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Abstract 

 With the growing interest in the railway sector, mainly because of energetic reasons, there is 

also a need to increase the efficiency of the railway lines. One way to optimize this sector is to 

improve quality in the train control process itself. Nowadays, train dispatching is still mostly done 

by human operators that use elementary tools and thereby solving conflicts sub-optimally. Motivated 

by these factors, this report presents a model capable of detecting and solving conflicts, for single 

track railways. More specifically, this model proposes two resolutions methods: a heuristic 

resolution and a search for the optimal solution. To evaluate the quality of the developed model, 

several tests were made, obtaining encouraging results. These results showed that it is possible to 

solve conflicts optimally or near optimally, in a feasible amount of time. This program comes with a 

graphic interface so that the interaction with the dispatcher can be more user friendly. The major 

novelties of this work regard the improvement on the conflict detection process, the introduction of 

capacity conflicts, and the creation of several parameters to adjust the search for the optimal 

solution. 

Keywords: Re-scheduling, Single Track, Railway, Meet and Pass, Train, Conflict, Decision Support 

System. 

 

1. Introduction 

 The railway industry plays a vital role in many countries. All railway companies try to achieve 

more regular and reliable train services, in order to satisfy their customers. One way to optimize 

these services is to improve quality in the train control process itself. Therefore, railway operators 

plan train services in detail (i.e. timetables), defining the train order and timing, at junctions and 

platforms. A robust timetable should be able to deal with minor delays occurring in real-time. 
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However, unexpected events such as technical failures, track incidents, etc., may cause primary 

delays, which affect the running times, dwelling and departing events. Due to the interaction 

between trains, these delays may be propagated as secondary delays to other trains, and so, 

disturbing the entire network. This is why train dispatching is very important. Not only do 

dispatching orders keep the railway safe from collisions, but also have the objective of minimizing 

secondary delays throughout the network. As the first objective may be simpler to ensure, the second 

one is a lot more complex and challenging. Even so, train dispatching is still mostly done by human 

operators that use elementary Decision Support Systems (DSS). These systems help them to quickly 

and effectively re-schedule train movements, according to simple dispatching rules. Such rules solve 

conflicts by means of a simple and local decision criterion, not taking a global look at the system and 

hence, not searching for an optimal solution. In the last decade however, with the strong competition 

facing rail carriers, the privatization of many national railroads, and the enormous advances in 

technology, like computers and telecommunications, many researchers developed new optimization 

models. Despite the recent advances, providing satisfactory solutions for such a complex problem is 

still drawing the attention of researchers. The main goal of this work is to develop, implement, and 

evaluate a model capable of solving the meet and pass problem and then provide feasible solutions to 

the human controller. The objectives of this work are: Detect conflicts between trains in a single 

railway line; Create a first solution for the conflicts, in a short period of time; Search for the optimal 

solution; and Propose several near optimal solutions to the dispatcher. The paper is organized as 

follows. Section 2 presents a review on the train re-scheduling problem as well as the main 

technologies and systems already developed to address the problem. Firstly, some basic notions and 

terminology about this problem are provided. Section 3 introduces the model developed in this paper, 

by presenting its architecture and a functional description of each of its modules. Then the 

mathematical formulation of the model is provided along with two formal results that reduce the 

complexity associated with finding conflicts. Section 4 presents a description of all the modules that 

constitute the developed application, particularly the algorithms implemented, in order to allow the 

reader to get an understanding of the entire process. Section 5 presents a summary of the results for 

the tests carried out to evaluate the proposed solution. Finally, Section 6 is dedicated to the 

conclusions. 
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2. Basic Concepts 

 In this section we will start by introducing some terminology, after which we review some 

issues regarding timetables, safety technologies, dispatching rules, typical objective functions, and a 

short literature review to place our work in context. 

2.1 Definition of Terms Used 

 Along the paper we will be using some technical terms which will now be presented:  

 Single railway track - One where traffic in both directions shares the same track.  

 Track Segment - A track segment is a part of a railway line that is bounded by two distinct end 

points, in this case the meetpoints.  

 Block - Section of the railway line delimited by signals.  

 Siding - A section of track which can be used for the crossing or passing of trains under single 

track operations. The terms “crossing loop” or “passing loop” are also used in some countries to 

describe such track sections. A train station on a single line track will usually contain, at least, one 

siding.  

 Meetpoint - Location where two trains may cross simultaneously. In this context, meetpoints 

include not just stations, but also sidings.  

 Train Conflict - Basically there are two cases: when two trains approach each other on a single 

line track travelling in opposite directions (Meet); and when a faster train catches a slower train 

travelling in the same direction (Pass).  

 Minimum Headway - The minimum time length separating two trains on a single line track. 

