

"An Inventory Decision Support System to the Glass Manufacturing Industry"

Nuno M. R. ÓrfãoCarlos F. G. Bispo(Mechanical Engineering Department, ESTG-IPLEI)(Institute for Systems and Robotics, IST-UTL)
cfb@isr.ist.utl.pt

EWG-DSS 2001 12th International Meeting of the EURO Working Group on Decisions Support Systems Cascais, 18-20 May 2001

An Inventory Decision support System to the Glass Manufacturing Industry - Nuno Órfão and Carlos Bispo

Summary

- 1. Problem framework
- 2. What kind of decisions?
- 3. Methodology
- 4. The glass manufacturing process
- 5. The IPA Approach
- 6. The SimulGLASS package
- 7. Numerical study example
- 8. Future developments
- 9. Conclusions

1. Problem framework

- Generalized Portuguese glass industry production strategy is a producing-to-order one;
- Managers are often confronted with decisions on whether or not to hold inventories;
- Some lack of suitable inventory decision support systems;

2. What kind of decisions?

 For a production process, and for a given production strategy (make-to-stock, maketo-order, ...) we decide on...

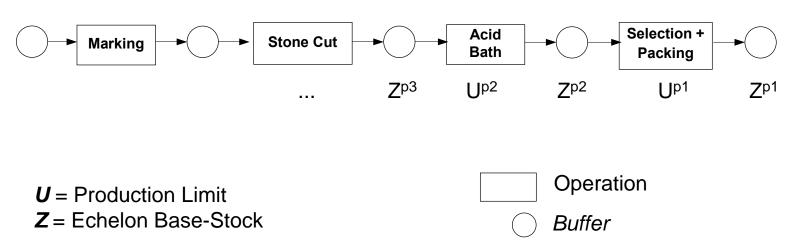
i) the base-stock levels that minimizethe total cost

ii) the corresponding **service level**

• Compare the **performance** of alternative production strategies

3. Methodology

- i) Process data analysis
- ii) Literature review
- iii) Model definition
- iv) Software development
- v) The testing stage
- vi) Numerical study
- vii) Analysis of results



4. The Glass Manufacturing Process

Hot-area:

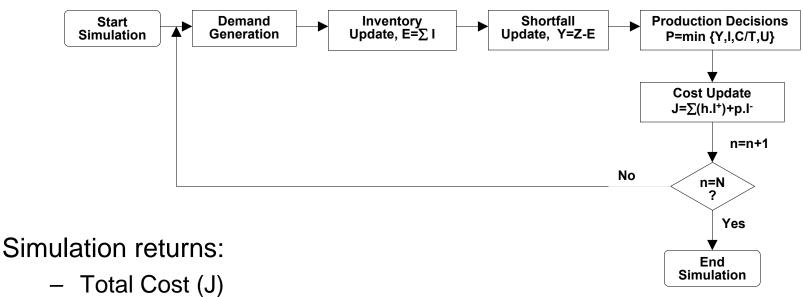
Cold-area:

5. Model Definition

- Multiple machines in series with finite capacity
- Multi-products
- Lot Splitting
- Random Yield
- Random Demand
- Production decisions based on a weighted shortfall heuristic

6. The Infinitesimal Perturbation Analysis (IPA) Approach

- Tool used on complex systems to compute
 Grad J (in order to the control parameters);
- Classical approach:


M parameters \Rightarrow M+1 Simulations

• IPA approach:

M parameters \Rightarrow 1 Simulation

7.1 Software Package - Simulator



Cost Cradient (Crad

$$J_{n}^{p} = \sum_{s=2}^{s} \left[(I_{n}^{ps})^{+} h^{ps} \right] + (I_{n}^{p1})^{+} h^{p1} + (I_{n}^{p1})^{-} b^{p} + \sum_{s=1}^{s} (1 - \alpha^{ps}) (h^{ps} - m^{p}) P^{ps}$$

7.2 Software Package - Optimizer

7.3 Software Package - Output

- **Minimum cost** for the simulated strategy;
- Optimal base-stock levels for all products at all stages;
- Optimal Production limits for all products at all stages;
- Average lead-time for all products;
- Corresponding service level;
- Internal Costs (In-house costs);

