STABILITY OR STABILIZABILITY? SEIDMAN’S
FCFS EXAMPLE REVISITED

Jost A.A. Moreira*, Carlos F.G. Bispd

* Agilent Technologies, Detschland GmbH,
Herrenberger Strasse 130, CCST-BUS, D-71034 Boeblingen, Germany
fax: +49-7031/464-4708
e-mail: jose_noreira@gilent.com

T Instituto de Sistemas e Roti¢a — Instituto Superior nico,
Av. Rovisco Pais, 1049-001 Lisboa, Portugal
fax: +351-218 418 291
e-mail: cfb@sr.ist.utl.pt

Keywords: Queueing Networks, Distributedfic intensity condition holds. By reasonable poli-

Scheduling, Stability. cies is usually understood the class of policies that
keep each server busy as long as there is a queue of
Abstract customers demanding its service — non-idling poli-

cies. The rational behind this is that doing the oppo-
We address the issue of stability for multi-class, nosite would result in a waste of service capacity, con-
acyclic, and stochastic queueing networks. This hiary to the objective of getting the customers out of
been an exciting problem, addressed by the reseatfod system within a reasonable amount of time upon
community in over a decade, where the nature of theeir arrival to the system.
traffic intensity condition as being sufficient for such
networks to be stable has been debated and q
tioned. We argue that the concept of stability oug
to be replaced by that atabilizability and that this

There are many ways in which to define stability for
Stworks. For our purposes, suffices to say that as
ng as the expected queue lengths remain bounded

at each server, or as long as the expected time to

gro;:ﬁ_rty 'S intrinsic _to thf[at. netwo:jk S toptqlo_gy_. Un'ﬂow through the system remains bounded for all cus-
er this more generic setling, and resor |_ngolmg tomers, the network is stable.
policies, we provide a distributed supervisory con-

troller that is able to stabilize a large set of neth the past it was thought that the order in which
works, provided that the traffic intensity conditiofustomers are served would only affect the perfor-

holds. Seidman’s example, [12], is used to demoftance of the system, as long as the service capacity
strate such property. was above the load imposed by the arrival processes.

However, as shown in [8, 12, 2] the order by which

customers are served does affect the ability of the
networks to remain stable, under non-idling policies.
The objective of this paper is to present an altéronfronted with these puzzling examples the com-
native perspective over the problem of multi-claggunity undertook the task of determining stronger
gueueing networks’ stability. The need for such pe¢onditions, besides the traffic intensity, that would

spective has been motivated by a series of exatifice to ensure stability and kept focused on non-
ples published over the last decade, where relativégjing policies, [6, 1, 3].

simple networks operated by reasonable distributeghe exception to this was [5], with th@lear-a-
scheduling policies are not stable, although the trafraction Policies with Backoff. There, in the context

1 Introduction

of multi-class networks with non-zero set-up timesdleness. This concept consists on allowing a server
the authors resorted to a supervisory mechanism tt@astay idle in the presence of waiting customers. To
would essentially add a little more idling time, by intimplement this concept in a real setting, a supervi-
creasing set-up frequency. This way, it was possildery mechanism, denominatddne Window (TW)

to establish a class of provably stable policies. Controller, is presented. This mechanism consists

Curiously, such idea did not have much impact ¢ assigning to each class in the network a fraction

the work developed afterwards, as the grand maj8 ' the available capacity. If a given class uses more

ity of the authors kept concentrated on non-idlin an its share of capz_icity, itis bloc_ked from being
policies. It is our opinion that [5] holds the ke rocessed by a certain amount of time, which only

to solve the stability problem, although we do n epends on the system’s evolution, that is, it is not

agree entirely with the options made then. Esse‘ﬁa}ICUI‘r’ltedal priori. With the TW Controller itis pos-

tially, their system would be run by a non-idling poI_S|ble to stabilize a significant amount of non-acyclic,

icy that would reduce the set-up frequency to a mimulti-clas_s, q_ugueing netwgrks, WhiCh are unstable
y pIreq y der their original scheduling policy, provided that

imum and when a given run over a specific clagdlder i S -
would exceed a given amount of time, there wouf&e original policy is non-idling.

be a switch to a new class and all remaining cuShe paper presents results obtained for Seidman’s
tomers of the first class would be sent to a specetample, [12], as an instance to demonstrate by sim-
priority queue to be processed later on a first comation the technique’s potential. It turns out also
first serve basis. We disagree with the fact that reghat, besides stabilizing unstable systems, we have
lar queues and the priority queue are run under pdieeen able to improve performance on systems which
sibly different policies, as the regular policy mighare already stable with the original policy. This last
not be theFCFS. Moreover, their result is only es-feature is of particular relevance, given that the fine
tablished for deterministic processing times. tuning of our controller will allow the optimization