This is usually determined by signals in the case when the trains are travelling in the same direction. 

When travelling in opposite directions, the minimum headway is determined by the time required for 

one train to clear the track segment sufficiently before the opposing train can enter it. 

2.2 Timetables 

 Train dispatchers have two main tools to supervise the network, which are the timetable and the 

train diagram. The timetable is a schedule of trains on a given railway infrastructure. It contains the 

arrival and departure times of the trains, not only from stations but also from intermediate stations 

and sidings. The train diagram, or graphical timetable, is a representation of the timetable in a more 

intuitive way. It is basically a time distance graph where all the routes for traveling trains are 
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represented. The advantage of this diagram is the fact that conflict detection is relatively simply to 

perform. The horizontal axis represents time of day and the vertical axis the sequence of stations in 

distance scale. Lines indicate the movement of trains, with the slope indicating direction and speed, 

horizontal meaning stand-still. Usually, the outbound direction is defined upwards. 

2.3 Safety Technologies 

 There are two different systems to ensure the safety of the railway networks: the fixed block 

technology and the moving block technology. A block section is a track segment between two signals. 

The signals control the train traffic and impose safe distance headways. There are signals along the 

lines and also before every station, passing loops, junctions, etc. The most common type of signaling 

is the three-aspect signaling. A signal aspect may be red, yellow or green. If the subsequent block is 

occupied by another train, the signal is red. A yellow signal aspect means that the subsequent block 

section is empty, but the following block is occupied by another train. Finally, a green signal aspect 

indicates that the next two blocks are empty. Trains have to stop when facing a red signal and wait 

for that signal to change to green or yellow. When facing a yellow sign the train may proceed its’ 

course but has to decelerate so that it can stop in case the next signal is red. Each block may host at 

most one train at a time. As for the moving block technology, it does not need signals since the exact 

position and speed of each train is known. Safety is ensured by the regulation of their respective 

speeds. The safety standards define a maximum speed for each train, depending on the distance from 

the preceding train, necessary to grant space to stop completely in case of emergency. With this 

technology, a track segment can host more than one train at a time. 

2.4 Dispatching Rules 

 Dispatching rules solve conflicts by means of a local decision criterion. Two of the most 

common rules are the first-in-first-out (FIFO) rule and the first-out-first in (FOFI) rule. The FIFO 

rule solves conflict situations by assigning the block section in discussion to the first train that 

required it. This means that this rule actually does not require any special dispatching order and lets 

the traffic proceed with its actual order. This rule is also known as first-come-first-served (FCFS). 

The FOFI rule assigns the block to the first train that is able to leave it. For this evaluation, the time 

that each train will take to enter the block and leave it available again has got to be calculated first. 

The precedence is then given to the train that is able to leave the block first. The FOFI is also 
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referred to as first-leave-first-served (FLFS). 

2.5 Objective Functions 

 To evaluate the quality of the obtained solutions, dispatching models need to have an objective 

function. There are several objective functions each one with its advantages and disadvantages. The 

choice of what function to use depends on the dispatcher or corporate criteria. The following four 

optimization criteria, i.e., objective functions have been selected as the most common: Minimization 

of the total tardiness – D = ån i=1 Ti; Minimization of the total weighted tardiness– WD = åni=1wiTi; 

Minimization of the maximum tardiness – Tmax =maxfT1;T2; : : : ;Tng – this criterion minimizes the 

maximum delay but many trains may suffer small delays, and is more suited when passenger trains 

prevail for scheduling; and Minimization of the maximum weighted tardiness – WTmax 

=maxfw1T1;w1T2; : : : ;wnTng –, this function is more suited for mixed traffic situations where the 

weights wi are usually the same for trains with the same priority. 

2.6 Review 

 The majority of the models found in the literature follow the structure of a typical Decision Support 

System, (DSS). These systems have three main functions: predicting train movements, detect possible 

conflicts, and propose solutions for the conflicts found. Several approaches have been proposed since the 

early seventies of the last century. However with the advances in technology the most relevant progress 

has been made in the last two decades. An extensive survey of relevant railway traffic scheduling and 

rescheduling approaches can be found in (Cordeau et al., 1988). The work of (Sahin, 1999) uses a 

heuristic algorithm to reschedule trains. It compares the planned arrival times of trains with the current 

expected arrival times for conflict detection. Then, it uses a discrete event simulator to evaluate the 

alternative choices to solve the first conflict found. The system proceeds solving a conflict at a time using 

this approach. In (Adenso-D´ıaz et al., 1999) a mixed integer programming model is proposed and a 

branch-and-bound solution is used. To reduce the size of the search tree, a fixed length horizon, in terms 

of number of services, is assumed. Another simulation based approach is proposed in (Medanic and 

Dorfman, 2002), where each train reaching a meetpoint will be compared with nearby trains. If the train 

can reach the next meetpoint safely, the simulation proceeds. Otherwise, the procedure chooses a vicinity 

train to be stopped and proceeds. In (D’Ariano et al., 2007a; D’Ariano et al., 2007b) the train 

rescheduling problem is formulated as a jobshop scheduling problem with blocking and no-wait 
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constraints, and uses the alternative graph of (Mascis et al., 2002; Mascis and Pacciarelli, 2002) as the 

model structure. The conflicts are solved with dispatching rules. 

