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Abstract: Whenever  dealing  with  periodic  review  multi-products  inventory  control  for  capacitated 
machines, one of the main issues that has to be addressed concerns the dynamic capacity allocation. That 
is, how to assign capacity to the several competing products that require more than it is available. One 
typical approach is to assign priorities to the products, according to some degree of relative importance. 
Whereas priority based capacity allocation is attractive, due to its simplicity and for the fact that it makes 
sense in a significant number of settings, we contend this to be too unfair to lower priority products, 
given their access to production tends to be highly variable and uncertain. Departing from what we call 
strict priorities, we propose a priority based mechanism that improves on this drawback, termed smooth 
priorities. This new policy for multi-product, limited capacity production systems with stochastic demand 
is  studied.  Theoretical  comparisons  are  made  to  the  common  policies  of  strict  priorities  and  linear 
scaling. An optimizer based on Infinitesimal Perturbation Analysis, IPA, simulation is devised and results 
of  practical  comparison between smooth and strict  priorities are  presented. The structure  of the cost 
function with smooth priorities is studied through function plots obtained from simulation and numerical 
results show consistent better performances than those achieved under strict priorities.

Keywords: Periodic Review Inventory Control, Multiple products and machines, Capacitated Systems, 
Base-stock Echelon Policies, Infinitesimal Perturbation Analysis.

1. INTRODUCTION

In the context of multi-product, limited capacity production 
systems,  with  stochastic  demand  and  periodic  review,  the 
optimal  policy  has  defied  closed  form  formulations  and 
shown to be excessively complex for numerical calculation. 
For  this  reason,  it  is  frequent  to  use  sub-optimal  policies 
characterized by a small set of parameters which may then 
allow  for  simulation  based  optimization.  Within  the  sub-
optimal policies normally used, the most common are base-
stock policies. Whereas  defining the base-stocks is enough 
for  single  product  systems,  being  them  composed  of 
capacitated or uncapacitated machines, such is not the case 
for multiple product systems with capacitated machines.  In 
those  cases  one  has  still  to  address  the  issue  of  dynamic 
capacity allocation when, for a given machine, the requests 
from all products exceed its capacity. Many are the schemes 
to  allocate  capacity  dynamically,   out  of  which  decisions 
based on a priority list is one of the most common. However, 
a strict priority policy, while interesting in simplicity and for 
the high priority products, is not as interesting when it comes 
to satisfying the demand for lower priority products. There 
may be periods when a subset of the higher priority products 
exhausts all the available capacity for those periods, and the 
lower  priority products  will  have  to  wait  for  a  subsequent 
period  to  see  their  needs  fully  or  partially  satisfied.  A 
consequence of this is the fact that their levels of safety stock 
tend to increase to hedge against a less reliable, with higher 
variance,  access  to the resources.  Furthermore,  determining 
the adequate list of priorities is a combinatorial problem of 

difficult resolution, when the number of different products is 
significant.

The  objective  of  this  paper  is  to  introduce  and  study  the 
smooth priorities concept, as an alternative to strict priorities. 
Smooth  priorities  try  to  overcome  the  unfairness  of  strict 
priorities by allowing a slice of the available capacity to all 
products in all periods, irrespective of being higher or lower 
priority.  Being  a  priority  inspired  concept,  the  slice  each 
product gets on a given period is also a function of a set of 
weights,  which  express  the  relative  priorities  among  the 
products. Given the fact that those weights can be defined as 
real  numbers  between  0 and  1,  transforms  the  problem of 
determining  the  relative  importance  of  the  products  into  a 
continuous variable, non-linear programming problem.

A great tutorial that describes the current state of the art in 
production systems is [Hou06]. Relevant results for the work 
presented are: the optimality of base-stock policies for simple 
cases proved in  [ClarkScarf60],  [FergZip86a] [FergZip86b], 
and [RodKap04]; the practical approach used in [GlasTay94] 
to  determine  stability  conditions,  and  in  [GlasTay95] to 
validate  sensitivity  analysis  for  a  single  product  multi-
echelon  capacitated  production  system  using  a  base-stock 
policy;  the  study  of  several  common  base-stock  policies 
applied  to  re-entrant  multi-product  capacitated  systems  in 
[Bispo97];  the  first  practical  study  of  smooth  priorities  in 
[NunSouSou99]; and the optimality of base-stock policies in 
the  multiple  products,  single  machine  case  approached  in 
[JanNagVeer07].

