
SIMULATING ACTIVITY NETWORKS IN JAVA
Marta Rebello1, Zita Fernandes1, Carlos F. Bispo1

1Instituto de Sistemas e Robótica, Instituto Superior Técnico,
Av. Rovisco Pais, 1049-001 Lisboa, Portugal.

cfb@isr.ist.utl.pt (Carlos F. Bispo)

Abstract

In order to evaluate the performance of several scheduling policies for multiclass queuing
networks we felt the need to develop a general purpose software package where different
networks and policies can be tried, either from a set of pre-defined systems and policies or for
user-defined systems and policies. In this paper we present a package to perform discrete
event simulation of a manufacturing system with different configurations specified by the
user, according to the framework of activity networks as introduced by Harrison in [1]. The
package uses an object oriented modeling technique. The language in question is Java.
The architecture of the system to be simulated is described in file format, where the resources,
routing patterns for customers and other parameters are specified. The user may choose the
decision policies from a library of methods or can add new policies to this library. The
modeling flexibility permitted includes standard multiclass queuing networks to be modeled,
where there are a few types of customers, each characterized by a unique routing, at each
stage of the routing customers wait in a specific buffer for the next service, and each server
works on a customer at a time. The activity networks allow other configurations, where a
given service may take more than a customer from different buffers. Some preliminary studies
on the performance evaluation of distributed scheduling policies for queuing networks are
presented as a means to provide insights on the type of utilization this package can have.

Keywords: activity networks, java simulation package, scheduling policies, performance
evaluation

Presenting Author’s biography

Carlos F. Bispo obtained the degrees of “Licenciatura” and MSc. on
Electrical and Computer Engineering at the Instituto Superior
Técnico, the engineering school of the Technical University of
Lisbon, Portugal in 1985 and 1988, respectively. He obtained the
degrees of MSc. and PhD on Industrial Administration, in 1993 and
1997, at the Carnegie Mellon University, Pittsburgh, USA.
He is currently a tenured Assistant Professor at the Department of
Electrical and Computer Engineering of the IST and conducts his
research activities at the Instituto de Sistemas e Robótica.
His main research interests are in the area of Operations Manage-
ment, with particular emphasis on Scheduling for Queuing Networks,
and Inventory Control.

1. Introduction

In order to evaluate the performance of several
scheduling policies for multiclass queuing networks
we felt the need to develop a general purpose
software package where different networks and
policies can be tried, either from a set of pre-defined
systems and policies or for user-defined systems and
policies.
The simulation starts with specifications defined by
the user that allows the creation of virtual elements,
according to object oriented programming, which will
be used to construct the modeled system. The initial
specifications will map the input variables, the
objects and the attributes for the objects. The existent
templates allow the simulation of the general activity
networks first introduced by Harrison in [1].
The initial specifications of the input are according to
the minimal elements needed to the construction of
the network [1]. This network will be constituted by
two kinds of objects: machines or servers and buffers
(queues). The dynamics between the elements will be
made according to activities that will obey to
scheduling policies. These policies, according to [2],
may be such that they reduce the mean and variance
of cycle-time, but they can also address other
performance concerns.
The events will result from the movement of
materials such as packets, customers, etc. Each server
uses several resources to produce outputs of materials
that may be of various (possibly different) kinds.
These materials can be processed by several servers,
can be split up, or combined with other kinds of
materials before a final output is produced.
In what follows we will briefly describe the nature of
the networks we will be interested on simulating,
describe the main events that are being considered,
and how the scheduling policies will be addressed.
Next section will discuss the structure of the
simulator by means of the Unified Modeling
Language (UML). Section 3 briefly describes how
data will be collected and processed. Section 4 will
present a numeric study that serves as an illustration
on the utilization intended for the package. Finally,
we will present some concluding remarks.