3. Model Description 

 Our model can be classified as a variable-speed decision support system in real time. It is not 

supposed to replace the dispatcher but to help him/her in taking the best possible solutions. In other words, 

this model is a useful tool that allows train dispatchers to foresee the consequences of their decisions and 

also  provides them with other feasible and probably better solutions. 

 The system architecture is presented in Figure 1. It shows how the DSS will be incorporated in the 

dispatching process and also illustrates the type of information that will be interchanged with the 

dispatcher. 

 

Figure 1: Train dispatching system architecture. 

 Inside the DSS block are represented its two main functions: the conflict detection and the conflict 

resolution blocks. 

3.1 Problem Definition 

 Being railway scheduling such a rich and complex problem, it is necessary to define all the model’s 

limitations, assumptions and inputs. This model considers a single railway line that serves trains 

travelling in both directions. The railway is formed by track segments, which make the connection 

between all the meetpoints, as shown in Figure 2. In this context, meetpoints include not just stations, but 

also sidings or any location where two trains may cross simultaneously. So, for this model, trains are only 

able to meet or pass at meetpoints. As it is represented in Figure 2, train directions will be defined as 

inbound for trains going from right to left and outbound otherwise. Meetpoints and track segments are 

numbered in the outbound direction. 
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Figure 2: Model Railway Line Topology. 

 The safety technology considered is the fixed block signaling system. Therefore, trains can follow 

each other on a track segment with minimum safety headway. Considering this, the model also assumes 

that trains depart from stations as soon as possible, or in other words, as soon as the following block 

clears. This policy concerning trains following each other will be very important in the resolution of the 

pass conflicts that will be explained further ahead in Section 3.4. Only three different types of trains are 

considered in the rest of this paper but the model is valid independently of the number of train types. The 

considered train types are: Fast Passenger Train; Slow Passenger Train; and Freight Train. This order of 

presentation is also the usual order of priorities between them. Fast Passenger Trains have priority 1, 

which is the highest, and Slow Passenger Trains and Freight Trains have priorities 2 and 3, respectively. 

The first and last meet points, of the considered railway network, do not have to be terminal stations. 

 They can be the interface from single line segments to double track segments or even a denser rail 

network, as it happens in most cases. Anyway, the safety time intervals between arrivals and departures in 

these stations will not be checked. In order to make this model more realistic, all meet points have limited 

capacity. This is a very important aspect that makes a big difference in the quality of the final solution. 

Very few models take capacity into consideration. For simplicity, the rest of the paper does not explicitly 

consider acceleration and deceleration time losses. In addition to these model definitions, the following 

model assumptions are as follows. It is assumed that the location and speed of all the trains in the network 

is known at all times. Minimum dwell times of the trains at stations and their running times for each track 

segment are needed in order to verify the constraints described in the following section. Train priorities 

have to be given for each train. Maximum finite capacities for all meet points are assumed. In conclusion, 

a conflict is said to occur when two trains meet or pass at a segment track, when they arrive and depart 

from stations without the minimum safety intervals, and when a train arrives at a station that is full. 
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3.2 Mathematical formulation 

 The meet and pass problem, is essentially an optimization problem, subject to several 

constraints. Therefore it can be described mathematically. According to the definitions made in the 

previous section, the set of constraints is now presented in a formal manner. The selected 

optimization criterion was the minimization of the total weighted tardiness. Below we present the 

notation being used, after which we detail the mathematical formulation. 

 i – Train index 

 u – Meetpoint index 

 k – Segment index 

 Io – Set of outbound trains 

 Ii – Set of inbound trains 

 I – Set of trains, |I| = n, I = Ii U Io; Ii ∩Io = { ᶱ} 

 Su – Number of trains at station u, Sʗ I 

 Cu – Maximum capacity of station u 

 U – Set of meetpoints, |U| = m 

 K – Set of segments, |K|= m-1 

 rki – Running time for train i at segment k 

 tki – Minimum allowed running time for train i at segment k 

 sui –Dwell time 

 wui – Minimum dwell time 

 dui – Departure time of train i at station u 

 aui– Arrival time of train i at station u 

 ami– Scheduled arrival time of train i at terminal station m 

 ski – Start time of train i at segment k 

 f ki – Finish time of train i at segment k 

 wi – Weighted priority of train i 

 hk – Minimum headway between arrival and departure times of two consecutive trains at 

segment k 

 gu – Minimum headway between arrival and departure times of two consecutive trains at 
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station u 