7.3 Software Package – User interfaces

ver Hubbli Brainer	Dealers here	No. 198:										
		COST STRU	CTURE		1007100							
Lakana Cant (Britana) Kanage Cant (Britana)	51409 3 [38] [1.1	Stope B	Shape F	Sage 6	Skope S (20)							
	Nage 1 [1]	Thoge 2	13age 2 [20	31apr1 [2]		- The other Property is		diel tem				
		22122-000	11015	02/11/11	-							
Partici	Giace Gaussian Fail	Size (in pred				audres 1959	1 1	Second Supple ABOUT	• <u> </u>	Dantaisen Vorkab	ke-LDV
#1 F		Đ				Rees Stock	z				Defectivities	Alpidentif
	10 C					Parlaction Line	* E					Al pestado M
#2 F						Nullying Fact	-					Mits/DD/M
HU K	00						Stage 9	Staps 8	Shape 7	Shape 6	Stage 5	
11 F						Rass Product LT	25 85	25 10	25 85	25 85	23 85	
						Base Product 1.2	Pri Hi	129 43	110 142	HO (A)	10 14	
o r	00					Barr Product 13	PH 11	10 43	107 143	FICE AT	PT PT	
							Tage 1	Mage 2	Mage 2	Slage 1		HILLING
						InterProduct Line	25 US	25 115	2 % NY	23 85		FOUCH
					I	Sal-Poder1.15	1 23	4 2.2	1 21	1 11		-
						Tal-Product Cle	(F #15	(* 10	p== p=	D. D.		
						Tab-Product Lite	(FT (FT))	F FF	E PT	F F		[HOL 3]
					I	Tab Product L2h	N D	4 111	1	0 0		101 E
					I	Sale Peakant Lits	10 23	a 22	1 21	1.11		Inu T
						Tab-Product.Clu	1 15	F* 112	P DT	F F		[HT
					I	Int-Protect Life	a (1)	Ja (2.2	1 21	F (F		101 101 101 101
						Int-Product Cle	8 15	(* D)	P 21	State of the second		Tarre and

7.4 Software Package - Tests

- Derivative accuracy $\frac{\partial J}{\partial Z} = \frac{J_{perturbed} J_{nominal}}{\epsilon}$
- Function cuts along gradient direction
- Control of state and decision variables (Inventory ≥ 0, Production ≥ 0, ...)

8.1 Numerical Study Example - Data

- Process Parameters
 - 27 Products (Pareto's Law)
 - High demand level (80%)
 - Medium demand level (15%)
 - Low demand level (5%)
 - 9 Machines (stages) and random yield
 - 4 production shifts/day
 - 4 Production strategies: MTS, MTO, DD and M/D/M

8.2 Numerical Study Example - Results

Production Strategy	Optimal Cost	Confid. Interval	In-house Cost
MTO	3079,6	±1,9 %	488,6
DD	1529,4	± 0,7 %	540,4
M/D/M	1075,8	±0,8 %	595,2
MTS	999,1	±1,4 %	631,5

• Costs:

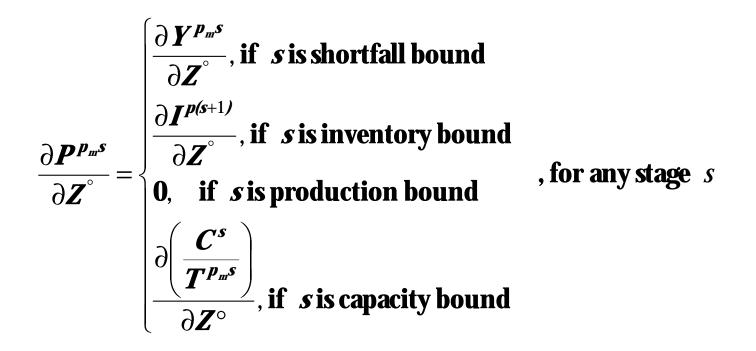
[m.u.]

