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Single server scheduling problem

Optimal policy for convex costs depends on arrival rates

Carlos F. Bispo

Abstract Being probably one of the oldest decision problems in queuing theory, the

single server scheduling problem continues to be a challenging one. The original for-

mulations considered linear costs and the resulting policy is puzzling in many ways.

The main one is that, either for preemptive or non preemptive problems, it results in

a priority ordering of the different classes of customers being served that is insensitive

to the individual load each class imposes on the server and insensitive to the overall

load the server experiences. This policy is known as the cµ-rule.

Recently and to address the fairness issue, some authors proposed that convex costs

are a better way to model the problem. Customers in the non priority queues have a

highly variable cycle time as well as they may have a long average waiting time, un-

der linear costs. This may result in customer dissatisfaction and/or high abandonment

rates. The policy derived for convex costs is shown to be asymptotically optimal for

heavy traffic and consists on a generalization of the optimal policy for linear costs,

taking the derivative of the single stage cost function. One of the characteristics pre-

served in the generalization is the insensitivity to the individual loads of the classes

being served.

We claim and show that for convex costs the optimal policy depends on the indi-

vidual loads. Therefore, there is a need for an alternative generalization of the cµ-rule.

The main feature of our generalization consists on first order differences of the single

stage cost function, rather than on its derivatives. The resulting policy is able to reach

near optimal performances and is a function of the individual loads.
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1 Introduction

The setting for the problem we address consists of a single server that can process

different classes of customers, which arrive from the outside world and queue up in

front of it, waiting for service. There will be one queue per class and each queue is

served on a first come first serve basis. The arrival process is non controllable and each

class requires different processing times that, in general, are assumed random and a

priori unknown to the server. Whenever the server concludes a service, it will have to

decide which of the classes to serve next, out of the ones which have customers present.

It is assumed that there is a cost associated with each queue that is proportional to the

number of customers on that queue or, conversely, proportional to the waiting time of

the customers. So, the growing of the queues constitutes the incentive for the server to

work.

In general, considering there are xi(t) customers of class i, for i = 1, 2, . . . ,K, at

the time instant t, the single stage cost for class i can be defined to be Ci : N → R,

such that Ci(0) = 0 and limxi→∞ Ci(xi) = ∞. Here we dropped the explicit time

dependence for convenience. Furthermore, we will be interested in the cases where

these functions are convex. For a finite time problem under some decision policy one

may take the expected value over all possible trajectories of the integral over time

of the single stage cost functions sum for all classes. If the length of the trajectory

is unbounded one may choose to take a series of fixed length time average of that

expected integral, with growing length – infinite horizon average costs –, or take the

expected integral of the discounted sum of the single stage costs – infinite horizon

discounted costs. An optimal policy will be the set of decisions, function of the k-tuple

(x1, x2, . . . , xk) at any decision point, that for each of the above cases will achieve the

minimal cost.

If the service can be preempted and later resumed for any class, there will be two

decision points: the completion of a service and the occurrence of an arrival. For the

non preemptive case, only a service conclusion is a decision point. The only exception

to this is when an arrival occurs while the server is idle because, prior to the arrival

and upon conclusion of the last service, there were no customers waiting for service.

We also focus on the case where there is no cost associated with activating the server

– no warm up cost –, and no cost associated with switching from a class to another –

no set up, or change over, cost.

The classic approach to this problem assumed that the single stage costs are linear,

e.g., Ci(xi) = cixi. When such is the case, for both infinite cost versions in general,

the optimal policy is known as the cµ-rule. That is, assuming the average processing

time for class i is 1/µi, the optimal policy is such that at any decision point the server

will engage service with the head of the queue of the class which possesses the highest

value of µici. An easy way to interpret intuitively this rule is to consider that, if all the

processing rates are the same, priority should be given to the most costly queue, or to

consider that, if all the single stage costs are the same, priority should be awarded to

the queue with the shortest average processing time.

The oldest known reference to a version of this problem dates back to 1956. It is

considered that Smith [15] was the first to suggest the optimality of the cµ-rule. His

setting was deterministic and static. That is, the processing times are fixed for each

class – deterministic –, and all the customers are present at time 0 and no arrivals are

allowed after that – static. Outside the queuing theory community, in the scheduling

theory community this is also referred to as the WSPT – Weighted Shortest Processing



Time – rule. Later, Cox and Smith [6] showed the cµ-rule to be optimal for a stochastic,

dynamic environment with arbitrary time horizon. Their setting was that of a multiclass

M/G/1 queue. They considered both preemptive and non preemptive cases. Naturally,

it came with not much surprise that this rule is also optimal for stochastic and static

settings as Pinedo [12] and Righter [14] are examples where such result can be found.

The amount of extensions and variants of the problem that have been considered

after Cox and Smith is quite significant. For more references on related work we refer

the reader to the literature review presented in [16]. We only consider a sample of the

ones that focus on the simpler problem, i.e., no feedback for instance. Out of those,

Harrison [9] considered a multiclass M/G/1 with the added feature that there are also

rewards for each service completion. His policy is slightly more complex than the cµ-

rule, as his β-optimal, β being the discount parameter on a continuous time problem,

specify a priority ranking also, but some classes may never be served. The ranking

is a function of β, which is not the case of the original problem. Also, the ranking

is not defined by the simple cµ-rule. We believe that these differences are explained

by the inclusion of rewards, which distorts the original problem significantly. For the

case of discrete time problems, one example of optimality of the cµ-rule was presented

by Buyukkoc, Varaiya, and Walrand [4], for multiclass systems under arbitrary arrival

processes, geometric service times, and preemptive discipline. This followed the work

of Baras, Dorsey, and Makowsky [2] which established the optimality of the cµ-rule,

considering only two classes of customers, with arbitrary arrival processes and service

completions generated by independent Bernoulli streams.

One of the most intriguing features of this problem is the fact that the arrival rates

play no role on the optimal policy structure. Defining as λi the average arrival rate for

class i and defining as individual load of class i the ratio λi/µi, the fact that the each

class may have a higher or lower individual load is of no consequence on the optimal

policy. This raises an issue of fairness, in some sense. Suppose there are only two classes

of customers and the lower priority class has an individual load close to 10%, while

the high priority class has an individual load close to 90% (heavy traffic), for instance

costs are similar but processing rates are different. A customer of the non priority class

will see many customers of the priority class being served first despite the fact that

they may have arrived after. A consequence of this is a high variance of the waiting

time for the non priority customers. Naturally, the non priority customers have more

dificulty estimating when will they leave the system and, while waiting, each arrival

they see occuring for the priority queue has to be a source of disapointment. The linear

cost model tells us that the marginal patience of the customers is allways the same

no matter how much time they have been waiting. That is, the willingness to wait

an extra time unit is the same after a handfull of services that it was uppon arrival.