 Objective function:  

 

 subject to  

 Free running time constraints: 

 

 Consecutive departure and arrival constraints: 

 

 Minimum dwell time constraints: 

 

 Headway constraints on arrival times at stations: 

 

 Meet condition: 

 

 Pass Condition: 

 

 Meetpoint capacity limits: 

 

 In conclusion, if a schedule does not respect all of the above constraints, it means that a conflict 

will occur and this schedule is considered unfeasible. However, verifying the meet and pass 

constraints between all of the trains is unnecessary. In order to explain this statement, it is helpful to 

rewrite constraints (5) and (6) in relation to the segment instead of the stations. 

 Meet condition: 

 

 Pass Condition: 
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 The safety variables gu and hk are not considered to simplify the analysis with no loss of 

generality. Before the introduction of these main results, it is necessary to make the following 

assumptions: The trains are considered to be ordered by their entrance times (ski) at a given segment 

k. This can be  represented by the following equation. 

 

 Condition (11) must always be verified for the following results to hold. There is also one 

condition which is always valid since trains cannot move instantaneously, which is stated as follows. 

 

 Theorem 1 If train i does not collide with train i+1, and train i+1 does not collide with train i+2, 

then train i cannot collide with train i+2. Proof: See Appendix. Following the reasoning of the proof, 

one must conclude that the non-conflict condition has the transitivity property. Hence, it can be 

generalized for all trains in the segment. If there are no conflicts between consecutive train pairs then, 

one must conclude that there are no conflicts in the segment at all. 

 Theorem 2 If there is a conflict between train i and train p, with p>= i+2, then there is also a 

conflict between trains i and p>1, or between trains p>=1 and p. Proof (to be provided as requested) 

 Theorem 2 states that any conflict between two trains, which are apart in terms of their entering 

order, implies a conflict between two consecutive trains, or a conflict between closer trains. 

Corollary 1 In order to conclude about the existence, or non-existence of conflicts, in a given track 

segment, it is only necessary to check for conflicts between consecutive trains, in terms of their 

entering order.  

 The importance of these results is the complexity reduction in the conflict detection problem, 

which was a combinatorial problem and now becomes a linear one. More specifically, for a schedule 

with n trains, instead of making all the (Cn2) comparisons, it only needs (n-1) comparisons. 

Furthermore, this algorithm is used recursively in the search for the optimal solution, which makes 

the reduction impact even bigger. 

3.3 Solving Conflicts 

 Now that all the constraints for the problem are properly defined, the next step is to explain how 
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to solve the detected conflicts. Conflicts are grouped into four different types, as follows: Meet 

conflict; Pass conflict; Safety intervals at the station; and Capacity conflict. For each type of conflict, 

the range of possible solutions is presented next. 

3.3.1 Meet Conflict 

 This first type of conflict involves two trains and so, there are only two valid solutions to 

consider. These solutions are either to stop the inbound train or the outbound train. In Figure 3 is an 

example of a meet conflict (top plot), between trains i and j, followed by its two solutions on the 

bottom plots. In Figure 3 we also represent the introduced delay and the safety time interval gu. The 

time interval introduced can be gu or hk, the chosen interval is the one which has the bigger value. 

This is also valid for the pass conflict. In meet conflicts, delays are always introduced in the dwell 

times of trains at the stations but the same does not happen in the type of conflict explained next. 

 

3.3.2 Pass conflict 

 The pass conflict is not as simple as the first one because, in this case, running times also have 

to be taken into account. As it was referred earlier, it is assumed that trains leave their stations as 

soon as possible, in order to achieve the minimum possible delay. Therefore, if a faster train 

succeeds a slower one, its running time will have to be decelerated in order to avoid red signals. The 

following Figure 4 illustrates the Pass conflict (top) between fast train j and slow train i and their 

alternative solutions (bottom). 
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 In Figure 4 the bottom left plot is a good example of an affected running time. Train j had to be 

slowed down so as to arrive at station 2 without having to stop in the middle of the segment track, 

and wait for train i to clear the following block.  

3.3.3 Safety intervals at stations 

 As for the arrivals and departures at stations there are three different situations of conflict: two 

arrivals, two departures, one arrival and one departure. Because they are very similar situations, only 

the case with one arrival and one departure will be shown in Figure 5. 

