case where
q2 = 1 and r2 = 0, whereas the curve labeled “0-1” refers to q2 = 0 and r2 = 1. The
first observation on these two plots concerns the dual nature of the behavior. In the
left plot, for fixed q1, the lower costs are achieved for the “1-0” case, while on the
right plot the lower costs are achieved for the “0-1” case. Also, cost is nondecreasing
with q1 on the left and nonincreasing on the right.

The fact that the curves are nonconvex should not be a surprise given the discrete
nature of the problem, since some minor change on q1 may not produce any signifi-
cant difference on the switching curve for integer values of the state space.

The behavior here displayed has been observed in all systems we tested. Taking the
left plot as an instance, one should expect the cost to keep dropping as q1 decreases
down to some point, after which it should start increasing again. What we need to
stress here is the fact that for high values of ρ1 and fixing q2 and r2, there should
be a value for q1 where the curve reaches its minimum value, and the value of q1
which achieves it is negative. On the right plot, there should also be a value of q1
after which the cost should become nondecreasing and that turning point is reached
for positive values of q1. This behavior is consistent with the shifts observed for the
optimal switching curves, presented earlier.

In an effort to investigate how close to the optimal one could get with the
�cμ-rule, we conducted a series of line searches for different values of the param-
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Fig. 3 Deviation to optimal
value with constraint (42)

eters and came to a striking and elegant numeric coincidence. Maintaining the con-
straint that q1 + r1 = 1, we can restrict the search effort by imposing the following
constraints:

{
q1 = r2,

r1 = q2.
(42)

In Fig. 3 we present the evolution of the percent deviation of V (0,0,0) achieved
relative to the optimal value as a function of q1 when constraint (42) is enforced. We
get very close to the optimal value on both situations. More specifically, for ρ1 =
85 % and with q1 = −2.5, we achieve a cost of 3 920.74, while the optimal value is
3 920.73. When ρ1 = 5 % and q1 = 3.6, we a get a cost of 55 346.6, and the optimal
value is 55 319.6. We limited the line search to steps of 0.1.

Constraint (42) was unexpected when we initiated the study, but the fact that it
holds is a strong mark of elegance. Given the fact that these parameters are functions
of the individual loads, when we are dealing with only two classes of customers, it
makes a lot of intuitive sense that it should be this way. Therefore, the problem of
identifying the optimal parameters for the �cμ-rule reduces to a pure line search.
Table 6 presents a sample of the best achieved performances for System 3 with vary-
ing ρ1. For each value of ρ1, we display the value of q1 which achieves the best
performance and the percent deviation of the Gcμ and �cμ-rules relative to the op-
timal value of V (0,0,0). Although there is a range of loads for which the Gcμ-rule
achieves highly acceptable performances, the table shows that it is always possible to
do better by tuning the parameters of the �cμ-rule.

Before we move on there are a couple of issues that deserve discussion. Firstly,
given the fact that the Gcμ-rule has been proved to be asymptotically optimal in
heavy traffic and given the numeric evidence here presented, there is a need to in-
terpret this inconsistency. In the context of a multiclass system, we define loosely
the concepts of biased and unbiased heavy traffic. We term as unbiased heavy traffic
for K classes a situation where ρi ≈ ρ/K for i = 1,2, . . . ,K and define as biased
heavy traffic a situation where one or more classes are such that ρi  ρ/K and the
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Table 6 Performance
comparison ρ1 q1 Gcμ �cμ

85 % −2.5 19.19 % �0.001 %

75 % −1.4 17.95 % �0.001 %

65 % −0.9 7.68 % �0.001 %

55 % −0.6 2.99 % 0.01 %

45 % −0.1 1.00 % 0.019 %

35 % 0.2 0.20 % �0.001 %

25 % 0.8 0.03 % �0.001 %

15 % 1.2 0.40 % 0.0092 %

5 % 3.6 2.53 % 0.049 %

Table 7 Deviation from
optimal for a subset of policies q1 r1 q2 r2 Code ρ1

85 % 5 %

1 0 1 0 LL 13.35 % 3.37 %

1 0 0 1 LH 25.27 % 1.86 %

0 1 1 0 HL 7.83 % 4.25 %

0 1 0 1 HH 19.19 % 2.53 %

remaining classes are such that ρi � ρ/K . What we have seen for the specific case
of K = 2 is that the Gcμ-rule appears to perform best in unbiased heavy traffic. The
traditional heavy traffic analysis methodology does not account for this difference
between biased and unbiased heavy traffic. In fact, in the absence of a specifically
stated characterization on the nature of the heavy traffic, one can only assume that for
K  1, the results derived are specific for unbiased heavy traffic. While in general the
results may be valid in the majority of the contexts irrespective of the heavy traffic
characterization, we believe that this particular example suggests that future heavy
traffic analysis will have to include a validation that takes into account a possible
variation of the derived policies when the traffic is biased.