What we believe to be the key to solve the stabilig any given non-idling policy concerning the degree
f

problem is the fact that the resulting policy adds id
time in the presence of work, or put in another wain the next section we briefly introduce the models
is the fact that the class/buffer switching frequen@ddressed. In Section 3 we present the basics of the
is increased at the expense of wasting capacity. TW Controller. Then, in Section 4, we present a

We argue that the networks’ stability problem shoufMmary of results for Seidman’s example, and we

be addressed as whether a given network is S,[(,ﬂ%?_nclude, in Section 5, with a qualitative discussion
the concept proposed.

lizable and not whether the pair network-policy, of
network-class of policies, is stable, as it has been

the main focus in the past. We argue also that Queueing Networks, Scheduling, and
stabilizability is an intrinsic property of each net- Stability

work’s topology. By network’s topology we under-

stand how the different classes of customers fld{je consider that a queueing network is constituted
through it — their routes —, how many servers aky two components: thqueueing network topology
present, what are the service distributions for ea@Rd thecontrol policy. Thequeueing network topol-
pair server-class of customers, and what are the @gy contains the layout of the network in the form of
rival distributions for each different customer claséhe routing each class of customers must follow. The
Under this setting, and by imposing reasonably mif@pology also includes the description for customer
constraints on the service and arrival processes, @féval and processing time distributions. Teen-

claim that the traffic intensity condition is sufficientrol policy performs two functions: controlling the
to ensure stabilizability. admission of new customers into the network, which

is usually referred as thadmission policy, and de-
ciding in which order each server processes cus-

Active Idleness that should be allowed to exist.

To achieve this we introduce the conceptAative

tomers, known as thscheduling policy. Although scheduling policies. For a very good example of
all queueing networks must have some schedulingn-local scheduling policies see [7] with thEluc-
policy, itis not mandatory for them to possess an atiation Smoothing policies, which suffer from the
mission policy. Those which do not are callggen fact that they require complex implementation, as
networks, as opposed to thelosed networks which discussed in [10].

have an admission policy. Under our setting the traffic intensity condition can

As to the layout, queueing networks can be calldek stated as
acyclic or non-acyclic. The first group includes net-

works which do not have cycles in the flow of cus- N, _
tomers, and the second imposes no restriction on the pi = 3 AR < (1)
flow of customers. This later group includes net- k=1

works where a given class of customers may visit

the same server more than once before leaving fﬂéi =L2,...,1, wher_e[Is number of s_e_r_/ergyi
system. Is the total number of different classes visiting server

o 4, 1™ is the first moment of the processing time
Our setting is that of open and non-acyclic Nelistribution of class:(i, k) on server, and)\f(z,k) is

works, procegjlng hmultlple SI%SSES of cust(;meriﬁe first moment of the arrival rate of customers of
First we consider there are different types o CuérassC(i, k) to server. Furthermore, given that each

tomers, v_vhere each type_ IS cha_racterlzed by its fass belongs to some type of customer it has to hold
ternal arrival process, by its routing through the nels ot

work, and by the service distributions at each server

and visit number, if more than one visit is paid to _ ,

a server. We assume the routing of each type to Ak —)\j(”“f), (2)
be deterministic. Furthermore, we consider a given

type to be constituted of different classes, in the fdier all classes and servers such that, if clagsk;)
lowing sense: a customer is processed by a serupon being served on servéwisits next server;
and upon being sent to the next server it will changermed as class(j, k;). That is, class:(i, k;) and
class. This allows the distinction of the same typsassc(j, k;) belong to the same customer type.
of customers on different visits to the same server

’ﬁ1e pair constituted by Equations 1 and 2 estab-
ever they occur.

lishes that the load imposed by the external arrival

Given that the same server may have different pnorocesses on each server is below its capacity. Any
cessing distributions for different classes, these aeheduling policy that ensures the internal arrival

not Jackson networks. Otherwise, a simple prodymtocesses to verify Equation 2, when Equation 1

form distribution could be computed for the numbéiolds, ensures stability of the overall network.

of customers in the system, if each server would pro-

cess customers according_the the_ _FCES scheduli;pg The Time Window Controller

policy. For those, the traffic condition is sufficient

for the existence of such invariant distribution andio simplify the notation we assume that there is

consequently, for stability to be ensured. a global numbering of classes ranging frdm=

Given that the networks may have a significant df: 2 - - -+ 1~ We _def'ne{ek(ﬁ)} as the time l?i?tween
mension in terms of servers and classes, the sttcl&@ external arrival of the™ and the(n — 1) cus-
space is too large to allow a centralized schedulify™e" of clas_sk-. These are assumed to be inde-
policy to be computed. Therefore, usually these & ndent and |dent|cglly d|_str|buted and, for soke
controlled by distributed scheduling policies, whicfy:("?) = o for all n, in which case the external ar-
are solely based on the contents of each servéf\?l process to claskis null. This means that class

waiting queue. See [4, 11] for surveys on distributdi'S 9enerated from another class in the system when
moving from a server to the next.

