
RAILWAY TRAFFIC MANAGEMENT
Meet & Pass Problem∗

Pedro A. Afonso, Carlos F. Bispo
Instituto de Sistemas e Robótica, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

pafonso@sapo.pt, cfb@isr.ist.utl.pt

Keywords: Re-scheduling, Single Track, Railway, Meet and Pass, Train, Conflict, Decision Support System.

Abstract: With the growing interest in the railway sector, mainly because of energetic reasons, there is also a need
to increase the efficiency of the railway lines. One way to optimize this sector is to improve quality in the
train control process itself. Nowadays, train dispatching is still mostly done by human operators that use
elementary tools and thereby solving conflicts sub-optimally. Motivated by these factors, this report presents
a model capable of detecting and solving conflicts, for single track railways. More specifically, this model
proposes two resolutions methods: a heuristic resolution and a search for the optimal solution. To evaluate the
quality of the developed model, several tests were made, obtaining encouraging results. These results showed
that it is possible to solve conflicts optimally or near optimally, in a feasible amount of time. This program
comes with a graphic interface so that the interaction with the dispatcher can be more user friendly. The major
novelties of this work regard the improvement on the conflict detection process, the introduction of capacity
conflicts, and the creation of several parameters to adjust the search for the optimal solution.

1 INTRODUCTION

The railway industry plays a vital role in many coun-
tries. All railway companies try to achieve more reg-
ular and reliable train services, in order to satisfy their
customers. One way to optimize these services is
to improve quality in the train control process itself.
Therefore, railway operators plan train services in de-
tail (i.e. timetables), defining the train order and tim-
ing, at junctions and platforms. A robust timetable
should be able to deal with minor delays occurring
in real-time. However, unexpected events such as
technical failures, track incidents, etc., may cause pri-
mary delays, which affect the running times, dwelling
and departing events. Due to the interaction between
trains, these delays may be propagated as secondary
delays to other trains, and so, disturbing the entire net-
work. This is why train dispatching is very important.
Not only do dispatching orders keep the railway safe
from collisions, but also have the objective of mini-
mizing secondary delays throughout the network. As
∗This work was supported by the FCT (ISR/IST pluri-

anual funding) through the PIDDAC Program funds.

the first objective may be simpler to ensure, the sec-
ond one is a lot more complex and challenging. Even
so, train dispatching is still mostly done by human
operators that use elementary Decision Support Sys-
tems (DSS). These systems help them to quickly and
effectively re-schedule train movements, according to
simple dispatching rules. Such rules solve conflicts
by means of a simple and local decision criterion,
not taking a global look at the system and hence, not
searching for an optimal solution. In the last decade
however, with the strong competition facing rail car-
riers, the privatization of many national railroads, and
the enormous advances in technology, like comput-
ers and telecommunications, many researchers devel-
oped new optimization models. Despite the recent
advances, providing satisfactory solutions for such a
complex problem is still drawing the attention of re-
searchers.

The main goal of this work is to develop, imple-
ment, and evaluate a model capable of solving the
meet and pass problem and then provide feasible so-
lutions to the human controller. The objectives of this
work are: Detect conflicts between trains in a single

railway line; Create a first solution for the conflicts,
in a short period of time; Search for the optimal so-
lution; and Propose several near optimal solutions to
the dispatcher.

The paper is organized as follows. Section 2
presents a review on the train re-scheduling problem
as well as the main technologies and systems already
developed to address the problem. Firstly, some basic
notions and terminology about this problem are pro-
vided. Section 3 introduces the model developed in
this paper, by presenting its architecture and a func-
tional description of each of its modules. Then the
mathematical formulation of the model is provided
along with two formal results that reduce the com-
plexity associated with finding conflicts. Section 4
presents a description of all the modules that consti-
tute the developed application, particularly the algo-
rithms implemented, in order to allow the reader to
get an understanding of the entire process. Section 5
presents a summary of the results for the tests carried
out to evaluate the proposed solution. Finally, Sec-
tion 6 is dedicated to the conclusions.

2 BASIC CONCEPTS

In this section we will start by introducing some
terminology, after which we review some issues re-
garding timetables, safety technologies, dispatching
rules, typical objective functions, and a short litera-
ture review to place our work in context.

2.1 Definition of terms used

Along the paper we will be using some technical
terms which will now be presented:

Single railway track - One where traffic in both
directions shares the same track.

Track Segment - A track segment is a part of
a railway line that is bounded by two distinct end
points, in this case the meetpoints.

Block - Section of the railway line delimited by
signals.

Siding - A section of track which can be used for
the crossing or passing of trains under single track op-
erations. The terms “crossing loop” or “passing loop”
are also used in some countries to describe such track
sections. A train station on a single line track will
usually contain, at least, one siding.

Meetpoint - Location where two trains may cross
simultaneously. In this context, meetpoints include
not just stations, but also sidings.

Train Conflict - Basically there are two cases:
when two trains approach each other on a single line

track travelling in opposite directions (Meet); and
when a faster train catches a slower train travelling
in the same direction (Pass).

Minimum Headway - The minimum time length
separating two trains on a single line track. This is
usually determined by signals in the case when the
trains are travelling in the same direction. When trav-
elling in opposite directions, the minimum headway
is determined by the time required for one train to
clear the track segment sufficiently before the oppos-
ing train can enter it.