   



To obtain practical  results, a simulation based optimization 
with  gradient  estimates  provided  by  Infinitesimal 
Perturbation  Analysis,  (IPA),  ([Glass91])  is  used.  IPA  is 
based on the possibility of exchanging the expectation and 
the  derivative  operators  allowing  for  a  gradient  to  be 
estimated by the average of the period gradients calculated 
during  simulation.  The  optimizer  was  developed  after  a 
review  of  several  algorithms  from  [Luen03] and  uses  the 
Fletcher-Reeves  method  to  determine  the  search  direction. 
Constraints are enforced by projection and the golden section 
algorithm  is  used  for  line  searches.  The  simulator  was 
developed  by  adaptation  of  the  algorithm  and  techniques 
from  [CasLaf99].  More information on the implementation 
details is available in [Men08]. 

In what follows we will use simple substitution to prove that 
our implementation of smooth priorities is a generalization of 
both  the  Linear  Scaling  Rule,  [Bispo97],  (LSR)  and  strict 
priorities.

The general model used along with the LSR, strict priorities, 
and smooth priorities production equations, and relevant IPA 
equations are presented in Section 2. The fact that LSR and 
strict  priorities  for  two  products  constitute  a  subclass  of 
smooth  priorities  is  proven  in  Section  3.  Practical  cases 
studied,  results  obtained,  and  drawn  conclusions  are  pre-
sented in Section 4. Conclusions are presented in Section 5.

2. MODEL AND BASE-STOCK POLICIES

The general model used in this paper has  M machines with 
finite  capacity,  P final  products  that  are  constituted  by  Fp 

phase products.  Each phase product  can be assigned  to be 
produced in any machine without restriction (i.e., no serial or 
other structure is imposed) and can use up different amounts 
of  capacity  to  be  produced  (i.e.,  different  loads),  raw 
materials are always available (i.e., perfect delivery), which 
are used by the first phase product of a final product, demand 
is continuous and occurs on the last phase product of a final 
product  after  production.  Product  quantities  are  considered 
continuous and linear holding and backlog costs are used.

Figure 1 - Illustration of the modeling flexibility.
Notation:
M - number of machines;
P - number of final products;
F p - number of phase products of final product p ;
M m - set of phase products produce in machine m  ;
K m - capacity of machine m ; 
I t

p , f - inventory of phase product f of final product p in 
time period t ;

E t
p , f -  echelon  inventory  of  phase  product f of  final 

product p in time period t ;

P t
p , f - production of phase product f of final product p

in time period t ;
d t

p - demand for final product f at the end of time period
t ;

h p , f - holding cost of phase product f of final product p ;
b p - backlog cost of final product p ;
 p , f - load of phase product f of final product p ;
C t

p - cost for final product p in time period t ;
C t - total cost in time period t ;
z p , f - echelon base-stock level of phase product f of final 

product p ;
p , f -  alternative  (to z p , f )  set  of  variables  that  relate 

inventory between phases;
yt

p , f - shortfall of phase product f of final product p in 
time period t ;

f t
p , f -  production  needs  of  phase  product f of  final 

product p in time period t ;
 p , f -  smooth  priorities'  parameter  of  phase  product

f of final product p .

Equations that show how the system evolves from period to 
period:

I t1
p , f = I t

p , fP t
p , f −P t

p , f 1 ,P p ,F p1≡d t
p (1)

E t1
p , f =E t

p , fP t
p , f −d t

p ,E t
p , f=∑

i= f

F p

 I t
p , i  (2)

Equations to determine the cost in each period:

C t
p = −min I t

p ,F p ,0 ×b p∑
f =1

F p

max I t
p , f ,0×h p , f  (3)

C t=∑
p=1

P

C t
p (4)

Equations that define p , f , yt
p , f and f t

p , f :
p , f =z p , f−z p , f 1 , z p ,F p1≡0 (5)
yt

p , f =max z p , f−E t
p , f ,0 (6)

f t
p , f=min  y t

p , f , I t
p , f −1 (7)

2.1 Description of base-stock policies and their production 
equations

Linear Scaling Rule (LSR) - when production needs cannot 
be satisfied for all products of a given machine, production is 
linearly scaled to fit the machine capacity.