A customer of class, after being served at a uniquehe next section. Next, the definition of tReocess-
serverj, written j = s(k), or converselyt € ¢(j), ingHistory associated to a class is introduced.
becomes a customer of claRgk), whereR is a bi-

jective function representing the routing map for the =))
queueing network. Definition 3.2 (Processing History) For each

_ _ .. customer of classk, definet;'¢"" andt;" as the
Therefore we can uniquely assign a service distribustart and finish time instant for the processing
tion to each class and denote pyits first moment. of that customer, respectively. THerocessing

Customers of different classes do not merge into fjistory of classk is defined as a functiofl, (¢)
single class, nor does a single class splitin more thagiyen py:

one class. For each claksdefineF'(k) as

1 if tsta,}“t <t < tengi 3
, . Hy(t)=1{ o =) =0=T) = (s
k if class k£ has a non null 0<t<t, 0 otherwise.
exogenous arrival rate.
F(j) if k has a null exogenous _ _ _

F(k) = arrival rate, where j is the The Processing History associated to a class repre-
class that directly feeds to sents a function that describes the amount of time
class k for which F(j) has used by the server to process customers of that class.
been defined. The objective is to obtain a chronological description

\

(3) of the processing time used by each class from the
corresponding server. The next definition presents
Yhre concept of th@ime Fraction of a classk at a
given timet.

Note that, since there is no class split nor mer
F (k) is an injective function. For each clakset

e = 4)

1
Eleruy(1)] Definition 3.3 (Time Fraction) The Time Frac-
tion of classk with a Time Window of sizeT, at

One interprets\,, as the effective mean arrival rate time ¢ is defined asf,(¢) and is computed by the

of classk:. following expression:

TheTW Controller is introduced with a series of def- '

initions, the first of which is thd@ime Window asso- fr(t) = Br / . e T DH (r)dr (6)
t—Ty,

ciated to a class.

whereqy, € [0, o], is a Smoothing Parameter and

Definition 3.1 (Time Window) Consider a class Br 1s a normalization parameter, given by:

k of a multi-class, non-acyclic, queueing network. B Qg 7
The Time Window associated to that class is de- B = 1 — e Tk ()
fined as the finite time interval that starts at the

current system time. and extendd’, time units _ _ _
into the past. The Time Fraction of a class is an estimate of the

fraction of the total time contained in ilBme Win-

dow during which the server was processing cus-
The Time Window of a class represents the amoumbmers of that class. It clearly represents a measure
of past time needed by thBN Controller for class of the amount of server capacity assigned to that
k. The use of a finite size window is not only duelass. Ifa;, = 0, it measures the exact time frac-
to memory and computational requirements, but i®n allocated to clask over theTime Window span,
also essential to achieve the short/medium term afiven thats, becomed /7. The need to use an ex-
jectives set to th&W Controller, as will be shown in ponential function to smooth tHerocessing History

is to eliminate sudden changes on fhiee Frac- a scheduling decision, thBN Controller calculates
tion value of a class. The objective is that whethe f; of all classes in that server. If any class has an
computing theTime Fraction, the more recent pro- f, abovef;***, then theTW Controller blocks that
cessing history has a larger weight to the computealass from the set of classes from which the server
tion than the processing history near the end of tikan remove customers to process. Note that there is
Time Window. Since theTime Window size is finite, no interruption nor preempting of ongoing services
it was necessary to include the normalization facterthese decision points coincide with the end of ser-
Brx. This guarantees that, if during the entifiene vice.

Window the server is always processing custom
of a given class, the computed value for thene
Fraction of that class will be 1. The last concep
necessary is that of Blocked class, which has the
following definition.