2.2 Timetables

Train dispatchers have two main tools to supervise the
network, which are the timetable and the train dia-
gram. The timetable is a schedule of trains on a given
railway infrastructure. It contains the arrival and de-
parture times of the trains, not only from stations but
also from intermediate stations and sidings. The train
diagram, or graphical timetable, is a representation of
the timetable in a more intuitive way. It is basically a
time distance graph where all the routes for traveling
trains are represented. The advantage of this diagram
is the fact that conflict detection is relatively simply
to perform. The horizontal axis represents time of
day and the vertical axis the sequence of stations in
distance scale. Lines indicate the movement of trains,
with the slope indicating direction and speed, hori-
zontal meaning stand-still. Usually, the outbound di-
rection is defined upwards.

2.3 Safety technologies

There are two different systems to ensure the safety
of the railway networks: the fixed block technology
and the moving block technology. A block section
is a track segment between two signals. The signals
control the train traffic and impose safe distance head-
ways. There are signals along the lines and also be-
fore every station, passing loops, junctions, etc. The
most common type of signalling is the three-aspect
signalling. A signal aspect may be red, yellow or
green. If the subsequent block is occupied by an-
other train, the signal is red. A yellow signal aspect
means that the subsequent block section is empty, but
the following block is occupied by another train. Fi-
nally, a green signal aspect indicates that the next two
blocks are empty. Trains have to stop when facing a
red signal and wait for that signal to change to green
or yellow. When facing a yellow sign the train may
proceed its’ course but has to decelerate so that it can
stop in case the next signal is red. Each block may
host at most one train at a time. As for the mov-

ing block technology, it does not need signals since
the exact position and speed of each train is known.
Safety is ensured by the regulation of their respec-
tive speeds. The safety standards define a maximum
speed for each train, depending on the distance from
the preceding train, necessary to grant space to stop
completely in case of emergency. With this technol-
ogy, a track segment can host more than one train at a
time.

2.4 Dispatching rules

Dispatching rules solve conflicts by means of a local
decision criterion. Two of the most common rules are
the first-in-first-out (FIFO) rule and the first-out-first-
in (FOFI) rule. The FIFO rule solves conflict situa-
tions by assigning the block section in discussion to
the first train that required it. This means that this
rule actually does not require any special dispatching
order and lets the traffic proceed with its actual or-
der. This rule is also known as first-come-first-served
(FCFS). The FOFI rule assigns the block to the first
train that is able to leave it. For this evaluation, the
time that each train will take to enter the block and
leave it available again has got to be calculated first.
The precedence is then given to the train that is able
to leave the block first. The FOFI is also referred to
as first-leave-first-served (FLFS).

2.5 Objective functions

To evaluate the quality of the obtained solutions, dis-
patching models need to have an objective function.
There are several objective functions each one with
its advantages and disadvantages. The choice of what
function to use depends on the dispatcher or corpo-
rate criteria. The following four optimization crite-
ria, i.e., objective functions have been selected as the
most common: Minimization of the total tardiness –
D = ∑

n
i=1 Ti; Minimization of the total weighted tar-

diness – WD = ∑
n
i=1 wiTi; Minimization of the maxi-

mum tardiness – Tmax =max{T1,T2, . . . ,Tn} – this cri-
terion minimizes the maximum delay but many trains
may suffer small delays, and is more suited when pas-
senger trains prevail for scheduling; and Minimiza-
tion of the maximum weighted tardiness – WTmax =
max{w1T1,w1T2, . . . ,wnTn} –, this function is more
suited for mixed traffic situations where the weights
wi are usually the same for trains with the same prior-
ity.

2.6 Review

The majority of the models found in the literature fol-
low the structure of a typical Decision Support Sys-
tem, (DSS). These systems have three main functions:
predicting train movements, detect possible conflicts,
and propose solutions for the conflicts found. Several
approaches have been proposed since the early seven-
ties of the last century. However with the advances in
technology the most relevant progress has been made
in the last two decades. An extensive survey of rel-
evant railway traffic scheduling and rescheduling ap-
proaches can be found in (Cordeau et al., 1988).

The work of (Sahin, 1999) uses a heuristic algo-
rithm to reschedule trains. It compares the planned ar-
rival times of trains with the current expected arrival
times for conflict detection. Then, it uses a discrete
event simulator to evaluate the alternative choices to
solve the first conflict found. The system proceeds
solving a conflict at a time using this approach. In
(Adenso-Dı́az et al., 1999) a mixed integer program-
ming model is proposed and a branch-and-bound so-
lution is used. To reduce the size of the search tree, a
fixed lenght horizon, in terms of number of services,
is assumed.

Another simulation based approach is proposed
in (Medanic and Dorfman, 2002), where each train
reaching a meetpoint will be compared with nearby
trains. If the train can reach the next meetpoint safely,
the simulation proceeds. Otherwise, the procedure
choses a vicinity train to be stopped and proceeds.

In (D’Ariano et al., 2007a; D’Ariano et al., 2007b)
the train rescheduling problem is formulated as a job-
shop scheduling problem with blocking and no-wait
constraints, and uses the alternative graph of (Mas-
cis et al., 2002; Mascis and Pacciarelli, 2002) as the
model structure. The conflicts are solved with dis-
patching rules.

3 MODEL DESCRIPTION

Our model can be classified as a variable-speed
decision support system in real time. It is not sup-
posed to replace the dispatcher but to help him/her in
taking the best possible solutions. In other words, this
model is a useful tool that allows train dispatchers to
foresee the consequences of their decisions and also
provides them with other feasible and probably better
solutions.

The system architecture is presented in Figure 1.
It shows how the DSS will be incorporated in the dis-
patching process and also illustrates the type of infor-
mation that will be interchanged with the dispatcher.

Figure 1: Train dispatching system architecture.

Inside the DSS block are represented its two main
functions: the conflict detection and the conflict reso-
lution blocks.