P t
p , f={ f t

p , f , ∑
i , j∈M m

f t
i , ji , j≤K m

f t
p , f K m

∑
i , j ∈M m

f t
i , ji , j , ∑

i , j ∈M m

f t
i , ji , jKm

(8)

Strict  Priority -  each  product  has  a  priority  assigned  and 
fulfills  production  necessities  by  order  of  priority  until 
machine capacity is fully used or there are no more products 
to produce. In the following equation we consider products 
ordered by priority and j=1 means the product has the highest 
priority.
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P t
j=min f t

j ,
K m−∑

i=0

j−1

P ii

 j 
, P0≡0  (9)

Whereas we have addressed the drawbacks of strict priorities 
in the Introduction, we need now to refer that the LSR may 
perform well under certain circumstances, see [Bispo97], but 
when first phase products enter the scaling term of (8), they 
tend  to  crush  the  other  products  just  because  there  is  no 
bound  in  raw  materials.  That  is,  while  their  net  needs, 

f t
p , f , are exactly equal to the shortfall, the net needs of 

other product may be bounded by the feeding inventory. This 
is  specially  relevant  for  re-entrant  systems.  Therefore,  the 
LSR ends up working as if giving higher priority to the first 
phase products, which is known not to be a good production 
strategy.

The idea behind the smooth priorities concept is that at any 
decision point all  products should have a higher  chance of 
getting part of their needs satisfied. When deciding with strict 
priorities the smaller priorities products quite often do not get 
any of their needs satisfied.  This happens when the higher 
priority products exhaust all available capacity. Therefore, to 
circumvent  this  drawback,  we  propose  that  the  production 
needs for all products should be considered in the decision, 
proportionally to their relative priorities. This way we reduce 
the  likelihood  of  the  lower  priority  products  not  getting 
anything done at any given period.

To  introduce  an  implementation  of  the  smooth  priorities 
concept,  we resort  to  the  LSR.  There,  each  product  needs 
enter the scaling term of (8) with equal weight. This means 
all products needs are equally important. If instead we assign 
a weight, between 0 and 1, to each product we may be able to 
regulate the relative importance of each product in the scaling 
term.  With  this  idea  in  mind  we  introduce  now  an 
implementation of the smooth priorities concept.

Smooth Priorities – Each production decision at any given 
period has two decision steps where each is produced with 
LSR.  Each  product  has  a  parameter  that  indicates  the 
relative quantity of production needs that enter the first phase 
LSR.  If  there  is  remaining  capacity  after  the  first  phase,
1− is  the proportion that enters the second phase LSR.

P t , I
p , f= p , f f t

p , f min 
Km

∑
i , j∈M m

 i , j f t
i , ji , j , 1 (10)

P t , II
p , f =1−p , f  f t

p , f min
K m− ∑

i , j∈M m

P t , I
i , ji , j

∑
i , j ∈M m

1−i , j f t
i , ji , j , 1 (11)

P t
p , f=P t , I

p , f P t , II
p , f (12)

It should be easy to see now that, in any period when the sum 
of the net needs for all products at a given machine exceed its 
capacity, if all the relative weights are different from zero, all 
products will get a non zero share of the available capacity, 

contrary  to  what  happens  with  the  strict  priorities  policy. 
Also, given the fact that in general it is not a good strategy to 
give higher priority to first phase products, one should expect 
that the optimal weights should reflect this fact by reducing 
adequately their values for first phase products.

2.2 IPA equations 

The IPA equations are omitted here due to space constraints, 
but  can  be  seen  in  [Men08].  They  are  easily  obtained 
applying the formal procedure described in [GlasTay95]. IPA 
equations  and  their  validation  for  several  policies  in  the 
multi-product  case  is  done  in  [Bispo97].  Since,  our 
implementation of the smooth priorities is essentially an LSR 
scheme  in  two  phases,  the  validation  procedure  for  that 
policy carries through for the present case.