Whoever has standed in a non priority queue knows that this is not true and a natural

consequence is a high abandonment rate, or worse. Naturally, one could argue that the

abandonment behavior could be incorporated in the model and the appropriate policy

could be, afterwards, derived. This is the case addressed by Harrison and Zeevi, [10].

Another interesting feature of the problem is the fact that the optimal policy is

intrinsically myopic. That is, what appears to be the best short term decision agrees

with the long term best decision. Associated with this, given its simple structure, it

appears that the processing rate should be multiplied by the derivative of the cost

function when the single stage costs are linear.

The first work on this problem that addresses the concern of fairness is that of Van

Mieghem [16]. There, the author considers the single stage cost to be a convex function



of the delay for multiclass single server systems. Then, proposes to use the generalized

cµ-rule, where c is replaced by the first derivative with respect to delay of the single

stage cost function. By performing a heavy traffic analysis, the author shows that this

generalized rule is asymptotically optimal, in the sense that the cost achieved under

this policy approaches the cost of the optimal policy, as the the sum of the individual

loads approaches unity. Following this work, Mandelbaum and Stolyar [11] extend the

analysis to a case where the single server is replaced by a pool multiskilled servers that

work in parallel, considering convex single stage costs as functions of the individual

queue lengths. They also establish the asymptotic optimality of the generalized cµ-rule

by means of conducting a heavy traffic analysis. The maximum pressure policies of [7,8]

for general stochastic processing networks produce exactly Van Mieghem’s generalized

cµ-rule for single server problems.

While agreeing with the inclusion of convex costs to better reflect the marginal

patience of the waiting customers, we believe that there are two points on the gener-

alization that deserve further discussion. The first point concerns using the derivative

of the single stage cost function to generalize the cµ-rule. Firstly, we stress that each

Ci : N → R and one can construct many convex such functions which have no deriva-

tive when assuming their domain to be the set of the real numbers. Secondly, and

probably the most relevant issue, suppose one formulates this as a continuous time

Markov Decision Problem, assuming Poisson arrivals, exponentially distributed service

times, and applies Dynamic Programming to compute the optimal policy, through a

policy iteration algorithm, for instance. Given the fact that the state space is a k-tuple

of integers and that through its successive iterations the algorithm only produces valid

state space transitions, one should wonder how would it be possible to converge to

derivatives. In other words, is the simplicity of the linear costs hiding something else?

The second point concerns the fact that the individual loads are still not playing

any role on the structure of the optimal or sub-optimal policies, which is intriguing,

to say the least. One exception to this is the work of [1], where the authors derive

an index heuristic for convex costs, by formulating a restless-bandit problem. Their

approach considers preemptive service only, and the resulting index is a function of the

individual arrival rates, but only considers the cost gain of reducing the queue lenght

of the served class.

It is the purpose of the work presented here to further our knowledge on this

problem and to accomplish this we will show that the optimal policy does depend

on the individual loads and that a better generalization of the cµ-rule relies on first

order differences of the single stage cost function. Our generalization includes also the

influence of cost increases when a queue gets an extra customer, not just the cost

reduction due to a departing customer, as in [1]. On this last finding, note that for

linear costs they are exactly the same, thus justifying that the linear costs do hide a

more interesting feature.

Naturally, these findings will have to be reconciled with [16,11,8], as our work

does not question the validity of the results there reported. In fact, the asymptotical

optimality of their generalized cµ-rule, which we will term as the Gcµ-rule, does not

conflict with the fact that, in general, we get costs no further from the optimal costs

with our proposed sub-optimal policies and even achieve better results than the Gcµ-

rule.

In what follows we will first formulate a MDP for a two class single server with

convex single stage costs in Section 2. The restriction to two classes is done due to the

fact that we intend to numerically compute the optimal policy and do not want to be



overwhelmed by the curse of dimensionality, [3]. Then, in Section 3, we establish a set of

very interesting results for particular instances of the single server scheduling problem,

that will help us identifying how should the cµ-rule be generalized. These results are

valid per se, as some of the systems considered can occur in real life. Following this,

in Section 4, we present a series of numerical examples that illustrate that the optimal

policy is a function of the individual loads. Inspired by the results of Sections 3, we

propose a generalization of the cµ-rule and present numerical data to support our claim

that it is possible to have a better generalization than the existing ones. Finally, we

conclude in Section 5, establishing a bridge between our work and previous work, and

pointing directions for further research.

2 The model

We are going to restrict our analysis to a system serving only two classes of customers.

Let λi be the average arrival rate for class i, for i = 1, 2, and assume customers

arrive according to independent Poisson processes. The processing requirements of each

customer are assumed to be statistically the same within each class, with service times

being exponentially distributed with mean 1/µi. Each service duration is independent

of previous service durations as well as independent of the number of customers waiting

in the system. Once started, a service may or may not be preempted and later resumed

with no penalty. We will address both cases were preemption is and is not allowed,

because there are some issues worth discussion concerning the later. Upon conclusion

of a service, the customer being served leaves the system.

We define as X(t) = [x1(t) x2(t)]′ the amount of customers of both classes present

in the system at time t. Given that there is only one server, it may be the case that either

a customer of class 1 or of class 2 is being served when X(t) is in the positive quadrant,

while all the others are waiting. Also, we assume idleness as a possible decision for the

server, although it will be seen later that the server never choses to remain idle if there

is at least one customer in one of the two queues. Given the fact that customers in the

same queue are undistinguishable, each queue is served by the order of their arrival to

the system, although customers of a given queue may be served prior to customers of

the other queue that arrived earlier to the system.

Our state description will also have to include the state of the server when we

consider the no preemption model. Therefore, we define as Z(t) = [X ′(t) y(t)]′ the

state of the system, where y(t) ∈ {0, 1, 2} is the server state at time t. If y(t) = 0 the

server is idle, or serving a customers of class i, if y(t) = i.

We will consider an infinite horizon discounted cost criterion with discount param-

eter β > 0 and will be interested in obtaining a stationary Markov policy. That is, a

policy is defined as a function that maps the state into one of the three options for the

server state, such that the decision is not a function of the time instant.