3.1 Problem Definition

Being railway scheduling such a rich and complex
problem, it is necessary to define all the model’s lim-
itations, assumptions and inputs. This model consid-
ers a single railway line that serves trains travelling
in both directions. The railway is formed by track
segments, which make the connection between all the
meetpoints, as shown in Figure 2. In this context,
meetpoints include not just stations, but also sidings
or any location where two trains may cross simulta-
neously. So, for this model, trains are only able to
meet or pass at meetpoints. As it is represented in
Figure 2, train directions will be defined as inbound
for trains going from right to left and outbound oth-
erwise. Meetpoints and track segments are numbered
in the outbound direction.

Figure 2: Model Railway Line Topology.

The safety technology considered is the fixed
block signalling system. Therefore, trains can follow
each other on a track segment with minimum safety
headway. Considering this, the model also assumes
that trains depart from stations as soon as possible, or

in other words, as soon as the following block clears.
This policy concerning trains following each other
will be very important in the resolution of the pass
conflicts that will be explained further ahead in Sec-
tion 3.4.

Only three different types of trains are considered
in the rest of this paper but the model is valid indepen-
dently of the number of train types. The considered
train types are: Fast Passenger Train; Slow Passenger
Train; and Freight Train.

This order of presentation is also the usual order of
priorities between them. Fast Passenger Trains have
priority 1, which is the highest, and Slow Passenger
Trains and Freight Trains have priorities 2 and 3, re-
spectively. The first and last meet points, of the con-
sidered railway network, do not have to be terminal
stations. They can be the interface from single line
segments to double track segments or even a denser
rail network, as it happens in most cases. Anyway, the
safety time intervals between arrivals and departures
in these stations will not be checked. In order to make
this model more realistic, all meet points have limited
capacity. This is a very important aspect that makes a
big difference in the quality of the final solution. Very
few models take capacity into consideration. For sim-
plicity, the rest of the paper does not explicitly con-
sider acceleration and deceleration time losses. In ad-
dition to these model definitions, the following model
assumptions are as follows. It is assumed that the lo-
cation and speed of all the trains in the network is
known at all times. Minimum dwell times of the trains
at stations and their running times for each track seg-
ment are needed in order to verify the constraints de-
scribed in the following section. Train priorities have
to be given for each train. Maximum finite capacities
for all meet points are assumed.

In conclusion, a conflict is said to occur when two
trains meet or pass at a segment track, when they ar-
rive and depart from stations without the minimum
safety intervals, and when a train arrives at a station
that is full.

3.2 Mathematical formulation

The meet and pass problem, is essentially an op-
timization problem, subject to several constraints.
Therefore it can be described mathematically. Ac-
cording to the definitions made in the previous sec-
tion, the set of constraints is now presented in a for-
mal manner. The selected optimization criterion was
the minimization of the total weighted tardiness. Be-
low we present the notation being used, after which
we detail the mathematical formulation.
i – Train index

u – Meetpoint index
k – Segment index
Io – Set of outbound trains
Ii – Set of inbound trains
I – Set of trains, |I|= n, I = Ii∪ Io, Ii∩ Io = {�}
Su – Number of trains at station u, S⊂ I
Cu – Maximum capacity of station u
U – Set of meetpoints, |U |= m
K – Set of segments, |K|= m−1
rk

i – Running time for train i at segment k
τk

i – Minimum allowed running time for train i at
segment k
su

i –Dwell time
ωu

i – Minimum dwell time
du

i – Departure time of train i at station u
au

i – Arrival time of train i at station u
αm

i – Scheduled arrival time of train i at terminal
station m
sk

i – Start time of train i at segment k
f k
i – Finish time of train i at segment k

wi – Weighted priority of train i
hk – Minimum headway between arrival and depar-
ture times of two consecutive trains at segment k
gu – Minimum headway between arrival and depar-
ture times of two consecutive trains at station u

Objective function:

minZ =
n

∑
i=1

wi max{0,(am
i −α

m
i)} (1)

subject to
Free running time constraints:

rk
i ≥ τ

k
i ,∀i ∈ I,k = 1,2, . . . ,m−1 (2)

Consecutive departure and arrival constraints:

f k
i ≥ sk

i + τ
k
i ,∀i ∈ I,k = 1,2, . . . ,m−1 (3)

Minimum dwell time constraints:

su
i ≥ ω

u
i ,∀i ∈ I,u = 1,2, . . . ,m (4)

Headway constraints on arrival times at stations:

au
i ≥ au

i′ +gu⊕au
i′ ≥ au

i +gu,

∀i, i′ ∈ I, i 6= i′,u ∈U (5)

Meet condition:

du+1
i ≥ au+1

i′ +gu⊕du
i′ ≥ au

i +gu,

∀u ∈U, i ∈ Ii, i′ ∈ Io (6)

Pass Condition:

(
du

i ≤ du
i′ +hk ∧au+1

i ≤ au+1
i′ +hk

)
⊕ (7)(

du
i′ ≤ du

i +hk ∧au+1
i′ ≤ au+1

i +hk
)
,

∀u ∈U,{i, i′} ∈ Io

Meetpoint capacity limits:

Su ≤Cu,∀u ∈U (8)

In conclusion, if a schedule does not respect all of
the above constraints, it means that a conflict will oc-
cur and this schedule is considered unfeasible. How-
ever, verifying the meet and pass constraints between
all of the trains is unnecessary. In order to explain this
statement, it is helpful to rewrite constraints (5) and
(6) in relation to the segment instead of the stations.