3. THEORETICAL COMPARISON OF POLICIES

To  show  that  the  LSR  policy  is  contained  in  the  smooth 
priorities policy we show the equality of both when smooth 
priorities has the  parameters equal for all products.

The  smooth priorities  production equations  (10),  (11),  and 
(12) can be expressed differently as a disjunction of all the 
possible cases which gets rid of the min operators.

P
Smooth

t
p, f ={

f t
p, f if ∑

 i , j ∈M m

f t
i , ji , j≤K m

p , f f t
p , f1− p , f  f t

p , f
K m− ∑

 i , j ∈M m

 i , j f t
i , ji , j

∑
 i , j ∈M m

1− i , j f t
i , ji , j

if ∑
 i , j ∈M m

f t
i , ji , jKm∧ ∑

 i , j ∈M m

i , j f t
i , ji , j≤K m

p , f f t
p , f K m

∑
 i , j ∈M m

 i , j f t
i , ji , j ,

if ∑
 i , j ∈M m

f t
i , ji , jKm∧ ∑

 i , j ∈M m

i , j f t
i , ji , jK m

 (13)

By  doing  ∀ p , f ∈M n p , f= ,  simplifying  and 
joining  the  equally  valued  disjunction  we  finally  arrive  at 
(14).

P
Smooth

t
p , f = P

LSR

t
p , f={ f t

p , f , ∑
 i , j ∈M m

f t
i , ji , j≤K m

f t
p , f Km

∑
 i , j ∈M m

f t
i , ji , j , ∑

 i , j ∈M m

f t
i , ji , jK m

. (14)

To show that for two products strict priorities are contained 
in smooth priorities we show the equality of both when the 
highest strict priority product has =1 and the lowest strict 
priority product has =0 . 

For  product  1  with =1 we  get  a  null  second  phase  of 
production and for product 2 with =0 we get a null first 
phase giving the following equations

   



P
Smooth

t
1= f t

1 min
K m

f t
11 ,1 (15)

P
Smooth

t
2= f t

2min 
Km−P t , I

1 1

f t
22 ,1  (16)

The  equations  for  the  strict  priority  case  with  only  two 
products are the following

P
Strict

t
1=min  f t

1 , K m

1  (17)

P
Strict

t
2=min  f t

2 ,
K m−P11

2  (18)

It  can  easily  be  seen  that  they  are  equivalent.  It  is  also 
important to note that by extending smooth priorities to have 
as many LSR phases as there are products in the machine this 
proof could easily be generalized for any amount of products.

4. NUMERICAL RESULTS

First, the previous results of [NunSouSou99] are reproduced 
as  closely  as  possible.  This  is  done  with  the  purpose  of 
confirming the validity of previous results and validating the 
approach here proposed. Then a new simple case is studied 
for  several  costs.  This  serves  the  purpose  of  showing that 
strict  priorities  constitute  upper  bounds  in  terms  of  cost 
relative to the smooth priorities, as was established in Section 
3,  while  showing  that  there  is  a  choice  of  smoothing 
parameters  that  equals  the behaviour  of  strict  priorities  for 
only two products.  A more complex  case  is  studied and a 
parallel to the results of  [LuKu91] is made. To finish, the 
structure of the cost function is studied and the extrapolation 
for the general case is attempted. 

4.1 Comparison with Previous Results

The case is this:
- one machine, with capacity 25, produces two products
-  product  one  has:  average  demand  =  8;  inverse  variance 
coefficient =  3; backlog cost = 50; and holding cost = 10.
- product  two has:  average  demand = 12; inverse variance 
coefficient = 1; backlog cost = 20; and holding cost = 10. 