Secondly, although we have shown that the optimal policy is sensitive to the in-
dividual loads and that using the �cμ-rule is a way to get very close to the optimal
performance for any load, there is no simple way to determine the adequate param-
eters to achieve those performances. Because we have been unable to identify the
exact relation between q1 and ρi , determining the optimal value for q1 is more com-
plex than determining the optimal policy alone. To do the line search described above
implies running the value iteration algorithm for a choice of q1 while the cost ob-
tained for each keeps going down. On the other hand, there is no such problem with
the Gcμ-rule. To overcome this drawback, we propose to analyze a subset of choices
for q1.

Table 7 presents the percent deviation of cost for the subset of interest. We code
each of the entries to facilitate a reference to them in the discussion. Although the re-
sults presented refer to System 5, the qualitative behavior presented has been verified
across all systems tested. What we see is that when ρ1 is high, the best cost in the
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subset is achieved by the entry HL, while when ρ1 is low, the best cost is achieved
with entry LH . If we assign to each character of the code the meaning H as high
and L as low, then the results displayed have an easy and interesting interpretation.
That is, when ρ1 is high, the first cut solution that improves over the Gcμ-rule with
no computational burden is High for class 1 and Low for class 2, which relates to
their relative position in terms of individual loads. Conversely, if ρ1 is low, then the
solution is Low for class 1 and High for class 2.

Therefore, for the general case, one would expect the definition of three regions
for ρ1: high, intermediate, and low. If the individual load of class 1 falls into the
high region, the choice should be HL; if it falls in the low region, the choice should
be LH ; and if it falls in the intermediate region, the choice could either be LL or
the Gcμ-rule. When traffic is unbiased, one can say that both classes have a low
individual load, thus justifying the choice for the intermediate region. Determining
the specific cutoff values to define the three regions can be done in a qualitative and
loose manner. The reason for this is as follows. Even if range limits are slightly off,
the resulting policy for the whole spectrum of values for ρ1 is definitely better than
just using the Gcμ-rule all the time.

Although we are not presenting any specific numeric evidence for preemptive sys-
tems, the results follow the same general structure just discussed. The only notable
issue to remark here concerns the fact that the optimal switching curves differ for
each system, depending if we allow preemption or not. Recall that for linear costs,
the switching curves are exactly the same.

We now move on to compare the �cμ-rule with the index heuristic proposed in
[12] for nonpreemptive systems and will still be using System 3 as the basis for
comparison. According to [12], for a multiclass M/G/1 nonpreemptive queue with
cost rate C(x), where there are x customers in the queue and S is the single service
time, the index that emerges from the Lagrangian Relaxation approach has the form

W(x) = E[C(x + χ) − C(x − 1 + χ)]
E(S)

for x ≥ 1, (43)

where χ has the distribution of the customers in the system of the single class M/G/1
queue under nonidling service. Assuming that the individual costs are expressed as
Ci(xi) = c1ixi + c2ix

2
i + c3ix

3
i , we get

Wi(xi) = 1

E[S]E
{
c1i

[
(x + χ) − (x − 1 + χ)

] + c2i

[
(x + χ)2 − (x − 1 + χ)2]

+ c3i

[
(x + χ)3 − (x − 1 + χ)3]}.