With the instantaneous cost rate defined earlier we can define the expected present

value of future costs, under a policy π, as follows

J(Z(0), π) = EπZ(0)

{∫ ∞
0

e−βtC(Z(t))dt

}
, (1)

where EπZ(0) {.} denotes the expectation with respect to the probability distribution

of the path space of Z that corresponds to initial state Z(0) and control policy π, and

C(Z(t)) = C1(x1(t)) + C2(x2(t)). We then define the value function as



V (Z(0)) = inf
π∈Π

J(Z(0), π) for Z(0) ∈ S, (2)

where S defines the set of all possible states and Π defines the set of all stationary

policies. We will use V (X(0)) in the preemptive case and V (X(0), y(0)) in the non

preemptive case. In what follows we will first detail the preemptive case followed by

the detail of the non preemptive case. After we compare the equations and show that

the standard formulation of MDP needs to be changed to accommodate systems where

the server state need to be captured in the overall state description.

2.1 Detail for the non preemptive case

When preemption is not allowed, the only decision points are arrivals to an empty

system or conclusion of service. So, only for y = 0 we have choices to make. Because

we are dealing with a continuous time Markov process, we resort to the uniformization

procedure to convert it into a discrete time problem. Defining the uniform rate as

γ ≥ λ1 + λ2 + µ1 + µ2 ≥ 0, α = γ/(β + γ), and omitting the explicit time dependency

to avoid an excessively cumbersome notation, the value iteration algorithm, [3], for this

problem becomes

Vk+1(X, 0) =
1

β + γ
[C1(x1) + C2(x2)] +

+ αmin
{
Ṽk(X, 0, u|u = 0), Ṽk(X, 0, u|u = 1), Ṽk(X, 0, u|u = 2)

}
, (3)

where u represents the control decision, V0(X) = 0, ∀X ∈ S, and with

Ṽk(X, 0, u|u = 0) =
λ1

γ
Vk(X + e1, 0) +

λ2

γ
Vk(X + e2, 0) + (1− λ1 + λ2

γ
)Vk(X, 0),

Ṽk(X, 0, u|u = 1) =
λ1

γ
Vk(X + e1, 1) +

λ2

γ
Vk(X + e2, 1) +

µ1

γ
Vk(X − e1, 0) +

+ (1− λ1 + λ2 + µ1

γ
)Vk(X, 1), (4)

Ṽk(X, 0, u|u = 2) =
λ1

γ
Vk(X + e1, 2) +

λ2

γ
Vk(X + e2, 2) +

µ2

γ
Vk(X − e2, 0) +

+ (1− λ1 + λ2 + µ2

γ
)Vk(X, 2),

with e1 = [1; 0]′ and e2 = [0; 1]′. To complete the model we need to present the operator

for the remaining states.

Vk+1(X, 1) =
1

β + γ
[C1(x1) + C2(x2)] + α

{
λ1

γ
Vk(X + e1, 1) +

λ2

γ
Vk(X + e2, 1)+

+
µ1

γ
Vk(X − e1, 0) + (1− λ1 + λ2 + µ1

γ
)Vk(X, 1)

}
, (5)



Vk+1(X, 2) =
1

β + γ
[C1(x1) + C2(x2)] + α

{
λ1

γ
Vk(X + e1, 2) +

λ2

γ
Vk(X + e2, 2)+

+
µ2

γ
Vk(X − e2, 0) + (1− λ1 + λ2 + µ2

γ
)Vk(X, 2)

}
. (6)

Naturally, (5) is only applicable for states where x1 > 0 and (6) for states where

x2 > 0.

3 Exact results on specific systems

In an effort to better understand the nature of the optimal policy for the problem

addressed in this paper, we are now going to analyze four particular problems that

have some connection with it. We start by defining the problems in a somewhat loose

manner.

Problem 1 Take a static version of the problem addressed in this paper, with K > 1

classes. That is, all customers are present at time zero and no arrivals will occur

afterward. Assume there are xi customers in queue i and that the single stage cost is

convex as defined earlier. The objective is to clear the system of customers with the

lowest cost possible.

Problem 2 Consider a closed queuing network with a single server, two classes of

customers, and fixed population. At the conclusion of a service on a given class a new

customer of the other class is allowed to enter. Initially there are xi customers of class

i. With the same single stage cost as defined earlier, the objective is to identify the

non idling policy that minimizes the infinite horizon discounted cost.

Problem 3 Consider a closed queuing network with a single server, K = 2 classes

of customers, and fixed population. At the conclusion of a service on any given class

a new customer will be allowed to enter the system. The new customer is of class i

according to the ratio pi = λi/(
∑K
k=1 λk). With the single state cost defined earlier

and xi customers of class i present in the system at time zero, the objective is to

identify the non idling policy that minimizes the infinite horizon discounted cost.

Problem 4 Consider an open queuing network with a single server and two classes

of customers. At the conclusion of a service one customer of each class is allowed to

enter the system. Assuming there are xi customers of class i at time zero and using

the single stage cost defined earlier, the objective is to identify the non idling policy

that ensures the minimum infinite horizon discounted cost.

Before analyzing each of the four problems individually we offer some remarks on

each problem. The first remark on the four problems is the fact that the arrival process

is no longer uncontrollable. Naturally, knowing that no customers will arrive or that

they only arrive when a service is concluded drastically changes the nature of the

problem. An intrinsic feature of the single server scheduling problem we are addressing

is the fact that only the stochastic nature of the arrival process is known, not the

specific arrival instants.



Problem 1 can be seen as the convex cost successor, with stochastic services, of

the original problem addressed by Smith, [15]. Also, in many service contexts there is

such a thing as the closing hours, after which only the customers already inside the

system will be served. At that point in time, when the doors are closed, the problem

to be solved no longer is an infinite horizon dynamic problem, becoming static as

Problem 1. Problems 2 and 3 are examples of manufacturing contexts where there is

a fixed number of pallets where parts are mounted on for processing. So, only when

a part is completed another one will use the available pallet. Problem 4 is naturally

the oddest of them all, given the fact that it is unstable, whereas Problems 2 and

3 are marginally stable. Therefore, the concept of minimal cost needs to be clarified

here. No matter what customer is served, two new customers will enter the system.

Therefore, for any non idling policy chosen, the population will grow to infinity. We are

looking for the non idling policy that achieves the infimum cost relative to all possible

non idling policies. In other words, the policy that approaches infinity the cheapest

way. Although this problem has no real life application, we hope its usefulness for our

discussion will become clear by the end of this section. For the four problems we are

able to characterize the structure of the optimal policy.