	STRATEGY	МТО	DD	M/D/M	MTS		
	Demand Level	Lead-times [shifts]					
_ead-times:	High	7,21	2,71	1,24	2,73		
_eau-times.	Medium	6,66	2,67	2,61	1,17		
	Low	4,67	2,74	4,87	0,73		
	All products	6,18	2,71	2,91	1,54		

9.1 Conclusions

- Development of an efficient tool to support production management teams;
- Evaluation of alternative production strategies;
- IPA provides rapid identification of good solutions;

9.2 Future developments


- Use firm data base to update process parameters (processing times, yield rates, ...)
- Development of more complex model (with random capacity and processing times);
- Dealing with random yield

• Alternative optimization algorithms (*Broyden-Fletcher-Goldfarb-Shanno*, ...);

A.1 Production Decisions

$$\boldsymbol{P}^{\boldsymbol{p}_{m}\boldsymbol{s}} = \min\left\{\boldsymbol{Y}^{\boldsymbol{p}_{m}\boldsymbol{s}}, \frac{\boldsymbol{C}^{\boldsymbol{s}}}{\boldsymbol{T}^{\boldsymbol{p}_{m}\boldsymbol{s}}}, \boldsymbol{I}^{\boldsymbol{p}(\boldsymbol{s}+1)}, \boldsymbol{U}^{\boldsymbol{p}_{m}\boldsymbol{s}}\right\}, \text{ for stage } \boldsymbol{s}$$

A.2 Performance Measure - Cost

$$J_{n}^{p} = \sum_{s=2}^{S} \left[(I_{n}^{ps})^{+} h^{ps} \right] + (I_{n}^{p1})^{+} h^{p1} + (I_{n}^{p1})^{-} b^{p} + \sum_{s=1}^{S} (1 - \alpha^{ps}) (h^{ps} - m^{p}) P^{ps}$$

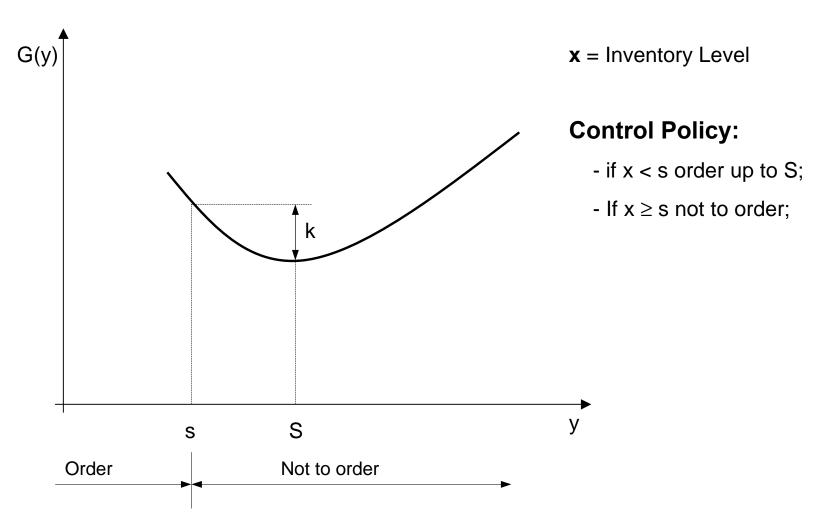
$$\frac{\partial J_n^p}{\partial Z^{\circ}} = \sum_{s=2}^{s} \frac{\partial (I_n^{ps})^+}{\partial Z^{\circ}} h^{ps} + 1 \{I_n^{p1} > 0\} \frac{\partial (I_n^{p1})^+}{\partial Z^{\circ}} h^{p1} - 1 \{I_n^{p1} < 0\} \frac{\partial (I_n^{p1})^-}{\partial Z^{\circ}} h^p + \sum_{s=1}^{s} (1 - \alpha^{ps}) (h^{ps} - m^p) \frac{\partial P_n^{ps}}{\partial Z^{\circ}}$$

A.3 IPA Validation

Validation procedure consists in show that:

- All variables are diferentiable;
- Define their values;
- *Expected Value* and Diferentiation are permutable operatores;

A.4 Optimality Condition


• The optimal base-stock levels, **Z**, for the performance measure COST and for any production strategy are such that the following relation holds:

$$Pr(D_n^p \le I^{p_1}) = \frac{b^p}{b^p + h^{p_1}}$$

• Once the **SERVICE LEVEL** is defined, the estimation of the penalty costs becomes a simple task.

A.5 (s,S) Policy definition