 

3.3.4 Capacity conflict 

 The Capacity conflict is by far the most complex of them all. The train chosen to wait for the 

full station to be available again, is not necessarily the last one in the schedule to arrive. In fact, all 

of the trains at the station, when the conflict is detected, are candidates to be re-scheduled. Hence, 

one can say that a conflict in a station with capacity N, will have N + 1 possible solutions. The 

policy in this situation is to hold one of the trains at the previous station until the first train at the full 

station departs. To help understand this resolution better, the following example in Figure 6 shows a 

capacity conflict in station 2 with capacity for two trains. 
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3.4 Towards a feasible solution 

 Now that the resolutions for each conflict type are defined, it is necessary to select them 

properly in order to generate the best possible solutions. The objective of this work is to provide the 

dispatcher with feasible solutions, in a short amount of time, but also try to obtain the optimal 

solution if possible. Therefore, two approaches were developed in order to satisfy these requirements: 

the heuristic approach and the search based approach. An explanation of each one of the approaches 

will be presented next. 

3.4.1 Heuristic approach 

 Taking into account that this program will work in real-time, there is the need to generate 

solutions as fast as possible to help the dispatcher. Therefore, the objective of this algorithm is to 

find a feasible solution for the conflict in a short amount of time, and also to reproduce the 

dispatchers’ behavior in the resolution process. It can be useful to imitate train dispatchers so as to 

compare the quality of their solutions with the optimal ones. The proposed decision criterion is based 

mainly on train priorities and in the FOFI rule. For every conflict that involves only two trains, 

which means all conflict types except for the capacity conflict, the decision criterion works as 

follows. If one train has higher priority than the other, that’s the train that will always go first. If both 

trains have the same priority, then the FOFI rule is applied. This rule will check which one of the 

trains is able to solve the conflict in a faster way. In other words, this rule verifies which decision 

generates de smallest delay on the stopped train. 

 As for the capacity conflicts, there are N+1 trains to consider and the procedure is as follows. 

Between all the trains involved in the conflict, choose the train with lowest priority in order to be 

delayed. In case there is more than one train with low priority, choose the last one to arrive at the 
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station. 

3.4.2 Search based approach 

 This approach was developed to provide the dispatchers with optimal or near optimal solutions, 

better than the ones they usually take. To do so, a search tree is considered. The nodes of the search 

tree are the conflicts and the branches are the respective solutions. This means that the path from the 

first node to any leaf node represents a feasible solution of the rescheduling problem. Because the 

time available is a key element, the search mode adopted was the depth first search (DFS). The DFS 

allows reaching a first feasible solution without having to search the entire tree as it would happen in 

a breath first search.  

 This problem is NP-complete. Therefore, there is a need to adopt some strategies to ensure a 

solution is produced. The DFS has a branch-and-bound mechanism and each search is limited in 

computational time and time horizon for the schedule. That is, there is an upper bound on 

computational time, after which the system is supposed to return the best solution found so far. To 

ensure a larger set of options searched, the objective is to produce a conflict free schedule from the 

present time, t, up to some upper bound in time, say t+T. Therefore, the best solution returned is  

conflict free for T units of time. This enables the system to be re-started to search for more solutions 

in a computational time of order T. 

4. Implementation 

In our implementation, there are two distinct parts: the Conflict Detection Loop and the Conflict  

resolution part. These parts are indicated below in Figure 7 within the dashed rectangles. 
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Figure 7: Structure of the software package. 

 The Conflict Detection Loop is responsible for the surveillance of the railway network. It is also 

in charge of updating all the necessary data, so that the conflict detector can work with valid 

information. This loop is supposed to keep running until a conflict is detected. The Conflict 

Resolution is evidently the part responsible for solving the detected conflicts. This part is divided 

into two main blocks which are the heuristic solution and the search based solution. These two 

algorithms that were already introduced in Section 3 will be explained in detail further on. The 

Conflict Resolution part is also in charge of reporting the achieved solutions to the dispatcher.  

4.1 Conflict Detection 

 The detection of conflicts is executed by the inspection of the network timetable. Two scans at 

the timetable are performed, the first one tests out for meet and pass conflicts, as for the second scan, 

it checks for the safety intervals at stations and for capacity conflicts. Here in Table 1 is an example 

of a timetable with all the arrival and departure times of all the trains from every meetpoint in the 

railway. The double line between Train 3 and Train 4 is separating the outbound trains (Train 1 to 

Train 3) from the inbound trains (Train 4 to Train 6). As explained earlier, the meetpoints and 

segment tracks are numbered in the outbound direction. The times presented in the table are in 

minutes.  
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Table 1: Example of a Timetable 

 

 The first scan sorts the train order for each track segment and then for each pair of trains it 

verifies the meet and pass constraints. In other words, the algorithm compares the safety constraints 

between two consecutive trains entering a given track segment. Considering the example of Table 1, 

the order of trains entering track segment 2 corresponds to the sort of the highlighted values within 

the red circles. In this case it would be as indicated in Table 2.  