Meet condition:

f k
i < sk

i′ ⊕ f k
i′ < sk

i ,∀k ∈ K,{i, i′} ∈ I (9)

Pass Condition:

(
sk

i < sk
i′ ∧ f k

i < f k
i′
)
⊕
(
sk

i > sk
i′ ∧ f k

i > f k
i′
)
,

∀k ∈ K,{i, i′} ∈ I (10)

The safety variables gu and hk are not considered
to simplify the analysis with no loss of generality.

Before the introduction of these main results, it
is necessary to make the following assumptions: The
trains are considered to be ordered by their entrance
times (sk

i) at a given segment k. This can be repre-
sented by the following equation.

sk
i < sk

i+1 < sk
i+2 (11)

Condition (11) must always be verified for the fol-
lowing results to hold. There is also one condition
which is always valid since trains cannot move instan-
taneously, which is stated as follows.

sk
i < f k

i (12)

Theorem 1 If train i does not collide with train i+1,
and train i+ 1 does not collide with train i+ 2, then
train i cannot collide with train i+2.

Proof: See Appendix.
Following the reasoning of the proof, one must

conclude that the non-conflict condition has the tran-
sitivity property. Hence, it can be generalized for all
trains in the segment. If there are no conflicts between
consecutive train pairs then, one must conclude that
there are no conflicts in the segment at all.

Theorem 2 If there is a conflict between train i and
train p, with p ≥ i+ 2, then there is also a conflict
between trains i and p− 1, or between trains p− 1
and p.

Proof: See Appendix.
Theorem 2 states that any conflict between two

trains, which are apart in terms of their entering order,
implies a conflict between two consecutive trains, or
a conflict between closer trains.

Corollary 1 In order to conclude about the existence,
or non-existence of conflicts, in a given track seg-
ment, it is only necessary to check for conflicts be-
tween consecutive trains, in terms of their entering
order.

Proof: See Appendix.
The importance of these results is the complex-

ity reduction in the conflict detection problem, which
was a combinatorial problem and now becomes a lin-
ear one. More specifically, for a schedule with n
trains, instead of making all the (Cn

2) comparisons, it
only needs (n−1) comparisons. Furthermore, this al-
gorithm is used recursively in the search for the opti-
mal solution, which makes the reduction impact even
bigger.

3.3 Solving Conflicts

Now that all the constraints for the problem are prop-
erly defined, the next step is to explain how to solve
the detected conflicts. Conflicts are grouped into four
different types, as follows: Meet conflict; Pass con-
flict; Safety intervals at the station; and Capacity con-
flict.

For each type of conflict, the range of possible so-
lutions is presented next.

3.3.1 Meet Conflict

This first type of conflict involves two trains and so,
there are only two valid solutions to consider. These
solutions are either to stop the inbound train or the
outbound train. In Figure 3 is an example of a meet
conflict (top plot), between trains i and j, followed by
its two solutions on the bottom plots.

In Figure 3 we also represent the introduced de-
lay and the safety time interval gu. The time interval
introduced can be gu or hk, the chosen interval is the
one which has the bigger value. This is also valid for
the pass conflict. In meet conflicts, delays are always
introduced in the dwell times of trains at the stations
but the same does not happen in the type of conflict
explained next.

Figure 3: Resolution of a Meet conflict.

3.3.2 Pass conflict

The pass conflict is not as simple as the first one be-
cause, in this case, running times also have to be taken
into account. As it was referred earlier, it is assumed
that trains leave their stations as soon as possible, in
order to achieve the minimum possible delay. There-
fore, if a faster train succeeds a slower one, its running
time will have to be decelerated in order to avoid red
signals. The following Figure 4 illustrates the Pass
conflict (top) between fast train j and slow train i and
their alternative solutions (bottom).

Figure 4: Resolution of a Pass conflict.

In Figure 4 the bottom left plot is a good example
of an affected running time. Train j had to be slowed
down so as to arrive at station 2 without having to stop
in the middle of the segment track, and wait for train
i to clear the following block.

3.3.3 Safety intervals at stations

As for the arrivals and departures at stations there are
three different situations of conflict: two arrivals, two
departures, one arrival and one departure. Because
they are very similar situations, only the case with one
arrival and one departure will be shown in Figure 5.

Figure 5: Resolution of a Safety conflict.

3.3.4 Capacity conflict

The Capacity conflict is by far the most complex of
them all. The train chosen to wait for the full station
to be available again, is not necessarily the last one
in the schedule to arrive. In fact, all of the trains at
the station, when the conflict is detected, are candi-
dates to be re-scheduled. Hence, one can say that a
conflict in a station with capacity N, will have N + 1
possible solutions. The policy in this situation is to
hold one of the trains at the previous station until the
first train at the full station departs. To help under-
stand this resolution better, the following example in
Figure ?? shows a capacity conflict in station 2 with
capacity for two trains.

Figure 6: Resolution of a Capacity conflict.

3.4 Towards a feasible solution

Now that the resolutions for each conflict type are de-
fined, it is necessary to select them properly in order
to generate the best possible solutions. The objective
of this work is to provide the dispatcher with feasible
solutions, in a short amount of time, but also try to ob-
tain the optimal solution if possible. Therefore, two

approaches were developed in order to satisfy these
requirements: the heuristic approach and the search
based approach. An explanation of each one of the
approaches will be presented next.

3.4.1 Heuristic approach

Taking into account that this program will work in
real-time, there is the need to generate solutions as
fast as possible to help the dispatcher. Therefore, the
objective of this algorithm is to find a feasible solution
for the conflict in a short amount of time, and also to
reproduce the dispatchers’ behaviour in the resolution
process. It can be useful to imitate train dispatchers
so as to compare the quality of their solutions with
the optimal ones. The proposed decision criterion is
based mainly on train priorities and in the FOFI rule.
For every conflict that involves only two trains, which
means all conflict types except for the capacity con-
flict, the decision criterion works as follows. If one
train has higher priority than the other, that’s the train
that will always go first. If both trains have the same
priority, then the FOFI rule is applied. This rule will
check which one of the trains is able to solve the con-
flict in a faster way. In other words, this rule veri-
fies which decision generates de smallest delay on the
stopped train.