This  is  a  case  in  which,  according  to  [Bispo97],  a  strict 
priority policy would have better  results  than the LSR and 
another  rule  proposed  there  but  omitted  here,  the  ESR 
(Equalized Shortfall Rule), since one of the products has the 
lowest  average  demand, the highest  backlog costs,  and the 
least variance.
The results obtained by the optimizer for strict priority for 1st 

product, smooth priority and  strict priority for 2nd product are 
presented in Table 1. The first and third line of the table refer 
to the results obtained for strict priorities and the middle line 
refers  to  smooth  priorities.  In  the  former  case  we  only 
optimize the base-stocks for both products, and in the latter 
we optimize the base-stocks and the weighting parameters. 
The behaviour is as expected in terms of the relative priority 
but the best performance is not obtained with strict priorities 

since  we  do  not  have  1=1  nor  2=0  for  the  smooth 
priorities. Actually, the fact that the optimal weighting factor 
for product 2 is non zero, means that this product will have 
access  to  capacity in every period when its  needs are  non 
zero, contrary to what would happen under strict priorities.

Note  also that,  as  expect  from the  discussion made in  the 
Introduction,  the  performance  improvement  is  done  at  the 
expense of  increasing slightly the base-stock for  product 1 
and reducing it for product 2, when compared with the first 
line. That is, product 2 does not have to hedge as much given 
it has a more reliable access to the production resource.

Table 1. Comparison between strict and smooth priorities

Optimization Results

1 2 1 2 Avg. Cost

10.513  25.6131 1 0 299.484

11.9863 23.764 0.54975 0.01064 292.810

26.2372 16.1068 0 1 444.731

4.2 Different Costs

The case is this:
- one machine, with capacity 100, produces two products
-  product  one  has:  average  demand = 40;  and  exponential 
demand distribution.
-  product  two has:  average  demand = 40;  and exponential 
demand distribution.
- the holding and backlog costs are varied.

We present a summary of the findings. Results show that, for 
the  cases  where  holding and  backlog  costs  are  similar  for 
both  products,  smooth  priorities  clearly  achieves  better 
results and is equivalent to the use of the LSR. This was to be 
expected since there is no differentiating factor between the 
products.

In general, smooth priorities achieves better results than strict 
priorities but do converge to strict priorities in several of the 
cases where holding costs differ. For every case the ordering 
of  the  strict  priorities  with  the  best  results  correspond  to 
ordering  of  the  alphas  for  smooth  priorities.  As  would  be 
expected, when holding or backlog costs rise for a product, 
smooth priorities get closer to strict priorities for that product.

This  practically  confirms  that  the  performance  of  strict 
priorities constitutes an upper bound on the performance of 
smooth priorities as shown in Section 3. Given the extent of 
the data, for the sake of space, we omit presenting the table 
with all the results here. These can be seen in [Men08].

4.3 Complex System

To explore the use of smooth priorities in a more complex 
structure, the system illustrated in Figure 1 is used. 

   



The details are the following:

- 3 machines
- machine capacities: K1=60, K2=100, K 3=65
-  1st  final  product:  average  demand  =  30;  exponential 

demand  distribution;  4  phase  products  with  holding 
costs:   h1,1=10, h1,2=15, h1,3=20, h1,4=25 ;  and 
backlog cost = 50.

-  2nd  final  product:  average  demand  =  20;  exponential 
demand  distribution;  3  phase  products  with  holding 
costs:  h2,1=10, h2,2=10, h2,3=10 ; and backlog cost = 
20.

-  the  first  machine   produces:  phase  product  1  of  final 
product 1; and phase product 3 of final product 2.

-  the  second  machine  produces:  phase  product  2  of  final 
product 1; phase product 3 of final product 1; and phase 
product 1 of final product 2.

-  the  third  machine  produces:  phase  product  4  of  final 
product 1; and phase product 2 of final product 2.

The system was optimized with all the machines with smooth 
priorities and then with machine one with strict priority for 
product 2 and the remaining machines with smooth priorities. 
The results obtained (rounded) are shown in Table 2.

Table 2. Smooth vs strict priority (product 2, machine 1)

Optimization Results

 
Costprod.1 prod.2 prod.1 prod.2

f1 f2 f3 f4 f1 f2 f3 f1 f2 f3 f4 f1 f2 f3

41 39 37 89 4 44 53 .45 .59 1.0 .99 .20 .00 .99 4855 

57 16 47 82 7 37 49 .00 .68 1.0 .92 .21 .30 1.0 4927

From the results we can see that the alpha parameters give 
priority to the phase products closer to the external demand. 
This  brings  to  mind  the  "Last  Buffer  First  Served"  strict 
priorities policy that in [LuKu91] is the one that achieves the 
best performance (in terms of mean cycle time), from those 
studied there, in a system with a re-entrant structure. 