Given that

E
{
c1i

[
(x + χ) − (x − 1 + χ)

]} = c1i ,

E
{
c2i

[
(x + χ)2 − (x − 1 + χ)2]} = c2i

{
x2 − (x − 1)2 + 2E[χ]},

E
{
c3i

[
(x + χ)3 − (x − 1 + χ)3]}

= c3i

{
x3 − (x − 1)3 + 3

[
x2 − (x − 1)2]E[χ] + 3E

[
χ2]},
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assuming Poisson arrivals and exponentially distributed service, and recalling
that, for the resulting M/M/1 queue, E[S] = 1/μ, E[χ] = ρ/(1 − ρ), E[χ2] =
(ρ + ρ2)/(1 − ρ)2, and μρ = λ, results in the following index:

W(xi) = μi

(
3c3ix

2
i + 2c2ixi − 3c3ixi + c3i − c2i + c1i

)

+ λi

6c3ixi + 2c2i − 3c3i

1 − ρi

+ 3c3iλi

1 + ρi

(1 − ρi)2
. (44)

At decision points one should choose to serve the class which has the highest value
for such index. For the particular case of System 3, the above index assumes the form

W(xi) = μi

(
3c3ix

2
i − 3c3ixi + c3i

) + λi

6c3ixi − 3c3i

1 − ρi

+ 3c3iλi

1 + ρi

(1 − ρi)2
, (45)

whereas the index obtained by the �cμ-rule, say D(xi), assumes the following ex-
pression:

D(xi) = μi

[
qi

(
3c3ix

2
i − 3c3ixi + c3i

) + ri
(
3c3ix

2
i + 3c3ixi + c3i

)]
= μi

[
3c3ix

2
i + (ri − qi)3c3ixi + c3i

]
, (46)

because qi + ri = 1.
The experimental setting is the following. Relative to System 3, we fix μ2 = 1

for all cases and consider four variants for the value of μ1, which are in the set
{4,8,12,16}. We term the case where μ1 = 4 as the simple case. The other three will
be termed as double, triple, and quadruple cases, respectively. In all four cases we
will change the values of λi to incur a load of 5 %, 45 %, and 85 % for class 1 and
a 90 % load for the ensemble of the two classes. The discount parameter is fixed and
now set to be 5E–4. We change this relative to the results presented before to illustrate
that the relative order of the several heuristics tested is invariant to the discount value.

In Table 8 we present the achieved performances, where the costs have been nor-
malized with the discount parameter.

The first line corresponds to the optimal policy, and the last line presents the best
achievable performance for the �cμ-rule, upon the line search described earlier (in
parenthesis we display the optimal value of q1). The boldfaced values indicate the
best heuristic value, excluding the last line of the table. The four versions of the
�cμ-rule retain the relative order discussed in Table 7. In the 12 sets presented, the
Whittle index heuristic achieves the best results five times, whereas the four versions
of the �cμ-rule achieve the best results seven times. However, the �cμ-rule is tun-
able, and the last line shows that it can get closer to the optimal performance than any
of the other six heuristics.

This last set of numerical results shows that the optimal policy is also sensitive to
the relative magnitude of the arrival and service processes when costs are nonlinear.

A quick note on the differences between Table 8 under “simple” and Table 5
relative to the normalized and nonnormalized costs for the optimal policy and the
Gcμ-rule. The discount factor used in the two sets of experiments are different, and
hence the costs are different. Discounted costs converge to the infinite-horizon aver-
age costs as the discount factor drops to zero. In general, a similar behavior occurs
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Table 8 Performance for a subset of policies

Policy Simple Double Triple Quadruple

ρ1 ρ1 ρ1 ρ1

5 % 45 % 85 % 5 % 45 % 85 % 5 % 45 % 85 % 5 % 45 % 85 %

OPT 61.39 16.19 4.02 85.69 20.01 6.08 96.63 21.95 10.89 102.01 24.40 19.07

Gcμ 62.94 16.34 4.80 86.11 20.63 6.83 96.76 23.36 11.91 102.14 27.09 20.53

Whittle 61.81 16.35 4.03 87.20 20.69 6.09 98.50 23.40 10.89 103.82 27.09 19.09

HL 64.06 16.19 4.34 86.45 20.33 6.39 96.91 22.87 11.21 102.18 26.33 19.50

HH 62.94 16.34 4.80 86.05 20.70 6.91 96.75 23.40 11.91 102.14 27.09 20.53

LL 63.43 16.24 4.56 86.15 20.59 6.73 96.77 23.34 11.91 102.14 27.09 20.53

LH 62.53 16.50 5.04 85.87 21.05 7.25 96.70 23.95 12.60 102.18 27.92 21.56

�cμ 61.42 16.19 4.02 85.74 20.02 6.08 96.70 21.96 10.89 102.14 24.40 19.09

(3.56) (0) (−2.5) (1.7) (−1.3) (−5) (1.5) (−2.8) (−8) (1) (−4.8) (−11.8)

for the discounted optimal policies. However, given the discrete nature of the deci-
sion space, convergence of the optimal policies occurs while the discount factor is
still nonzero [5]. The optimal switching curves obtained for Tables 5 and 8 for the
simple case are exactly the same.