As for the capacity conflicts, there are N+1 trains
to consider and the procedure is as follows. Between
all the trains involved in the conflict, choose the train
with lowest priority in order to be delayed. In case
there is more than one train with low priority, choose
the last one to arrive at the station.

3.4.2 Search based approach

This approach was developed to provide the dispatch-
ers with optimal or near optimal solutions, better than
the ones they usually take. To do so, a search tree
is considered. The nodes of the search tree are the
conflicts and the branches are the respective solu-
tions. This means that the path from the first node to
any leaf node represents a feasible solution of the re-
scheduling problem. Because the time available is a
key element, the search mode adopted was the depth
first search (DFS). The DFS allows reaching a first
feasible solution without having to search the entire
tree as it would happen in a breath first search.

This problem is NP-complete. Therefore, there is
a need to adopt some strategies to ensure a solution is
produced. The DFS has a branch-and-bound mecha-
nism and each search is limited in computational time
and time horizon for the schedule. That is, there is an
upper bound on computational time, after which the
system is supposed to return the best solution found

so far. To ensure a larger set of options searched, the
objective is to produce a conflict free schedule from
the present time, t, up to some upper bound in time,
say t+T . Therefore, the best solution returned is con-
flict free for T units of time. This enables the system
to be re-started to search for more solutions in a com-
putational time of order T .

4 IMPLEMENTATION

In our implementation, there are two distinct parts:
the Conflict Detection Loop and the Conflict Resolu-
tion part. These parts are indicated below in Figure 7
within the dashed rectangles.

Figure 7: Structure of the software package.

The Conflict Detection Loop is responsible for
the surveillance of the railway network. It is also
in charge of updating all the necessary data, so that
the conflict detector can work with valid information.
This loop is supposed to keep running until a con-
flict is detected. The Conflict Resolution is evidently
the part responsible for solving the detected conflicts.
This part is divided into two main blocks which are
the heuristic solution and the search based solution.
These two algorithms that were already introduced in
Section 3 will be explained in detail further on. The
Conflict Resolution part is also in charge of reporting
the achieved solutions to the dispatcher.

4.1 Conflict Detection

The detection of conflicts is executed by the inspec-
tion of the network timetable. Two scans at the
timetable are performed, the first one tests out for
meet and pass conflicts, as for the second scan, it
checks for the safety intervals at stations and for ca-
pacity conflicts. Here in Table 1 is an example of a
timetable with all the arrival and departure times of
all the trains from every meetpoint in the railway. The
double line between Train 3 and Train 4 is separating
the outbound trains (Train 1 to Train 3) from the in-
bound trains (Train 4 to Train 6). As explained ear-
lier, the meetpoints and segment tracks are numbered
in the outbound direction. The times presented in the
table are in minutes.

Table 1: Example of a Timetable

The first scan sorts the train order for each track
segment and then for each pair of trains it verifies
the meet and pass constraints. In other words, the al-
gorithm compares the safety constraints between two
consecutive trains entering a given track segment.

Considering the example of Table 1, the order of
trains entering track segment 2 corresponds to the sort
of the highlighted values within the red circles. In this
case it would be as indicated in Table 2.

Table 2: Entrance order in track segment #2.

Track Segment #2
Entering times Order

Train 1 54 2
Train 2 50 1
Train 3 62 3
Train 4 136 6
Train 5 66 4
Train 6 105 5

The scan would begin by checking between Train

2 vs. Train 1, then Train 1 vs. Train 3 and so on, until
the last pair is analized, Train 6 vs. Train 4. This type
of approach allows saving precious time checking for
meet and pass constraints between all the trains in the
timetable, and so reducing the complexity of the al-
gorithm. When a conflict is found, the scan does not
stop because it might not be the earliest one to occur.
It is intended in this program to solve conflicts by the
order they occur. Although this may be not very ac-
curate, the time of conflict is assumed as the instant
when the first involved train leaves the meetpoint be-
fore the conflict. It is logical to think this way con-
sidering that this is the deadline to take a dispatching
measure. After that instant, the options considered for
conflict resolution are not feasible any more.

Table 3: Sorting Meetpoint #1.

Meetpoint #1
Arrival Order Departure Order

Train 1 1 1
Train 2 3 2
Train 3 2 3
Train 4 6 4
Train 5 4 6
Train 6 5 5

The second scan is very similar to the first one ex-
cept that in this case, it is not about entering times in
segment tracks, but entering and leaving times from
meetpoints. The algorithm sorts out the arrival and
departure times for one station and compares all the
consecutive times checking if the safety time inter-
vals are respected. Simultaneously, a train count for
that same station is performed in order to detect ca-
pacity conflicts. The blue shaded columns in Ta-
bler̃eftimetable will be the example for this scan.

4.2 Heuristic Solution

This algorithm is intended to be fast and effective as
explained in Section 3. Therefore, the detected con-
flict is evaluated concerning only train priorities and
the FOFI rule which is a sub-optimal and myopic
rule. A flowchart explaining the solution procedure
is presented below in Figure 8. If all of the involved
trains have the same priority, the program performs
the FOFI rule to see which option can cause de small-
est delay.