1.1 Processing networks

In this section we will describe the activity network.
The model of the network was made following the
processing network developed by Harrison in [1]. We
assume to have l servers (represented by circles in
Figure 1) and j types of activities (represented by the
broken arrows). The model has i input buffers (that
receive material from the outside) with an average
arrival rate ëi and service (intermediate) buffer that
receive materials after processed. Each activity, j,
uses a particular server with average service rate ìj
materials by unit time, processes materials from one

or more given buffers and places them in buffers after
completion of service. We have qk units of each
server, expressed as the number of available parallel
servers per time unit.
Again according to Harrison, we consider that Rij is
the average amount of material of buffer i consumed
per unit by activity j. All components of Rij are
assumed to be integer positive or negative numbers.
They are negative when a buffer receives the outcome
of the activity and positive when the buffer feeds the
activity.
We also assume that Akj is the average rate at witch
activity j consumes the capacity of resource k .

Figure1. Example of a simple activity network.

In this simple case (Figure 1) we only have one server
able to process 2 types of activities from and to 4
buffers. We can see that knowing only the user-
specified parameters R, A, ë, and q, plus the details of
the failure and repair processes, we are able to model
and simulate the network during a specified time
interval. Using still Figure 1, a positive value of
R11=2 means that activity 1 will use 2 units of
material from buffer 1 and a negative value of R13=-1
means that the same activity will produce only 1 unit
of material to buffer 3. The existing server will
process activity 1 at an average rate of 0.5 per unit
time and activity 2 at an average rate of 1.5 per unit
time. The input to buffers 1 and 2 (both input buffers)
will have average rates of 0.8 and 1.1 per time unit.

1.2 Network dynamics

The dynamics of the network is based on the events.
These events can be of various types: arrivals, end of
services, server failures and end of repair (of the
servers).
- Arrival: When something (someone) arrives from
the outside this material (or customer) is created and
placed on a specified buffer. It also verifies if any
activity can be initiated according to the policies of
the servers. If so, an end of service event will be

Figure 2. The Unified Modeling Language for the simulator.

created and placed on the CAP – Class that contains
the list of pending events.
- End of service: When this type of event happens the
material that has been processed is placed on the
specified buffer or deleted (witch corresponds to a
departure from the network) according to the activity
in question. The server in question now has to verify if
it is possible to start another activity.
- Failure: The first set for these events is created at
the beginning of the simulation. If the server is
working when a failure happens there are 3 options:
the objects that were being processed are destroyed,
the objects that were being processed are placed at the
beginning of the buffer and the activity will start over
again when the server restarts its activity, or finally
the objects remains at the server and the end of service
is only delayed. At this point a new event, end of
repair, is placed on the CAP.
- End of repair: The server in question is working
again and verifies if it is possible to start a new
activity or continue the old one. If so, an event end of
service is added to the CAP.

1.3 Policies

As we are intending to explore performance
improvement for the policies referred on [2], since
they have been shown to be more efficient than the
usual ones, the first version of the package will
include these in the default library. The objective is to
use Moreira’s controller, [3], to see if there is any
possibility for improvement on those.
These will be implemented and the user will be able to
select which one he/she wants to use on each server. It
will also be possible for the user to create different
policies that will be part of the package’s heritage as
its utilization grows.

2. Object oriented programming

In addition to some of the parameters mentioned
above, (R, A, ë and q), we have to specify the
frequency of failures in the servers, the mean time to
repair the server and sometimes a policy requires
some additional information as due dates or remaining
cycle time. All these parameters are defined in the
input file that allows the generation of the objects
according to an oriented object modeling processing
language.
For each component of the network (servers, buffers
and activities) one virtual object will be created from
the template defined. According to the template of the
input file, the users only have the possibility to change
the attribute value of the objects.
If we think in an activity network, and not in the
particular case of a queuing system, the servers can
also be machines and the clients can be jobs or
packages of material. The materials moving or