Table 2: Entrance order in track segment #2. 

 

 The scan would begin by checking between Train 2 vs. Train 1, then Train 1 vs. Train 3 and so 

on, until the last pair is analyzed, Train 6 vs. Train 4. This type of approach allows saving precious 

time checking for meet and pass constraints between all the trains in the timetable, and so reducing 

the complexity of the algorithm. When a conflict is found, the scan does not stop because it might 

not be the earliest one to occur. It is intended in this program to solve conflicts by the order they 

occur. Although this may be not very accurate, the time of conflict is assumed as the instant when 

the first involved train leaves the meetpoint before the conflict. It is logical to think this way 

considering that this is the deadline to take a dispatching measure. After that instant, the options 

considered for conflict resolution are not feasible any more. 
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Table 3: Sorting Meetpoint #1. 

 

 The second scan is very similar to the first one except that in this case, it is not about entering 

times in segment tracks, but entering and leaving times from meetpoints. The algorithm sorts out the 

arrival and departure times for one station and compares all the consecutive times checking if the 

safety time  intervals are respected. Simultaneously, a train count for that same station is performed 

in order to detect capacity conflicts. The blue shaded columns in Table reftimetable will be the 

example for this scan. 

4.2 Heuristic Solution 

 This algorithm is intended to be fast and effective as explained in Section 3. Therefore, the 

detected conflict is evaluated concerning only train priorities and the FOFI rule which is a 

sub-optimal and myopic rule. A flowchart explaining the solution procedure is presented below in 

Figure 8. If all of the involved trains have the same priority, the program performs the FOFI rule to 

see which option can cause de smallest delay. Having decided which train to delay, its schedule is 

re-arranged accordingly and always respecting future dwelling times. Next, it is necessary to check 

for more conflicts in the schedule. If another conflict is detected, the process is repeated again from 

the beginning. This cycle continues indeterminately until the schedule becomes free of conflicts, 

which means a solution was found. 

 
Figure 8: Flowchart of the heuristic algorithm. 
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4.3 Search based solution 

 The search algorithm was developed with the objective of reaching an optimal solution. To do 

so, it should supposedly verify all the possible solutions and then choose the best one among them. 

Due to the enormous size that the search tree may reach in dense traffic railways, it is unnecessary 

and also impossible to store the entire tree in the computer memory and to search it in feasible time. 

The Depth First Search was then chosen because it does not require a lot of memory, and because it 

provides solutions faster even if they are not optimal. Because time is a key factor in this search, 

there is the need to adopt some techniques to reduce the size of the search tree. One of them is the 

introduction of an Upper Bound search limit. The Upper Bound stops the depth search, whenever the 

considered solution is worse than the best one found until that moment. The quality of each solution 

is calculated by the cost function presented in Section 3. Another technique used to reduce the search 

tree is the time horizon. The conflict detector only reports  conflicts earlier than the time horizon, 

ignoring all the following future conflicts. This horizon enables the algorithm to prune a big part of 

the search tree and consequently saving precious time. Even with these features, there are still 

schedules that require too much time to be optimally solved. Hence, the dispatcher 

has another possibility which is the Maximum search time. If this time is exceeded, the algorithm 

will stop the search and report the best solution found until that moment. In Figure 9 we present the 

flowchart of this algorithm. 

 
Figure 9: Flowchart of the search algorithm. 
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5. Performance Evaluation 

 The development of any application of this kind is not finished without a serious and 

meaningful evaluation of its performance. Therefore, this chapter aims to present and analyze the 

results of the tests carried out to check this model’s efficiency. More specifically, the main objective 

of these tests is to understand how the program is influenced by its input parameters. The parameters 

in study are: Initial schedule; Time horizon; Number of Solutions; Cost function; Maximum search 

time; and Upper Bound. 

 Next, each one of these features will then be analyzed individually. The package was 

implemented in Matlab R2007b on the Windows XP operating system, and all the experiments were 

conducted on a laptop with an Intel Pentium M 1.20 GHz processor and 1.23 GB of RAM. There are 

five schedules, each one with different number of trains and meetpoints in order to evaluate the 

behavior of the algorithms in different complexity environments. 