Having decided which train to delay, its schedule
is re-arranged accordingly and always respecting fu-
ture dwelling times. Next, it is necessary to check for
more conflicts in the schedule. If another conflict is
detected, the process is repeated again from the be-

Figure 8: Flowchart of the heuristic algorithm.

ginning. This cycle continues indeterminately until
the schedule becomes free of conflicts, which means
a solution was found.

4.3 Search based solution

The search algorithm was developed with the objec-
tive of reaching an optimal solution. To do so, it
should supposedly verify all the possible solutions
and then choose the best one among them. Due to the
enormous size that the search tree may reach in dense
traffic railways, it is unnecessary and also impossible
to store the entire tree in the computer memory and
to search it in feasible time. The Depth First Search
was then chosen because it does not require a lot of
memory, and because it provides solutions faster even
if they are not optimal. Because time is a key factor in
this search, there is the need to adopt some techniques
to reduce the size of the search tree. One of them is
the introduction of an Upper Bound search limit. The
Upper Bound stops the depth search, whenever the
considered solution is worse than the best one found
until that moment. The quality of each solution is cal-
culated by the cost function presented in Section 3.
Another technique used to reduce the search tree is the
time horizon. The conflict detector only reports con-
flicts earlier than the time horizon, ignoring all the fol-
lowing future conflicts. This horizon enables the al-
gorithm to prune a big part of the search tree and con-
sequently saving precious time. Even with these fea-
tures, there are still schedules that require too much
time to be optimally solved. Hence, the dispatcher
has another possibility which is the Maximum search
time. If this time is exceeded, the algorithm will stop

the search and report the best solution found until that
moment. In Figure 9 we present the flowchart of this
algorithm.

Figure 9: Flowchart of the search algorithm.

5 PERFORMANCE EVALUATION

The development of any application of this kind is not
finished without a serious and meaningful evaluation
of its performance. Therefore, this chapter aims to
present and analyze the results of the tests carried out
to check this model’s efficiency. More specifically,
the main objective of these tests is to understand how
the program is influenced by its input parameters. The
parameters in study are: Initial schedule; Time hori-
zon; Number of Solutions; Cost function; Maximum
search time; and Upper Bound.

Next, each one of these features will then be an-
alyzed individually. The package was implemented
in Matlab R2007b on the Windows XP operating sys-
tem, and all the experiments were conducted on a lap-
top with an Intel Pentium M 1.20 GHz processor and
1.23 GB of RAM. There are five schedules, each one
with different number of trains and meetpoints in or-
der to evaluate the behavior of the algorithms in dif-
ferent complexity environments.

5.1 Initial Schedule

In this first test, it is intended to demonstrate how
the increase in the complexity of the input schedule
affects the search for a solution. As for the other

features, their input was as follows: the time hori-
zon considered for all these experiments was one day
(24h); the maximum search time was established at
thirty minutes (1800 s); Also the number of requested
solutions was one (1); finally, the cost function used
was the total weighted tardiness whose weights are
the following: Priority 1 = 0.75; Priority 2 = 0.20;
and Priority 3 = 0.05.

In Table 4 the simulation results are presented. In
the first column is the identification number of the
input schedules which are ordered by their complex-
ity. The number of initial conflicts indicates how dis-
turbed the initial schedule is at the beginning of the
simulation. In the last two schedules, 4 and 5, the
optimal solution is not found before the maximum
search time meaning the solutions presented are not
optimal but the best ones found in 1800 seconds. The
limits columns present values of the number of times
that each limit was used to stop the search.

Table 4: Results for different initial schedules (* Optimal
solution not found).

Through the analysis of Table 4, the first and most
important conclusion is that the more complex and
disturbed the schedule is, the longer it takes for the
program to find the optimal solution. Quite surpris-
ingly, the algorithm that finds the heuristic solution is
barely affected by this complexity increase. Another
good result is the quality of the proposed heuristic so-
lution that revealed a near optimal solution in most
cases. In Schedule 5, the quality of the heuristic so-
lution could even overcome the thirty minute search
of the optimal algorithm. This aspect will be ana-
lyzed later on this section. As for Schedule 2, this
is a case where the optimal solution, with half the
cost of the heuristic solution, is found in just four sec-
onds. This variety from schedule to schedule rein-
forces the fact that independently of their complexity,
schedules may change a lot from one another mak-
ing greedy algorithms less reliable. As for the limits
used in the search for the optimal solution, the up-
per bound limit revealed more effective than the time
horizon limit. Nonetheless, the time horizon was at
its maximum value and for shorter time horizons it is

obviously more useful.

5.2 Time Horizon

With this second test, it is expected to show if the
variation in the time horizon can accelerate the search
for the optimal solution. Once again, it is important
to clarify that the indicated solutions are optimal but
only within the time horizon limit. They are not the
optimal solutions for the whole schedule. For this
second set of simulations, the maximum search time,
number of solutions and cost function are the same of
the previous tests.

Table 5: Variations in the time horizon (* Optimal solution
not found).

By the inspection of Table 5, one can conclude
that the decrease in the time horizon reduces drasti-
cally the search time need to obtain an optimal so-
lution. This result is of course expected since that a
short time horizon will ignore the majority of the fu-
ture conflicts and so reducing the search space. For
Schedules 3 and 4, with a time horizon of ten hours,
which is more than acceptable, the algorithm is able
to solve the conflicts optimally in less than thirty sec-
onds. As for Schedule 5, the densest schedule, the
heuristic algorithm completely outperforms the op-
timal one for long time horizons. Once more, this
heuristic values lower than the optimal ones will be
explained later in this section.

5.3 Number of Solutions

This test aims to check if the increase in the number of
requested solutions has a big influence on the program
performance.