arriving to the network will also have a virtual object
associated, with several attributes that will be helpful
to collect results, at the end of the simulation.
The easiest way to manage all these objects, which
can be very high in number, is to use lists (Linked
lists). For this , Java already has a class that allows us
to organize the objects as needed, to create all the
dependencies of the network that we want to build or,
in the case of clients, to remove and add them from
the buffer (each buffer may hold multiple clients). For
instance in this case, each activity has a list of servers
and a list of buffers. Each buffer has a list of clients.
These clients are moved according to their type and
the policy used by the server. The reason why each
activity has a list of servers is quite obvious. Each
activity may be processed by one or more servers in
parallel. If an arrival occurs to a buffer we need to
determine which activity can be processed and if the
correspondent server is available. If there are more
than one server available, we currently choose one by
random. To do differently one would need to specify
routing policies, which is an option not yet included in
the package. In the case where an arrival to a buffer
enables more than one activity, we use the scheduling
policy coded for the corresponding server to choose
the activity that will be performed.
In the UML (see Fig. 2, above), the arrows symbolize
the relations between the different classes (types of
objects). These arrows can be bidirectional or
unidirectional, depending if the relation works in both
ways or not. For example, a buffer has a list of clients,
but a client can only belong to one buffer, this is a one
to many relation, thus bidirectional. That is why we
have the multiplicity specified near the arrow – the
string “0..*” means zero or more objects of that class.
Another example is the simulator. When the
simulation starts, we create an instance of the
simulator and this simulator has one CAP, but the
CAP does not have a simulator. This is an example of
a unidirectional relation.
The simulator is the main object of the program [4]. It
is from this object that the program creates the
network, starts and finishes the simulation, proceeds
to the execution of the different events, and also has
the methods defining the available policies. Each
policy has its own method, so the more policies we
want to test, the more methods we have to create.
An event is an occurrence associated with the
beginning or ending of an action. It can be an arrival
of a client from the outside, a end of service (this
means that the client leaves the server and goes to the
next queue, or leaves the system, and that the server
becomes ready to do another service), a failure (when
a server gets broken it can no longer process any
activity), and finally an end of failure (when the server
becomes functional again).
Each time that an event is generated we need keep it
ordered with the other events that have already been

generated. To do this we use another Linked List
together with the Comparable Interface to ordinate
by time these events . This is necessary because we
need to make sure that the next event processed by the
simulator has the earliest time tag. This is the only
case were we need to order any list. For the other lists
it only matters the arrival order, so we do not have to
change anything.
The events just described are saved in the CAP class.

3. Data collecting

The data resulting of the simulation will be completely
processed after the simulation is over. The data
corresponding to each object will be saved on a text
file during the network simulation. By doing this, we
will avoid wasting capacity of processing and only use
the computer processor to execute the dynamics of the
network, that is the movements of the materials
between the different network objects. All the
mathematics needed to analyze and conclude about the
simulation will be done using the Matlab package.
The simulation period can be determined by three
different ways: by reaching the number of unit
materials that were processed by the network pre-
specified by the user, by a period also defined by the
user or by reaching a user specified number of
regeneration points. A regeneration point is said to be
reached when all the objects of the network, buffers
and servers, are empty. That is, when the system is
completely empty of customers.

4. Results

In this section we will now present some results
obtained using one of the policies developed in our
research with the goal of comparing the µc-rule with
alternative policies. The µc-rule is known to be
optimal in the context of scheduling decisions when
two classes of customers arrive to a system composed
of a single server and costs are affine on the queue
lengths, for a Markov Decision Problem, MDP,
known as the Scheduling Problem [5].
The policy is such that the class with the highest score
when one multiplies the processing rate, µ, by the cost
rate, c, gets priority over the other class.
This means that the non-priority class will only get
access to the server when, upon completion of a
service the priority queue is empty of customers.
Naturally this has a strong influence on the total
waiting time for the non-priority class. We question
the fairness of such treatment and propose that costs
of waiting for service should not be linear functions of
the total waiting time. We argue that the marginal
“patience” of any given customer to wait another
minute should not be independent on the amount of
waiting time already incurred.
Therefore, we formulated a MDP where we introduce
a quadratic component on the queue length as an extra
term of cost. Solving the MDP numerically using

Dynamic Programming we arrive at a control policy
that then we can simulate to obtain several
performance metrics. Our results so far on the MDP
solution seem to point in the direction that high
priority should be awarded to the non-priority class
when its buffer size exceeds some threshold, which is
a function of the quadratic parameter for the non-
priority class. Thus, we implemented such policy on
our simulator and collected data on the average total
time in the system and respective variance as a
function of the threshold.
According to the criteria described in Section 1 the
input matrixes are:

The first figure (Fig.2) shows the variance of the
service and waiting time for the two classes of
customers and Figure 3 displays the average of the
service and waiting time for the two classes of
customers.