We should also take notice that applying strict priorities in 
machine 1 when the alpha parameters  of  smooth priorities 
give clear order of priority, but not strict priority, leads to an 
increase in the cost. 

4.4 Structure of the cost function

Several graphs where produced, for both one of the simple 
and  the  more  complex  systems,  to  empirically  study  the 
structure  of  the  cost  function.  Given  the  number  of 
parameters involved, we can only look at projections of the 
cost  function.  Therefore,  we  have  to  select  a  pair  of 
parameters to produce a cost surface as a function of the pair, 
while the remaining parameters are kept constant.

We show those that present  the most interesting behaviour 
for the single machine and two products in Fig. 2 and for the 
system of Fig. 1 in Fig. 3.

Figure 2 - Cost function for varying alphas (single machine).

Figure 3 - Cost function for varying alphas (Same machine 
for the system of Fig.1).

Besides the two here displayed, all graphs produced under the 
above mentioned settings present smooth surfaces. Although 
this  does  not  constitute  proof,  these  observations  together 
with the conditions  which allow the  validation of  the  IPA 
approach  reinforce  the  belief  that  the  same  happens  in 
general.  Although  the  graphs  for  a  single  machine  do  not 
present local minima, which permits us to speculate that the 
function is  quasi-convex  for  that  case,  the graph  in Fig.  3 
exhibits  local  minima.  Since  from all  the  graphs  we  have 
produced this is the only one for a machine with more than 
two phase products but also in a re-entrant system, this raises 

   



the question if such behaviour is due to the re-entrance or if it 
does happen even for three products with no re-entrance.

When we started this line of research one of the goals was to 
investigate  if  the  cost  function  has  a  single  minimum  in 
general. We selected the above pair of graphs to show two 
things: as a function of the alpha parameters, the cost is not 
convex and may present local minima.

The  numerical  results  are  therefore  coherent  with  the 
theoretical expectations that the cost function is continuous 
but not with the expectations that it is quasi-convex, at least 
generally.  This,  unfortunately,  means  that  gradient  based 
optimization is  not suitable to obtain the optimal parameters 
for  sufficiently  general  systems.  Therefore,  other 
optimization  techniques  will  have  to  be  used  in  order  to 
satisfactorily  ensure  optimality  of  the  parameters  obtained. 
This fact also bears consequences into the purpose of using 
smooth priorities to obtain the optimal set of priorities if one 
still  intends  to  resort  to  strict  priorities.  Although  global 
optimality  cannot  be  ensured  with  gradient  based 
optimization, we still believe that the error committed in the 
precise value of the alpha parameters, under gradient based 
optimization, does not carry through to their relative values. 
Thus,  for  that  purpose  we  continue  to  claim  that  a 
combinatorial problem has been converted into a non linear 
problem.

5. CONCLUSIONS

A general system model that can encompass both serial and 
re-entrant  systems  was  presented.  Software  was  developed 
that  implements  the  functioning  of  the  systems,  a  general 
simulator  and  a  general  optimizer  allowing  for  their 
optimization based on simulation.

Equations  that  express  the  functioning of  the  system were 
presented and were used to theoretically show that  smooth 
priorities are a generalization of the Linear Scaling Rule  and 
of  the  strict  priorities  for  systems  where  each  machine 
processes only two different products.

With the use of the developed software, previous numerical 
results  where  confirmed.  The  fact  that  smooth  priorities 
consistently achieve better results than strict priorities  was 
verified. The hypothesis that the ordering of the alphas under 
smooth  priorities  translate  to  an  optimal  ordering  of  the 
products for strict priorities was reinforced and the structure 
of the cost  function was studied, leading to the conclusion 
that it is most likely continuous but, unfortunately,  it is not 
quasi-convex in general.

Future work will have to address other  implementations of 
the smooth priorities concept that may be more amenable to 
optimization, given the fact that the numerical results show 
beyond doubt that there are gains to expect when departing 
from strict priorities.
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