Lemma 1 In a situation where there are no arrivals during service, either because

arrivals are switched off or because they only occur at the conclusion of a service, and

assuming the first and second services will serve different queues, the value function

for a given policy π can be written as

J(Z(0), π) =
C(Z(0))

µi + β
+
EπZ(0){C(Z(s1))}
(µi + β)(µj + β)

µi + EπZ(0)

{∫ ∞
s1+s2

e−βtC(Z(t))dt

}
, (7)

where Z(0) is the initial state, µi is the processing rate of the first class served, µj is

the processing rate of the second class served, s1 is the duration of the first service,

and s2 the duration of the second service.

Proof: First, note that (1) can be written as

J(Z(0), π) = EπZ(0)

{∫ s1

0

e−βtC(Z(t))dt+

∫ s1+s2

s1

e−βtC(Z(t))dt +

+

∫ ∞
s1+s2

e−βtC(Z(t))dt

}
= E[Z(0),s1]

{∫ s1

0

e−βtC(Z(t))dt

}
+

+ E[Z(0),s1,s2]

{∫ s1+s2

s1

e−βtC(Z(t))dt

}
+

+ EπZ(0)

{∫ ∞
s1+s2

e−βtC(Z(t))dt

}
(8)

where s1 is the duration of the first service and s2 is the duration of the second service.

We will now derive the expressions for the first two terms.



A1 = E[Z(0),s1]

{∫ s1

0

e−βtC(Z(t))dt

}
=

∫ ∞
0

∫ s1

0

e−βtC(Z(t))dtµie
−µis1ds1

= C(Z(0))

∫ ∞
0

∫ s1

0

e−βtdtµie
−µis1ds1

=
C(Z(0))

µi + β
. (9)

The above relation is valid if and only if there are no arrivals during service, which

is the case of any of the four problems presented. Moreover, the number of customers

on both queues equals those present at time zero, and the service on any of the queues

is exponentially distributed.

For the second term, assuming the first and second services are on different classes

and that there are no arrivals during the second service, we get

A2 = E[Z(0),s1,s2]

{∫ s1+s2

s1

e−βtC(Z(t))dt

}
=

∫ ∞
0

∫ ∞
0

∫ s1+s2

s1

e−βtC(Z(t))dtµie
−µis1ds1µje

−µjs2ds2

= EπZ(0){C(Z(s1))}
∫ ∞

0

∫ ∞
0

∫ s1+s2

s1

e−βtdtµie
−µis1ds1µje

−µjs2ds2

=
EπZ(0){C(Z(s1))}
(µi + β)(µj + β)

µi (10)

Q.E.D.

Definition 1 Let the first order difference of the single stage cost function along

direction i at state Z be defined as ∆i(xi) = C(Z)−C(Z − ei) = Ci(xi)−Ci(xi − 1).

Now we are in a position to characterize the optimal policies for the four problems.

Theorem 1 For Problem 1, when there are xi customers in queue i, for i = 1, . . . ,K,

it is optimal to select for service the class for which µi∆i(xi) is maximum.

Proof: We use a pairwise interchange argument. Assume the optimal policy, π, is

such that the kth decision choses class j and the (k + 1)th decision choses class i and

the condition of the theorem is violated. That is, µj∆j(xj) < µi∆i(xi). We build an

alternative policy π′ where only those two decisions are altered, serving first class i

followed by class j.

Under both policies, all decisions taken prior to the kth decision and after the

(k + 1)th decision will incur the same cost. Given the nature of the problem, we can

assume with no loss of generality that k = 1.

So, we can compare the costs of serving first class j followed by class i with the

costs of serving first class i followed by class j, and the following decisions will follow

the optimal policy π.



For policy π′ = [i, j, π] and from Lemma 1 we get

J(Z(0), π′) =
C(Z(0))

µi + β
+

C(Z(0)− ei)
(µi + β)(µj + β)

µi +A(Z(0)− ei − ej , π′). (11)

The term A(Z(0) − ei − ej , π′) represents the cost to go after the second service

is concluded and policy π is used from then on, taking into account that a class i

customer was served followed by a class j customer in the first two services.

For policy π = [j, i, π] we get

J(Z(0), π) =
C(Z(0))

µj + β
+

C(Z(0)− ej)
(µj + β)(µi + β)

µj +A(Z(0)− ei − ej , π), (12)

By the nature of the problem and given the stated policies, A(Z(0)− ei− ej , π′) =

A(Z(0)− ei− ej , π), because the state reached after the first two decisions is the same

under both policies and policy π′ produces the same decisions as policy π from the

third decision onward. Defining ∆J = J(Z(0), π′)− J(Z(0), π)

∆J =
C(Z(0))

µi + β
+

C(Z(0)− ei)
(µi + β)(µj + β)

µi −
C(Z(0))

µj + β
−

C(Z(0)− ej)
(µi + β)(µj + β)

µj

=
1

(µi + β)(µj + β)

{
C(Z(0))(µj − µi) + C(Z(0)− ei)µi − C(Z(0)− ej)µj

}
=

1

(µi + β)(µj + β)

{
−C(Z(0))µi + C(Z(0)− ei)µi + C(Z(0))µj −

− C(Z(0)− ej)µj
}

=
1

(µi + β)(µj + β)

{
−∆i(xi)µi +∆j(xj)µj

}
. (13)

Given the fact that, 1
(µ1+β)(µ2+β)

> 0 and µj∆j(xj) < µi∆i(xi), it follows that

∆J < 0, which contradicts the optimality assumption for policy π.

We can apply the same argument for all consecutive decisions where different classes

are served. Therefore, from the optimal policy π we can construct an alternative policy,

π∗, where costs are never worse than those achieved under policy π by enforcing the

stated rule whenever it is not observed in policy π, and the result follows.

Q.E.D.

The formal results for the remaining problems will be presented without proofs, as

the proof technique follows the same path as this one.

Theorem 2 For Problem 2, with xi customers in queue i, for i = 1, 2, it is optimal to

select for service class i if µi∆i(xi) + µj∆i(xi + 1) is maximum, where j is the index

for the other class.

Theorem 3 For Problem 3, with xi customers in queue i, for i = 1, 2, and defining

pi = λi/
∑
k λk, it is optimal to select for service the class i if pjµi∆i(xi)+piµj∆i(xi+

1) is maximum, where j is the index for the other class.



Theorem 4 For Problem 4, with xi customers in queue i, for i = 1, 2, it is optimal to

select for service the class i if µj∆i(xi + 1) is maximum, where j is the index for the

other class.

Before concluding this section, the solution for Problem 4 deserves some intuitive

description as it can be seen as a dual to the solution for Problem 1. For Problem 4, if

both service rates are the same we should chose to serve the class that most increases

cost by receiving the extra customer. If both cost increases are the same we should

chose to serve the class with the lowest processing rate to delay the cost increase due

to the extra customer.