R certain times the scheduling policy may not be
able to choose a customer to be processed because
LIl customers are in classes that @ecked. In

this case the server becomes idle, not because the
server is empty of customers, but because Tihé
Controller forbids the scheduling policy of using the

Definition 3.4 (Blocked class)A classk is said avallable customers.

to be Blocked at time¢ with parameterf;"*, if ~ For this reason this type of idleness is termedas

fe(t) > fmer where f**® is theMaximum Time tive Idieness. In the present context, idleness in-

Fraction allowed for class:. curred for actual lack of customers, would be con-
sidered afassive ldleness.

A Blocked class is simply a class that has exceed@tﬁter being blockeo_l, a _class will see |t_s correspond-
the /" awarded to it. Since thg (¢), is a measure Ing f, decrease with time, guaranteeing that at some

of the server capacity used by cldsm its Ty, /7" point in the future it will cease to bélocked.
represents the maximum level of capacity that clalél%)te that adding th&w Controller keeps the over-
k can use during, without becomingglocked. Fi- all scheduling policy distributed. Each server, in

nally, using the previous definitions the definition ofooence, has'IaNControI_Ier with the (a, ka i)
the Time Window Controller is presented parameters corresponding to the classes it processes,
' and those parameters can be set up-front.

Definition 3.5 (TW Controller) Let w be a 3.1 Qualitative discussion on properties

multi-class, non-gcycllc, _queueing network,AS it has been defined, ti&V Controller can be ad-
where each service station is controlled by.

the non-idling scheduling policpt. The Time justed in order not to influence the original policy.

Window Controller for this queueing network If all smoothing parameters are set to zero and if all
) N N 9 maximum time fractions are set to one, no matter
consists on assigning to each classan f;"**

and aTy, for which it is possible to compute the window size for each class, no class will ever
ks) locked. Thi h ill ith
Hy (1), with a Smoothing Parameter, a. Each be blocked is way, the system will be ran wit

ervice station performs it heduling deci ionthe original policy. As some maximum time frac-
Sl S P s IS scheculing SI9N%ons are decreased to a number less than one, the
using policyA, with the exception that all classes

. TW Controller will progressively increase its influ-
tcflljastt:r;eelilsocked should be considered empty of ence over the original policy, as those classes will

start getting blocked with increased frequency.

o _ Naturally, if a given class receives a maximum time
The definition states that thBW Controller is de- fraction below its long term needs in terms of arrival

scribed by a set of parametefs;, 7%, fi***) with rate and processing time, instability will occur.
k = 1,...,K. The functioning of theTW Con-

troller is very simple. Each time a server has to mag'eherefore, each class should be awarded a maximum

time fraction slightly above its individual needs. re
Note that these fractions are short term fractions. i J
They need to be above the long term needs to allow 5
each class to have access to its necessary long term
share of capacity.

Server 4] dumm
One possible and simple way to define these frac- r—»])-
tions is to split each server’s capacity in such a way
that all of them are above the long term needs of their
classes, but their sum does not exceed one. This. . : ,
is ensured to be feasible when the traffic intensity '9""€ 1. Seidman’s queueing network topology.
holds, because each server will have some surplus

capacity. network that in conjunction with thElIFO schedul-

When the choice of fractions is such that their sulid Policy results in an unstable queueing network.
is equal to one, we are in some sense decoupli'N@te that the parameters respect thaffic Intensity

the network, given that it behaves as if each senfepndition.
is split into smaller servers dedicated to each class.
This particular choice makes tA&V Controller sim-

ilar to theGeneralized Processor Sharing — GPS,

Table 1: Queueing network parameters.
Parameter Value Parameter Value
Ao 1.000 I 0.001

However, we may allow the fractions on a given A3 1.000 6 0.900
server to add up to more than one, meaning in this A1 1.000 117 0.900
case that some degree of coupling and interference is Ay 1.000 g 0.001
allowed between different classes visiting the same 10 0.900 o 0.001
server. This particular feature makes our controller 15 0.001 110 0.001

drastically different from those based on BBS. 13 0.001 i 0.001

The higher the degree of interference, the higher is s 0.001 P12 0.900
the potential to better use a given server, but also the

higher is the potential for instability. The example _
of [12] is a case where, under our setting, each méigures 2 and 3 present the results obtained for a

imum time fraction is set to one for all classes. Wamulation of the queueing network with ttgFO
argue that this maximum interference causes shggheduling policy using the queueing network pa-
term losses of capacity that will not be recovered li@meters presented in Table 1. The simulation was

the long run, causing the observed instability. ~ run for a total of 40,000 periods.
The figures show the sum of customers on each
4 Simulation Results server as a function of time. Basically one can ob-

serve that there are periods during which the servers
Seidman, in [12], presented a queueing netwogke available to work but their queues are empty —
topology that in connection with theirst In First = starvation. These starvation periods are intertwined
Out (FIFO) scheduling policy resulted in an unstayith busy periods which grow in size and length al-
ble queueing network. most linearly as time progresses. The same happens
Figure 1 presents a diagram of the queueing n@{l.th the idle periOdS. For instance, server 2 reaches
work layout, which is constituted by four serverd total of customers of approximately 18,000 close
with twelve classes, corresponding to four differed® the end of simulation.

types of customers. Clearly, these results show that the queueing net-

Table 1 presents a set of parameters for this queueiRfK iS unstable. The original example was shown
to be unstable with deterministic processing times.