Figure 3. Variance of the average total time

These results were obtained for increasing values of
the threshold, k , starting with 1 and ending with 85.
As the threshold grows to infinity the behavior
converges to the µc-rule. So, we observe that for high
values of k the total average time in the system and
variance for the non-priority class, Class 2, are both
high, when compared to the same values for the
priority class, Class 1.
As k drops to 1, we are awarding progressively more
priority to Class 2, until we reach the opposed extreme
of excessive degradation on performance for Class 1.
For intermediate values of k it is possible to balance
the quality of service for both classes, in terms of the
average total time in the system, but more importantly
the variance of the total time in the system.
The results obtained correspond to 1000 regeneration
intervals and the 95% confidence intervals were

computed for intermediate values of k , such that the
spread around the mean is under 5%.

Figure 4. Average total time.

With these results we show one application of many
possible and also demonstrate the flexibility of the
package on this particular case by modifying it as
needed easily. As we change the policy’s parameters
as many times as we need, we can also add new
policies to the simulator, by simply creating a new
method that returns the activity to execute next. In
addition, we could also have changed the network
architecture by modifying the input.
We are in the process of testing more systems and
alternative scheduling policies. We will be able to
present more extensive data during the presentation.

5. Conclusions

We presented a simulation package, written in JAVA,
that will allow general studies on the performance of
given scheduling policies for general systems
described with the structure of activity networks.
Although initially developed for a specific study, a
significant effort has been placed on producing a
sufficiently general discrete event simulator for
networks of processing activities, which include, but
are not limited to, queuing networks as a subset.
The modeling flexibility permitted includes standard
multiclass queuing networks to be modeled, where
there are a few types of customers, each characterized
by a unique routing, at each stage of the routing
customers wait in a specific buffer for the next
service, and each server works on a customer at a
time. The activity networks allow other
configurations, where a given service may take more
than a customer from different buffers.
To illustrate its purpose, some preliminary
performance evaluation studies were presented. The
studies concern a variation on the classic Scheduling
Problem, with the extra concern on reducing variance
for the non-priority class.
By the time of the conference we hope to be able to
present some preliminary results of the specific study
we intend to conduct, as an example of the flexibility
and usefulness of the package we are now developing.

6. Acknowledgement

This work was supported by Fundação para a Ciência
e a Tecnologia (ISR/IST pluriannual funding) through
the POS_Conhecimento Program that includes
FEDER funds.

7. Bibliography

[1] Harrison, J.M., Stochastic networks and activity
analysis. Y. Suhov, ed. Analytic Methods in Applied
Probability. In memory of Fridrik Karpelevich.
American Mathematical Society, Providence, RI,
2002.
[2] Lu, S.C.H., Ramaswamy, D., and Kumar, P.R.,
“Efficient Scheduling Policies to Reduce
Mean and Variance of Cycle Time in Semiconductors
Manufacturing Plants” IEEE Trans. Semicond. Manuf,
vol. 7, no3, pp 374-398, 1994.
[3] J. Moreira, J.A. and Bispo, C.F., Performance
Improvement through Active Idleness, 11th
Mediterranean Conference on Control and
Automation Rhodes, Greece, June 2003.
[4] Arnold, K., Gosling, J., and Holmes, D.,, “Java
Programming Language”, Fourth Edition, Addison
Wesley.
[5] Cassandras, Christhos G., Discrete Event Systems:
Modeling and Performance Analysis , Asken Associa-
tes Incorporated Publishers, 1993.