The relevance of Problem 4 to our discussion should now be obvious. For any of

the problems, we use a combination of the term µi∆i(xi) with the term µj∆i(xi + 1).

Apart Problem 2, the other ones are covered by the whole set of convex combinations

of the two first order differences, when there are only two classes. Table 1 contains the

synthesis of the results just established. The first remark we need to make concerns

the fact that any choice of pi and pj such that each is non negative and pi + pj = 1

will result on the optimal policy for one instance of the above problems with only two

classes. If both multipliers are equal to 1, then we are producing the optimal policy

for Problem 2. Therefore, if the optimal policy for the problem we address in this

paper was also to be produced by means of a combination of first order differences,

the multipliers to be used would have to be such that one or both would take values

outside the [0; 1] interval.

Table 1 The optimal multipliers.

Problem µi∆i(xi) µj∆i(xi + 1)
1 1 0
2 1 1
3 pj pi

4 0 1

Note that we are able to completely specify the optimal policies by means of a

combination of first orders differences of the single stage cost function, which can be

easily computed, and the optimal policies do not depend on the discount parameter

being used. It is also relatively easy to prove the above results for the infinite horizon

average costs. The proof scheme for these results is also based on a pairwise interchange

argument. We do not present those to avoid redundancy of the proofs, and expect any

interested reader to be able to produce them, as they are simpler because there is no

discount term to clutter the equations.

Finally, note that the convexity assumption for the single stage cost function does

include the case of linear costs, meaning the above results to be valid also for those.

Also, the above results are trivially valid for the preemptive and the non preemptive

cases. Since we know that the optimal policy for linear costs is the cµ-rule, it would

appear that the problem with linear costs is equivalent to our Problem 1. In a sense it

is, because the arrivals during service are irrelevant in a pairwise interchange argument,

as can be seen in Cassandras, [5], pp. 492—495, for the discrete time version of the

problem. However, it is the claim of this paper that there is a little more to it, as we

will show in the following sections.



4 Toward a generalization of the cµ-rule

In this section we present numeric evidence of the fact that the optimal policy for the

convex cost version of the scheduling problem depends on the individual load. Given

that we assume the buffers to be unbounded and we have to run the value iteration

algorithm for bounded state space we ran a series of tests to define an acceptable

cutting point, so that the value of the optimal cost is a close as possible equal to

the value for unbounded state space. For all the systems we run the value iteration

algorithm with xi ∈ [0; 200] and make β = 0.001. For results presentation we further

cut the state space where we can be sure there are no errors due to the approximation.

The results will be presented for xi ∈ [0; 50]. After these results we will propose an

alternative generalization of the cµ-rule, discuss its structure, and will present numeric

evidence supporting its adequacy in terms of performance.

System 1 Consider a non preemptive system with C1(x1) = 2x1, C2(x2) = 1.001x2 +

0.1x2
2, µ1 = 2, and µ2 = 1.

Mieghem’s generalized cµ-rule, which we will refer to as the Gcµ-rule, will produce

the following condition.

u(x1, x2) =

 0 if xi = 0

1 if x1 > 0 ∧ x2 ≤ 14.995

2 if x2 > 0 ∧ (x1 = 0 ∨ x2 > 14.995),

which is a threshold policy on the value of x2. Whenever x2 is below 15, priority is

given to class 1. If x2 is above 14, class 2 has priority over class 1. Note that this policy

does not depend the ρ1 = λ1/µ1 and ρ2 = λ2/µ2, nor on ρ = ρ1 + ρ2.

If the quadratic term of the single stage cost of class 2 were zero, then the optimal

policy would be to give priority to class 1 at all times. The existence of the quadratic

term for class 2 forces the decision maker to change priority when the population of

class 2 becomes higher than some amount. The higher the quadratic term, the lower

will the threshold be.

If we compute the optimal policy, using the value iteration algorithm, we also get a

threshold type policy as a function of x2. Table 2 presents the optimal threshold values

for a sample of values of ρi and a global load of 70% and 90%.

Table 2 Optimal threshold values for System 1.

Threshold
ρ1 ρ2 ρ = 70% ρ = 90%

0.05 ρ− 0.05 14 10
0.10 ρ− 0.10 14 12
ρ/2 ρ/2 15 15

ρ− 0.10 0.10 16 16
ρ− 0.05 0.05 16 16

When the individual loads are the same, the optimal threshold equals the one

obtained by the Gcµ-rule. However, in the case of fixed global load, if the individual

load of, say, class 2 grows, the optimal threshold decreases. This behavior is consistent



with intuition in the following sense. There should be a threshold for x2 above which

class 2 gets priority over class 1. If the traffic for class 2 is heavier, then the threshold

should drop because there will be more customers of class 2. This threshold drop does

not affect the performance for class 1, given that their input rate is lower and their

queue does not get as many customers as often as queue 2 gets. Moreover, we see that

as the global load increases, there is a tendency for the span of the optimal threshold

to get wider as a function of the individual loads. In fact, the optimal threshold for a

global load of 95% and for the first line of Table 2 is 7 and for last line is still 16.

System 2 Consider a non preemptive system with C1(x1) = 1.001x1+0.05x2
1, C2(x2) =

5x2, µ1 = 2, and µ2 = 1.

Given that the quadratic term is present on the cost associated with class 1, the

Gcµ-rule will produce a threshold policy for class 1, according to the following.

u(x1, x2) =

 0 if xi = 0

1 if x1 > 0 ∧ (x1 ≥ 14.99 ∨ x2 = 0)

2 if x2 > 0 ∧ x1 < 14.99.

Table 3 presents the threshold results for a global load of 90%. The behavior for

this system follows the same principle as for System 1. However, for this system the

threshold for equal loads does not match the level obtained through diferentiation of

the single stage cost function.

Table 3 Optimal threshold values for System 2.

ρ1 ρ2 Threshold
0.05 ρ− 0.05 16
0.10 ρ− 0.10 16
ρ/2 ρ/2 14

ρ− 0.10 0.10 10
ρ− 0.05 0.05 9

System 3 Consider a non preemptive system with C1(x1) = x1 + 0.1x2
1, C2(x2) =

1.2x2 + 0.3x2
2, µ1 = 3, and µ2 = 1.

Applying again the Gcµ-rule we get

u(x1, x2) =

 0 if xi = 0

1 if x1 > 0 ∧ (x2 ≤ x1 + 3 ∨ x2 = 0)

2 if x2 > 0 ∧ (x1 = 0 ∨ x2 > x1 + 3).