This hypothesis comes from the fact that, the
higher the number of requested solutions is, the higher
the upper bound will be, and thus, less restrictive.
Once again the input parameters remain the same ex-
cept for the time horizon that will be reduced to ten
hours. The tests reveal that the number of solutions

Table 6: Variations in the number of solutions.

is not relevant in the behavior of the program. Differ-
ences like six seconds are not significant when talk-
ing about train dispatching. Besides, there is proba-
bly more interest in having a set of feasible solutions
available so that the dispatcher can have more choice
options.

5.4 Cost Function

The purpose of this test is to show how the heuris-
tic solution may have different quality performances
with different cost functions. To do so, four different
sets of weights were considered

Table 7: Sets of weights for the weighted tardiness function.

Priority 1 Priority 2 Priority 3
Set 1 0.7 0.2 0.1
Set 2 0.6 0.3 0.1
Set 3 0.5 0.4 0.1
Set 4 0.5 0.3 0.2

In order to be more realistic, there were two con-
ditions that the above sets had to verify: 1) Priority1
> Priority2 > Priority3; 2) Priority1 + Priority2 +
Priority3 = 1;

The case where all the weights are the same is
also considered with the total tardiness cost function.
The time horizon is set to 10 hours and the maximum
search time was set to 300 seconds. Bellow in Ta-
bler̃efresults4 are the results of this experiment. An-
alyzing the results, it may be concluded, as expected,
that the gap between the heuristic solution and the
proposed optimal solution increases when the weights
are more evenly distributed.

The heuristic algorithms performs as if all the
weight is in the train with higher priority and hence
these results. It is now up to the dispatcher to ana-
lyze the different produced solutions and work with
different cost functions in order to decide which set
of weights fits better to reality.

Table 8: Variations in the cost function.

5.5 Maximum Search Time

The interest in studying the maximum search time is
mainly to observe how fast does the algorithm con-
verge into an optimal solution. The input parameters
are the same as in the first test. To better illustrate
how this algorithm behaves in time, the graphic in
Figure 10 was made. The solutions quality, or cost,
is not presented in its absolute value but instead it is
normalized to make their comparison easier. Consid-
ering Ropt the quality of the optimal solution and Ri
the quality of the current solution, then the normal-
ized quality R is defined as being Ri/Ropt. In Sched-
ules 4 and 5, the optimal solution considered was the
one obtained at 1800 s. In Table 9 are indicated the
absolute cost values obtained in this experiment.

Table 9: Variations in the maximum search time (*Optimal
Solution found in 944s).

As it was concluded in the first test, the more com-
plex the schedule is, the longer it takes for the pro-
gram to obtain the optimal solution. This conclusion
is once more evidenced in this graphic where the lines
are logarithmic tendency lines. These tendency lines
are slightly overestimated because in the normaliza-
tion, the best solutions found at 1800 seconds, were
considered as being the optimal ones.

5.6 Upper Bound

With this set of tests, it is intended to study the effect
of the initial upper bound value, in the performance of

Figure 10: Search algorithm performance.

the optimal algorithm. By default, the optimal algo-
rithm does not take into consideration the cost value
of the heuristic solution. The initial value of the up-
per bound is set to infinite. This decision was made so
that the program could also consider solutions worse
than the heuristic solution and let the dispatcher ana-
lyze them in the end. The set back of this option is
that, by giving a high initial upper bound, the algo-
rithm’s performance is affected and so, it might not
be as effective as it could. Again, the input parame-
ters are the same as in the first test.

Table 10: Variations in the value of the initial upper bound.

To better illustrate the difference between the two
situations, the graphics below were created. Like in
the previous section, these values are normalized to
the optimal solution or in the case of Schedule 4 to
the best solution found in 1800s.

6 CONCLUSIONS

In Section 3, we established a procedure to reduce the
complexity of the conflict detection. Also, the capac-
ity conflicts are the most complex to solve, but with
the advantage of giving more realism to the model. Fi-
nally, two resolution methods for re-scheduling were

proposed. One is the heuristic solution based on a
simple dispatch mechanism, which is a greedy algo-
rithm that provides a solution for the problem in a
short amount of time by means of a local decision
criterion. The second method is a search based mech-
anism, an algorithm that checks for all the possibil-
ities, by using a search tree and a branch-and-bound
technique. In order to make the optimal search less
exhaustive and more useful in real-time, the time-
horizon and the maximum search time were adopted.
With a proper management of these search parame-
ters, the dispatcher may solve a conflict in a short
amount of time, pushing the conflicts further on, and
gaining precious time for another search, looking for
better results. The heuristic algorithm performed fast
in all situations, independently of the complexity of
the initial schedule. The quality of its solutions was
mainly near optimal but, as expected for a greedy al-
gorithm, there were cases were the proposed solution
was far from optimal. The search based algorithm
depends very much on the complexity of the initial
schedule. Nonetheless, the time horizon parameter re-
vealed very effective, with the tradeoff of shortening
the validity of the solution. The number of requested
solutions has almost no effect on the performance and
provides the dispatcher with a set of useful different
solutions.

A PROOFS

In both proofs of the theorems, train i is always con-
sidered an outbound train. The case when i is inbound, is
analogous with the outbound situation, and so it will not be
discussed, given the fact that the proof is not conditioned by
the direction.
Proof of Theorem 1:

Case 1) i+ 1 is an outbound train. If train i does not
collide with train i+1, then:

f k
i < f k

i+1 (13)

If train i+1 does not collide with train i+2, then there
can be two cases:

Case 1.1) i+ 2 is an outbound train. If train i+ 1 does
not collide with train i+2, then:

f k
i+1 < f k

i+2 (14)

And so, from (13) and (14) we get

f k
i < f k

i+2 (15)

From conditions (11) and (15), it can be concluded that,
in this case, train i does not collide with train i+2.