5.1 Initial Schedule 

 In this first test, it is intended to demonstrate how the increase in the complexity of the input 

schedule affects the search for a solution. As for the other features, their input was as follows: the 

time horizon considered for all these experiments was one day (24h); the maximum search time was 

established at thirty minutes (1800 s); Also the number of requested solutions was one (1); finally, 

the cost function used was the total weighted tardiness whose weights are the following: Priority 1 = 

0.75; Priority 2 = 0.20; and Priority 3 = 0.05. In Table 4 the simulation results are presented. In the 

first column is the identification number of the input schedules which are ordered by their 

complexity. The number of initial conflicts indicates how disturbed the initial schedule is at the 

beginning of the simulation. In the last two schedules, 4 and 5, the optimal solution is not found 

before the maximum search time meaning the solutions presented are not optimal but the best ones 

found in 1800 seconds. The limits columns present values of the number of times that each limit was 

used to stop the search.  
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Table 4: Results for different initial schedules (* Optimal solution not found). 

 

 Through the analysis of Table 4, the first and most important conclusion is that the more 

complex and disturbed the schedule is, the longer it takes for the program to find the optimal 

solution. Quite surprisingly, the algorithm that finds the heuristic solution is barely affected by this 

complexity increase. Another good result is the quality of the proposed heuristic solution that 

revealed a near optimal solution in most cases. In Schedule 5, the quality of the heuristic solution 

could even overcome the thirty minute search of the optimal algorithm. This aspect will be analyzed 

later on this section. As for Schedule 2, this is a case where the optimal solution, with half the cost of 

the heuristic solution, is found in just four seconds.  

 This variety from schedule to schedule reinforces the fact that independently of their 

complexity, schedules may change a lot from one another making greedy algorithms less reliable. As 

for the limits used in the search for the optimal solution, the upper bound limit revealed more 

effective than the time horizon limit. Nonetheless, the time horizon was at its maximum value and 

for shorter time horizons it is obviously more useful. 

5.2 Time Horizon 

 With this second test, it is expected to show if the variation in the time horizon can accelerate 

the search for the optimal solution. Once again, it is important to clarify that the indicated solutions 

are optimal but only within the time horizon limit. They are not the optimal solutions for the whole 

schedule. For this second set of simulations, the maximum search time, number of solutions and cost 

function are the same of the previous tests.  
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Table 5: Variations in the time horizon (* Optimal solution not found). 

 

 By the inspection of Table 5, one can conclude that the decrease in the time horizon reduces 

drastically the search time need to obtain an optimal solution. This result is of course expected since 

that a short time horizon will ignore the majority of the future conflicts and so reducing the search 

space. For Schedules 3 and 4, with a time horizon of ten hours, which is more than acceptable, the 

algorithm is able to solve the conflicts optimally in less than thirty seconds. As for Schedule 5, the 

densest schedule, the heuristic algorithm completely outperforms the optimal one for long time 

horizons. Once more, this heuristic values lower than the optimal ones will be explained later in this 

section. 

5.3 Number of Solutions 

 This test aims to check if the increase in the number of requested solutions has a big influence 

on the program performance. This hypothesis comes from the fact that, the higher the number of 

requested solutions is, the higher the upper bound will be, and thus, less restrictive. Once again the 

input parameters remain the same except for the time horizon that will be reduced to ten hours. The 

tests reveal that the number of solutions is not relevant in the behavior of the program. Differences 

like six seconds are not significant when talking about train dispatching. Besides, there is probably 

more interest in having a set of feasible solutions available so that the dispatcher can have more 

choice options. 
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Table 6: Variations in the number of solutions 

 

5.4 Cost Function 

 The purpose of this test is to show how the heuristic solution may have different quality 

performances with different cost functions. To do so, four different sets of weights were considered 

Table 7: Sets of weights for the weighted tardiness function 

 

 In order to be more realistic, there were two conditions that the above sets had to verify: 1) 

Priority1 > Priority2 > Priority3; 2) Priority1 + Priority2 + Priority3 = 1; The case where all the 

weights are the same is also considered with the total tardiness cost function. The time horizon is set 

to 10 hours and the  maximum search time was set to 300 seconds. Bellow in Table ˜refresults4 are 

the results of this experiment. Analyzing the results, it may be concluded, as expected, that the gap 

between the heuristic solution and the proposed optimal solution increases when the weights are 

more evenly distributed. 

 The heuristic algorithms performs as if all the weight is in the train with higher priority and 

hence these results. It is now up to the dispatcher to analyze the different produced solutions and 

work with different cost functions in order to decide which set of weights fits better to reality. 
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Table 8: Variations in the cost function. 

 

5.5 Maximum Search Time 

 The interest in studying the maximum search time is mainly to observe how fast does the 

algorithm converge into an optimal solution. The input parameters are the same as in the first test. 