System 4 Consider a non preemptive system with C1(x1) = x1 + 0.1x2
1, C2(x2) =

4.8x2 + 0.3x2
2, µ1 = 3, and µ2 = 1.

For this system we get the following conditions for the Gcµ-rule.



u(x1, x2) =

 0 if xi = 0

1 if x1 > 0 ∧ (x2 ≤ x1 − 3 ∨ x2 = 0)

2 if x2 > 0 ∧ (x1 = 0 ∨ x2 > x1 − 3).

Figure 1 presents the optimal switching curves obtained for different individual

loads when the global load is 90% for Systems 3 and 4. When the state of the system

at a decision point is above or over any of the curves the server choses class 2 and

below choses class 1. Each plot also includes the switching curve associated with the

Gcµ-rule. The labels ”5%” and ”85%” correspond to the individual load of class 1.

Taking the generalized curve as reference, we see that an increase of the individual

load for class 1 shifts the curve upward, and a decrease in its individual load shifts the

curve downward. This behavior is in line with what was shown for Systems 1 and 2.

One could also say that the curves move left or right, given that the observed shifts

are consistent with the both observations. Note that the slope of the optimal switching

curves is the same as the slope of the generalized curve, which is 1. We need to clarify

the little detail at the origin where we intentionally changed one of the curves to mark

the square where the server is idle because there are no customers.

Fig. 1 Switching curves for Systems 3 and 4.

Taking these four systems as examples, one would be led to believe that the optimal

switching curves correspond to some type of shift of the switching curve obtained by

the Gcµ-rule. The following system serves the purpose of showing that it is not so.

System 5 Let there be a non preemptive system with C1(x1) = 2−9x3
1, C2(x2) =

2−5x3
2, µ1 = 4, and µ2 = 1.

Applying the Gcµ-rule we get the following

u(x1, x2) =

 0 if xi = 0

1 if x1 > 0 ∧ x2 ≤ 0.5x1

2 if x2 > 0 ∧ (x1 = 0 ∨ x2 > 0.5x1),

The optimal switching curves for ρ1 = 0.05 and ρ1 = 0.85, when the global load is

90%, are displayed in Figure 2, together with the generalized curve. Observing closely

the optimal curves for low values of xi we see that they are not straight lines, although



Fig. 2 Switching curves for System 5.

as |X| grows they become straight lines paralel to the generalized curve. This numeric

evidence on the structure of the optimal policy and its structural differences relative

to the switching curve generated through taking the derivative of the single stage cost

function calls for an attempt to propose a different manner of how to generalize the

cµ-rule. Before we move on to propose a new generalization, we need to analyze the

performance achieved under the optimal policies versus the performance achieved under

the Gcµ-rule.

Table 4 presents V (X, 0) for X = [0; 0]′ achieved with the optimal policy and

with Mieghem’s generalized rule, under ”Derivative”, for the first two systems. The

global load is 90%. Although the threshold levels may be significantly different on

both situations, as shown earlier, we see that the observed performance deviation is

pratically insignificant, agreeing with the claim of asymptotic optimality.

Table 4 Policy performance for Systems 1 and 2.

System 1 System 2
ρ1 Optimal Derivative Deviation Optimal Derivative Deviation
5% 20,371.2 20,530.4 0.781% 36,184.6 36,187.8 0.009%
10% 19,290.6 19,391.1 0.521% 34,076.4 34,079.3 0.009%
45% 15,119.5 15,119.5 0.000% 25,028.0 25,033.5 0.022%
80% 13,660.4 13,661.5 0.008% 17,429.7 17,563.7 0.769%
85% 14,500.0 14,500.4 0.003% 16,585.5 16,754.5 1.019%

A similar behavior is recorded for System 3 and 4, Table 5. However, for System 4

we note a maximum performance deviation on the sampled cases of over 5%. It appears

that there would be no advantage in trying to improve performance, given that the

results displayed so far are so favorable to the exhisting sub-optimal policy. However,

turning again to System 5 we see in Table 6 that the performance deviation can be

much higher. We recorded a little over 19% deviation in performance for this particular

system, which is very significant.

Therefore, given the small sample of systems presented and the potential perfor-

mance deviation that may occur, we believe there is room for improvement in an

attempt to produce alternative approximations to the optimal policy for convex costs.

Naturally, even if the performance deviations were not significant, the simple fact that

the optimal policy is a function of the individual loads is in itself an interesting aspect



Table 5 Policy performance for Systems 3 and 4.

System 3 System 4
ρ1 Optimal Derivative Deviation Optimal Derivative Deviation
5% 43,697.5 43,895.7 0.454% 66,859.6 66,978.5 0.178%
45% 24,681.1 24,790.5 0.443% 39,656.2 39,816.6 0.404%
85% 14,500.0 14,500.4 0.003% 21,224.8 22,383.8 5.461%

of the problem we are addressing. This fact alone has escaped a long series of work in

the area, for over half a century. Our challenge is to identify a better approximation

of the optimal policy, that at the same time is compatible with the optimal policy for

linear costs. In order to achieve that, we will build on the results of Section 3 and on

the insights gained by the numeric examples of this section.

Table 6 Policy performance for System 5.

ρ1 Optimal Derivative Deviation
5% 55,319.6 56,721.2 2.534%
45% 14,933.7 15,082.9 0.999%
85% 3,920.7 4,673.1 19.189%

4.1 Alternative generalization

The motivation that led to the generalized cµ-rule based on derivatives has been the

coincidence between the fact that ci is the derivative of cost for class i, assuming

Ci(xi) = cixi. Also, the heavy traffic analysis is partially responsible for this. In fact,

by scaling time and state space to convert a discrete problem into a continuous problem,

the emergence of derivatives is a natural consequence.

We propose to alternatively consider a combination of first order differences, des-

ignated as the ∆cµ-rule, according to the following.

µi[qi∆i(xi) + ri∆i(xi + 1)], (14)

where qi + ri = 1 and both are real numbers. The fact that ∆i(xi) = ∆i(xi + 1) = ci
when costs are linear, ensures the desired compatibility with the cµ-rule. Recalling

Table 1 we could re-write the expression above as

µi[qi∆i(xi) +
µj
µi
r̂i∆i(xi + 1)], (15)

defining ri = r̂iµj/µi, which leads to

µiqi∆i(xi) + µj r̂i∆i(xi + 1). (16)

With qi taking the place of pj and r̂i taking the place of pi in Table 1, at the end of

Section 3 we observed that if qi + r̂i = 1 and both parameters are in [0; 1], we produce

the optimal policy for some instance of Problems 1, 3, or 4. Then we claimed that to



address other problems one would have to lift those constraints. Saying that qi+ri = 1

is equivalent to saying that qi + r̂iµj/µi = 1, which in general means that qi + r̂i 6= 1.