Case 1.2) i+2 is an inbound train. If train i+1 does not
collide with train i+2, then:

f k
i+1 < sk

i+2 (16)

And so, from (13) and (16) we get

f k
i < sk

i+2 (17)

From conditions (11) and (17), it can be concluded that,
in this case, train i does not collide with train i+2.

Case 2) i+1 is an inbound train. So, if train i does not
collide with train i+1, then

f k
i < sk

i+1 (18)

If train i+1 does not collide with train i+2, then there
can be two cases

Case 2.1) i+ 2 is an outbound train. If train i+ 1 does
not collide with train i+2, then

f k
i+1 < sk

i+2 (19)

And so, from conditions (18) and (19) we get

f k
i < sk

i+1 < f k
i+1 < sk

i+2⇐⇒ f k
i < sk

i+2 (20)

With conditions (11) and (20), it can be concluded that,
in this case, train i does not collide with train i+2.

Case 2.2) i+2 is an inbound train. If train i+1 does not
collide with train i+2, then

f k
i+1 < f k

i+2 (21)

And so, from equations (18) and (21) we get

f k
i < f k

i+2 (22)

From conditions (11) and (22), it can be concluded that,
in this case, train i does not collide with train i+2.

ut
Proof of Theorem 2:

Case 1) p is an outbound train. If there is a conflict, then

f k
i > f k

p (23)

Case 1.1) p−1 is an outbound train. For train p−1 not
to collide with train i, it must be the case that

f k
i < f k

p−1 (24)

For train p−1 not to collide with train p, it must be the
case that

f k
p−1 < f k

p (25)

Which means that{
f k
i < f k

p−1 < f k
p

f k
i > f k

p
⇐⇒ Impossible (26)

Thus in this case, train p− 1 will either collide with
train i or train p.

Case 1.2) p−1 is an inbound train. For train p−1 not
to collide with train i, it must be the case that

sk
p−1 > f k

i ⇐⇒ f k
p−1 > sk

p−1 > f k
i

⇐⇒ f k
p−1 > f k

i (27)

For train p−1 not to collide with train p, it must be the
case that

f k
p−1 < sk

p ⇐⇒ f k
p−1 < sk

p < f k
p

⇐⇒ f k
p−1 < f k

p (28)

Combining conditions (23), (27) and (28), we get
f k
i > f k

p
f k
p−1 > f k

i
f k
p−1 < f k

p

⇐⇒ Impossible (29)

Thus in this case, train p− 1 will either collide with
train i or train p.

Case 2) p is an inbound train. If there is a conflict, then

f k
i > sk

p (30)

Case 2.1) p−1 is an outbound train. For train p−1 not
to collide with train i, it must be the case that

f k
p−1 > f k

i (31)

For train p−1 not to collide with train p, the following
has to hold

f k
p−1 < sk

p (32)

These two conditions together with condition (30) yield
f k
i > sk

p
f k
i < f k

p−1
f k
p−1 < sk

p

⇐⇒ Impossible (33)

Thus in this case, train p− 1 will either collide with
train i or train p.

Case 2.2) p−1 is an inbound train. For train p−1 not
to collide with train i, it must be the case that

sk
p−1 > f k

i (34)

This with condition (30) yields

sk
p−1 > f k

i > sk
p⇐⇒ sk

p−1 > sk
p (35)

This equation is impossible because it violates the initial
assumption referred in (10). Hence, in this case, train p−1
will either collide with train i or train p.

The result follows.
ut

Proof of Corollary 1:
From Theorem 1 we say that if there are no conflicts be-

tween consecutive trains on a given track segment, then nec-
essarily there are no conflicts between any of those trains.
Therefore this condition assures the non-existence of con-
flicts. From Theorem 2, we say that any conflict between
non-consecutive trains, means that there is also a conflict
between consecutive trains. Hence, this conclusion guaran-
tees that all the existing conflicts will be detected.

ut

REFERENCES

B. Adenso-Dı́az and M. O. González and P. González-Torre,
“On-line timetable rescheduling in regional train ser-
vices,” Transp. Res. – Part B, Vol. 33, No. 6, pp. 387-
398, 1999.

J. F. Cordeau and P. Toth and D. Vigo, “A survey of op-
timization models for train routing and scheduling,”
Transp. Sci., Vol 32, No. 4, pp. 380-404, 1988.

A. D’Ariano and M. Pranzo and I. A. Hansen, “Conflict res-
olution and train speed coordination for solving real-
time timetable perturbations,” IEEE Trans. Intelligent
Transportation Systems, Vol. 8, No. 2, 2007.

A. D’Ariano and D. Pacciarelli and M. Pranzo, “A branch
and count algorithm for scheduling trains in a railway
network,” European Journal of Operational Research,
Vol. 183, pp. 643-657, 2007.

A. Mascis and D. Pacciarelli and M. Pranzo, “Models and
algorithms for traffic management of rail networks,”
RT-DIA-74-2002.

A. Mascis and D. Pacciarelli, “Job-shop scheduling with
blocking and no-wait constraints,” European J. of Op-
erational Research, Vol. 143, pp. 498-517, 2002.

J. Medanic and M. J. Dorfman, “Efficient scheduling of traf-
fic on a railway line,” Journal of Optimization Theory
and Applications, Vol. 115, No. 3, pp. 587-602, 2002.

I. Sahin, “Railway traffic control and train scheduling baed
on inter-rail conflict management,” Transp. Res. – Part
B, Vol. 33, No. 7, pp. 511-534, 1999.