To better illustrate how this algorithm behaves in time, the graphic in Figure 10 was made. The 

solutions quality, or cost, is not presented in its absolute value but instead it is normalized to make 

their comparison easier. Considering Ropt the quality of the optimal solution and Ri the quality of 

the current solution, then the normalized quality R is defined as being Ri=Ropt. In Schedules 4 and 5, 

the optimal solution considered was the one obtained at 1800 s. In Table 9 are indicated the absolute 

cost values obtained in this experiment.  

Table 9: Variations in the maximum search time (*Optimal Solution found in 944s). 

 

 As it was concluded in the first test, the more complex the schedule is, the longer it takes for the 

program to obtain the optimal solution. This conclusion is once more evidenced in this graphic 

where the lines are logarithmic tendency lines. These tendency lines are slightly overestimated 

because in the normalization, the best solutions found at 1800 seconds, were considered as being the 

optimal ones.  

5.6 Upper Bound 

 With this set of tests, it is intended to study the effect of the initial upper bound value, in the 
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performance of the optimal algorithm. By default, the optimal algorithm does not take into 

consideration the cost value of the heuristic solution. The initial value of the upper bound is set to 

infinite. This decision was made so that the program could also consider solutions worse than the 

heuristic solution and let the dispatcher analyze them in the end. The set back of this option is that, 

by giving a high initial upper bound, the algorithm’s performance is affected and so, it might not be 

as effective as it could. Again, the input parameters are the same as in the first test. 

 

Figure 10: Search algorithm performance. 

Table 10: Variations in the value of the initial upper bound 

 

To better illustrate the difference between the two situations, the graphics below were created. Like 

in the previous section, these values are normalized to the optimal solution or in the case of Schedule 

4 to the best solution found in 1800s. 

6. Conclusions 

 In Section 3, we established a procedure to reduce the complexity of the conflict detection. Also, 

the capacity conflicts are the most complex to solve, but with the advantage of giving more realism 

to the model. Finally, two resolution methods for re-scheduling were proposed. One is the heuristic 
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solution based on a simple dispatch mechanism, which is a greedy algorithm that provides a solution 

for the problem in a short amount of time by means of a local decision criterion. The second method 

is a search based mechanism, an algorithm that checks for all the possibilities, by using a search tree 

and a branch-and-bound technique. In order to make the optimal search less exhaustive and more 

useful in real-time, the time horizon and the maximum search time were adopted. With a proper 

management of these search parameters, the dispatcher may solve a conflict in a short amount of 

time, pushing the conflicts further on, and gaining precious time for another search, looking for 

better results. The heuristic algorithm performed fast in all situations, independently of the 

complexity of the initial schedule. The quality of its solutions was mainly near optimal but, as 

expected for a greedy algorithm, there were cases were the proposed solution was far from optimal. 

The search based algorithm depends very much on the complexity of the initial schedule. 

 Nonetheless, the time horizon parameter revealed very effective, with the tradeoff of shortening 

the validity of the solution. The number of requested solutions has almost no effect on the 

performance and provides the dispatcher with a set of useful different solutions.  

References 

B. Adenso-D´ıaz and M. O. Gonz´alez and P. Gonz´alez-Torre, “On-line timetable rescheduling in 

regional train services,” Transp. Res. – Part B, Vol. 33, No. 6, pp. 387- 398, 1999. 

J. F. Cordeau and P. Toth and D. Vigo, “A survey of optimization models for train routing and 

scheduling,” Transp. Sci., Vol 32, No. 4, pp. 380-404, 1988. 

A. D’Ariano and M. Pranzo and I. A. Hansen, “Conflict resolution and train speed coordination for 

solving realtime timetable perturbations,” IEEE Trans. Intelligent Transportation Systems, Vol. 8, 

No. 2, 2007. 

A. D’Ariano and D. Pacciarelli and M. Pranzo, “A branch and count algorithm for scheduling trains 

in a railway network,” European Journal of Operational Research, Vol. 183, pp. 643-657, 2007. 

A. Mascis and D. Pacciarelli and M. Pranzo, “Models and algorithms for traffic management of rail 

networks,” RT-DIA-74-2002. 

A. Mascis and D. Pacciarelli, “Job-shop scheduling with blocking and no-wait constraints,” 

European J. of Operational Research, Vol. 143, pp. 498-517, 2002. 

J. Medanic and M. J. Dorfman, “Efficient scheduling of traffic on a railway line,” Journal of 



Journal of System and Management Sciences                                        Vol.1 No.1, Dec. 2011 

 

  26 
 

Optimization Theory and Applications, Vol. 115, No. 3, pp. 587-602, 2002. 

I. Sahin, “Railway traffic control and train scheduling based on inter-rail conflict management,” 

Transp. Res. – Part B, Vol. 33, No. 7, pp. 511-534, 1999. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