Out of the 12 cases presented in Table 8, we present a sample of the switch-
ing curves for the optimal policy, as well as for the Whittle-index heuristic and the
�cμ-rule. We will be focusing only on the 45 % load for each class. The quali-
tative behavior for the remaining cases does not change significantly. In Fig. 4 we
present those curves. In all cases the curve produced by the Whittle-index heuristic
does not match the optimal switch curve and remains below it. On the other hand, the
�cμ-rule has a very interesting proximity to the optimal curve. As the absolute value
of μ1 increases from the simple to the quadruple case, the curves produced by the
Whittle-index heuristic fail to accompany the movement of the optimal curve, drift-
ing away from it, although they move in the right direction. The percent deviation
observed in Table 8 to the optimal cost by the Whittle-index heuristic is consistent
with this drift. This behavior has been observed for all cases tested. It is as if there is
not enough elasticity for the Whittle-index heuristic.

Reasons for this may be explained from Eq. (43). As the Gcμ-rule generalizes the
cμ-rule interpreting it as the derivative of the linear single stage cost, the Whittle-
index derivation interprets the cμ-rule from the point of view of the savings. That
is, what is the class that saves the most and/or faster if it sees its queue reduced by
one customer at the end of service, in line also with the arguments for the proof
of Theorem 6. However, one may need to take into account the case that saves the
most by not having extra customers at the end of service. This is exactly what the
�cμ-rule does by considering both �i(xi) and �i(xi + 1). Therefore, the Whittle-
index heuristic produces a biased estimate of the optimal switching curve. Eventually,
χ should be replaced by the distribution of arriving customers during a service.
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Fig. 4 Sample of switching curves obtained by the �cμ-rule (DELTA) and the Whittle-index heuristic
(WHITTLE) compared with the optimal switching curves (Optimal)

5 Conclusions

In this paper, we have provided numeric evidence that the optimal policy for the
single-server scheduling problem, when costs are convex, depends on the individual
load each class imposes on the server. We restricted our analysis to systems serving
only two classes of customers. We formulated a set of related problems for which
we were able to derive the optimal policy and used the knowledge these problems
provided to propose an alternative generalization of the cμ-rule. This new general-
ization, designated as the �cμ-rule, relies on a composition of first-order differences
of the single-stage cost function and is a function of the individual loads. We pro-
vided numeric evidence of near optimality for the �cμ-rule. Given that tuning the
parameters for this rule is more time consuming than finding the optimal policy, we
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proposed an approximation to it that can be obtained without any computational ef-
fort. This works by dividing the load space into three regions: High, Intermediate,
and Low. Although we lose the near optimality, we still obtain better performances
than the generalized Gcμ-rule of Mieghem [20] and than the Whittle index for many
cases. If traffic is biased, the performance deviations tend to be higher in Mieghem’s
generalized rule. The performance deviations to the optimal are very small for un-
biased traffic and when classes have similar processing rates. Our �cμ-rule can be
fine tuned for any traffic condition, where it achieves near optimal performance in all
cases tested.

Several different directions for future research can be foreseen. We focused on
single server and two classes. So, a natural development would be to consider pools
of servers and more classes of customers. We believe that the optimal policies should
keep a similar structure to what was here presented, in terms of their dependence
on the individual loads and relative magnitude of the service rates. However, the ex-
tension of the �cμ-rule to more classes needs to be investigated, together with its
potential performance gains. The best educated guess in terms of generalizing the
�cμ-rule to more classes of customers is that there should be a fixed set of weights
for each class, qi and ri . Given that these need to add up to one to maintain con-
sistency with the optimal policy for linear costs, it turns out that there is only one
parameter to determine for each class. One possible avenue to explore is to formulate
a Dynamic Programming problem with fixed policy and optimize the policy param-
eters, which are the weights. For fixed policies, it may be possible to formulate a
nonlinear programming problem as discussed in [5]. Alternatively, the χ in Eq. (43)
could be reinterpreted as discussed at the end of Sect. 4.
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