Given the fact that the optimal policy depends on the individual loads, both qi
and ri will have to depend on the individual loads too. That is, we need to write

qi(ρ1, ρ2) and ri(ρ1, ρ2) in general. We omitted that dependence earlier to simplify the

presentation. We will now analyze the structure of the switching curves produced by

this scheme for general systems.

Consider a system where C1(x1) = c11x1 and C2(x2) = c21x2+c22x
2
2. The equation

defining the switching curve is given by

µ1c11 = µ2[q2(c21 + 2c22x2 − c22) + r2(c21 + 2c22x2 + c22)]

= µ2[c21 + 2c22x2 + c22(r2 − q2)], (17)

because ∆1(x1) = ∆1(x1 + 1) = c11 and taking arbitrary values for qi and ri, such

that qi + ri = 1. Therefore, we can re-write (17) to explicitly account for the threshold

level of x2, as follows.

x2 =
µ1c11 − µ2c21

2µ2c22
− r2 − q2

2
. (18)

If q2 = r2 we get the same threshold as the Gcµ-rule. If q2 < r2, the threshold will

go down and it will go up when q2 > r2. The essential feature we want to stress here

is the fact that this formulation produces a threshold that can be shifted up or down,

depending on the individual loads. To achieve the range displayed in Table 2 we need to

make q2 < 0 and qi > 1 when ρ1 is low. More specifically, if r2 − q2 = 9.99, we achieve

a threshold of 10 for x2. With the assumption that q2 + r2 = 1 this is accomplished

with r2 = 5.495 and q2 = −4.495.

Now assume we have a system such that C1(x1) = c11x1 + c12x
2
1 and C1(x1) =

c11x1 + c12x
2
1. Using the ∆cµ-rule, the switching curve will be given by

µ1[c11 + 2c12x1 + c12(r1 − q1)] = µ2[c21 + 2c22x2 + c22(r2 − q2)], (19)

rearranging the terms and solving in order to x2, we get

x2 =
µ1c12
µ2c22

x1 +
µ1c11 − µ2c22

2µ2c22
+
µ1c12(r1 − q1)− µ2c22(r2 − q2)

2µ2c22
,

which is a family of straight lines with constant slope and variable intercept. The

intercept variation is introduced by the parameters qi and ri. Again, if qi = ri we

get the equation generated by the Gcµ-rule. This structure is consistent with what we

observed for Systems 3 and 4. For systems like System 1 and 2, knowing the value of the

threshold is enough to determine the values of the two necessary parameters. However,

for systems like System 3 and 4, knowing the intercept is not enough to determine the

values of the four parameters, as we are left with one more degree of freedom. As we

will show in the following and much to our surprise, the existence of the extra degree

of freedom seems to be apparent.

Finally, assuming pure cubic costs for both classes, that is, Ci(xi) = ci3x
3
i , we get

µ1[3c13x
2
1 + 3c13x1(r1 − q1) + 1] = µ2[3c23x

2
2 + 3c23x2(r2 − q2) + 1], (20)



which can easily be solved in order to x2. Inspecting this last expression, when |X| → ∞
the quadratic terms are dominant. Thus the curve approaches a straight line. However,

for low values of |X| the equation above exhibits a non linear behavior. This is in line

with what was observed in Figure 2 for the optimal switching curves displayed.

4.2 Numeric results

Once we have proposed a new generalization for the cµ-rule, it is necessary to evaluate

how close to the optimal performance is it possible to get by tunning the parameters

introduced previously. We will focus our analysis on System 5 exclusively. First, we

will take a fixed value for ρ1 and ρ2 and will show how the performance depends on

the parameters. After, we will present a map of the best achieved performances for a

range of individual loads.

Fig. 3 Cost evolution.

Assume that for System 5 we have ρ = 0.90 and consider two cases for ρ1, 85% and

5%, which are the cases of maximum observed deviation between the optimal cost and

the cost achieved under the Gcµ-rule. In Figure 3 we present the evolution of V (0, 0, 0)

as a function of q1 for two pairs of values for q2 and r2. Values were computed for

steps of 0.1 for q1. The left plot displays the evolution for ρ1 = 85% and on the right

for ρ1 = 5%. The curve labeled ”1-0” represents the case where q2 = 1 and r2 = 0,

whereas the curve labeled ”0-1” refers to q2 = 0 and r2 = 1. The first observation on

these two plots concerns the dual nature of the behavior. In the left plot, for fixed q1,

the lower costs are achieved for the ”1-0” case, while on the right plot the lower costs

are achieved for the ”0-1” case. Also, cost is non decreasing with q1 on the left and

non increasing on the right.

The fact that the curves are non convex should not be a surprise given the discrete

nature of the problem, since some minor change on q1 may not produce any significant

difference on the switching curve for integer values of the state space.

The behavior here displayed has been observed in all systems we tested. Taking the

left plot as an instance, one should expect the cost to keep dropping as q1 decreases

down to some point, after which it should start increasing again. What we need to stress

here is the fact that for high values of ρ1 and fixing q2 and r2 there should be a value

for q1 where the curve reaches its minimum value, and the value of q1 which achieves

it is negative. On the right plot, there should also be a value of q1 after which the cost

should become non decreasing and that turning point is reached for positive values



of q1. This behavior is consistent with the shifts observed for the optimal switching

curves, presented earlier.

Note also that any horizontal line crosses the two displayed cost curves or none

of them. For fixed values of q2 and r2, this means that any cost within the range of

achievable costs can be reached with some choice of q1. This naturally includes the

minimal value achievable under the policy produced by the ∆cµ-rule.

In an effort to investigate how close to the optimal one could get with the ∆cµ-

rule, we conducted a series of line searches for different values of the parameters and

came to a striking and elegant numeric coincidence. Maintaining the constraint that

q1 + r1 = 1, we can restrict the search effort by imposing the following constraints.

{
q1 = r2
r1 = q2

(21)

In Figure 4 we present the evolution of the percent deviation of V (0, 0, 0) achieved

relative to the optimal value as a function of q1 when constraint (21) is enforced. We get

very close to the optimal value on both situations. More specifically, for ρ1 = 85% and

with q1 = −2.5, we achieve a cost of 3,920.74 while the optimal value is 3,920.73. When

ρ1 = 5% and q1 = 3.6, we a get a cost of 55,346.6 and the optimal value is 55,319.6.

We limited the line search to steps of 0.1. Therefore, one can conjecture that it may

be possible to get even closer. However, the displayed results are already sufficiently

good to make our case.

Fig. 4 Deviation to optimal value enforcing constraint (21).

Constraint (21) was unexpected when we initiated the study, but the fact that it

holds is a strong mark of elegance. Given the fact that these parameters are functions

of the individual loads, when we are dealing with only two classes of customers it makes

a lot of intuitive sense that it should be this way. Therefore, the problem of identifying

the optimal parameters for the ∆cµ-rule reduces to a pure line search. Table 7 presents

a sample of the best achieved performances for System 5 with varying ρ1. For each

value of ρ1 we display the value of q1 which achieves the best performance and the

percent deviation of the Gcµ and ∆cµ-rules relative to the optimal value of V (0, 0, 0).

Although there is a range of loads for which the Gcµ-rule achieves highly acceptable

performances, the table shows that it is always possible to do better by tunning the

parameters of the ∆cµ-rule.

Before we move on there are a couple of issues that deserve discussion. Firstly,

given the fact that the Gcµ-rule has been proved to be asymptotically optimal in heavy



Table 7 Performance comparison.

ρ1 q1 Gcµ ∆cµ
85% -2.5 19.19% << 0.001%
75% -1.4 17.95% << 0.001%
65% -0.9 7.68% << 0.001%
55% -0.6 2.99% 0.01%
45% -0.1 1.00% 0.019%
35% 0.2 0.20% << 0.001%
25% 0.8 0.03% << 0.001%
15% 1.2 0.40% 0.0092%
5% 3.6 2.53% 0.049%

traffic and given the numeric evidence here presented, there is a need to interpret this

inconsistency. In the context of a multiclass system, we define loosely the concepts

of biased and unbiased heavy traffic. We term as unbiased heavy traffic for K classes

a situation where ρi ≈ ρ/K for i = 1, 2, . . .K, and define as biased heavy traffic

a situation where one or more classes are such that ρi >> ρ/K and the remaining

classes are such that ρi << ρ/K. What we have seen for the specific case of K = 2 is

that the Gcµ-rule performs best in unbiased heavy traffic. The traditional heavy traffic

analysis methodology does not account for this difference between biased and unbiased

heavy traffic. In fact, in the absence of a specifically stated characterization on the

nature of the heavy traffic, one can only assume that for K >> 1 the results derived

are specific for unbiased heavy traffic. While in general the results may be valid in the

majority of the contexts irrespective of the heavy traffic characterization, we believe

this particular example suggests that future heavy traffic analysis will have to include

a validation that takes into account a possible variation of the derived policies when

the traffic is biased.

Secondly, although we have shown that the optimal policy is sensitive to the in-

dividual loads and that using the ∆cµ-rule is a way to get very close to the optimal

performance for any load, there is no simple way to determine the adequate parame-

ters to achieve those performances. Because we have been unable to identify the exact

relation between q1 and ρi, determining the optimal value for q1 is more complex than

determining the optimal policy alone. To do the line search described above implies

running the value iteration algorithm for a choice of q1 while the cost obtained for each

keeps going down. On the other hand, there is no such problem with the Gcµ-rule. To

overcome this drawback we propose to analyze a subset of choices for q1.

Table 8 presents the percent deviation of cost for the subset of interest. We code

each of the entries to facilitate a reference to them in the discussion. Although the

results presented refer to System 5, the qualitative behavior presented has been verified

across all systems tested. What we see is that when ρ1 is high, the best cost in the

subset is achieved by the entry HL, while when ρ1 is low the best cost is achieved

with entry LH. If we assign to each character of the code the meaning H as high and

L as low, then the results displayed have an easy and interesting interpretation. That

is, when ρ1 is high, the first cut solution that improves over the Gcµ-rule with no

computational burden is High for class 1 and Low for class 2, which relates to their

relative position in terms of individual loads. Conversely, if ρ1 is low, then the solution

is Low for class 1 and High for class 2.

Therefore, for the general case one would expect the definition of three regions for

ρ1: high, intermediate, and low. If the individual load of class 1 falls into the high



Table 8 Deviation from optimal for a subset of policies.

ρ1
q1 r1 q2 r2 Code 85% 5%
1 0 1 0 LL 13.35% 3.37%
1 0 0 1 LH 25.27% 1.86%
0 1 1 0 HL 7.83% 4.25%
0 1 0 1 HH 19.19% 2.53%

region, the choice should be HL; if it falls in the low region, the choice should be LH;

and if it falls in the intermediate region, the choice could either be LL or the Gcµ-rule.

When traffic is unbiased one can say that both classes have a low individual load, thus

justifying the choice for the intermediate region. Determining the specific cutoff values

to define the three regions can be done in a qualitative and loose manner. The reason

for this is as follows. Even if range limits are slightly off, the resulting policy for the

whole spectrum of values for ρ1 is definitely better than just using the Gcµ-rule all the

time.

Although we are not presenting any specific numeric evidence for preemptive sys-

tems, the results follow the same general structure just discussed. The only notable

issue to remark here concerns the fact that the optimal switching curves differ for

each system, depending if we allow preemption or not. Recall that for linear costs the

switching curves are exactly the same.

5 Conclusions

In this paper, we have provided numeric evidence that the optimal policy for the single

server scheduling problem, when costs are convex, depends on the individual load each

class imposes on the server. We restricted our analysis to systems serving only two

classes of customers. We formulated a set of related problems for which we were able to

derive the optimal policy, and used the knowledge these problems provided to propose

an alternative generalization of the cµ-rule. This new generalization, designated as

the ∆cµ-rule, relies on a composition of first order differences of the single stage cost

function and is a function of the individual loads. We provided numeric evidence of

near optimality for the ∆cµ-rule. Given that tunning the parameters for this rule is

more time consuming than finding the optimal policy, we proposed an approximation

to it that can be obtained without any computational effort. This works by dividing

the load space into three regions: High, Intermediate, and Low. Although we lose the

near optimality, we still obtain better performances than the generalized cµ-rule of

Mieghem, [16]. If traffic is biased the performance deviations tend to be higher in

Mieghem’s generalized rule. The performance deviations to the optimal are very small

for unbiased traffic. Our ∆cµ-rule can be fine tunned for any traffic condition, where

it achieves near optimal performance in all cases tested.

Several different directions for future research can be foreseen. We focused on single

server and two classes. So, a natural development would be to consider pools of servers

and more classes of customers. We believe that the optimal policies should keep a

similar structure to what was here presented, in terms of their dependence on the

individual loads. However, the extension of the ∆cµ-rule to more classes needs to be

investigated, together with its potential performance gains.
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