We have used Poisson arrivals and exponential pFogures 4 and 5 present a comparison of the server
cessing times for our simulations. The behavior weventory evolution of the=IFO scheduling policy
present is qualitatively similar to that presented hyith the same scheduling policy supervised by the

Seidman in his article.

x10° Server 1 inventory evolution

mm GM (L {

Time

0.2
0 m(\m(]ﬂ/\wmm m ﬂ
[05 1 15
3 Server

x 10 r 2 inventory evolution

Time x10*

2%

181

161

141

TW Controller.

x10°

Server 3 inventory evolution

4

x10

mwwm ﬁ ol

L
15
Sel

2
Time

rver 4 inventory evolution

o mmlm,ﬂ ”ﬂ«

Time

Figure 2: Server inventory evolution for tHdFO Figure 3: Server inventory evolution for tHdFO

scheduling policy (server 1 and 2).

Through simulation we demonstrate that the/
Controller is able to stabilize this queueing network.

scheduling policy (server 3 and 4).

Table 2: TW Controller parameters.

The choice of parameters for th®V Controller was Parameter Valug Parameter Value
) . Ty 100 mar 0.996
made by allocating to each classviaximum Time 0.010 6 0.996
Fraction, f/"*®, proportional to\ . The surplus Ak 0.996 (. 0.002
capacity was equally divided among all classes. Ta- L. O- 002 8 0'002
ble 2 presents the choice of parameters forTié meM 0'002 S 0'002
3 ' 10 .
Controller. fmez 0.002| fmer 0.002
This choice of parameters is such that the sum of fmaw 0.002 max 0.996

fractions at each server is exactly equal to one.
Therefore, this is a choice made with the intent of
reducing to a minimum the degree of coupling b&A/e had to switch the scale of the plots in order to bet-
tween different classes. Also, we made the time witer see the buffer sizes at each server when compared
dows and smoothing parameters equal for all classedth the original values. Now, server 2 has a max-

imum of less than 600 customers along the 40,084 server 3 and amounts to less than 2.4% of the
periods of the simulation. Besides the reduction tdtal simulation length —, but produces a huge differ-
the maximum value, the total number of customeesce in the overall performance.

as a function of time exhibits a stationary behavior.

Server 3 inventory evolution

Server 1 inventory evolution

1000
1000~ . N 900
900 800
800~ 700~

700~ 600 |
2
k]
§ 500 |

400

300

wmﬂilm.lm | H lh M h l l\x lﬂ u“

3 35 4
x10*

1 'MMI b L \M \nw m\\\.u\\wh\lu\n WWIW

4
o 1000 B r
eeeeeeeeeeeee y evolution
1000 B B 900~
900~ ‘ 800~

800 700

eeeeeeeeeeeeeeeeeeeee

300 “

LiGuh b s M

1L “ M\\u

\W

i | ‘ ‘
“ M. h \nﬂlmhi\\\i M MM M m \L\ NM A

Figure 5: Comparison of the server inventory evolu-
Figure 4. Comparison of the server inventory evoltion for theFIFO (light grey) andFIFO + TW Con-
tion for theFIFO (light grey) andFIFO + TW Con- troller (dark grey) scheduling policies (server 3 and
troller (dark grey) scheduling policies (server 1 and)).
2).

The results show that the unstable behavior observePle 3: Comparison of théctive Idle Time used in
for the FIFO scheduling policy is due to the inabil-€ach serveé.t istic| Original TW
ity of the servers to use enough resources to process Se&;\;(sarli “%ma 00158
the customers, since the scheduling policy creates a '

: Server 2 0 0.0218
starvation phenomena between the servers. Server 3 0 0.0234
The TW Controller is able to stabilize the system, Server 4 0 0.0123

adding in the process somietive Idleness, as pre-
sented in Table 3. Naturally, the total idle time is
higher on the original system. But the original sydt would be possible to further improve the perfor-
tem only hasPassive Idle Time. mance by choosing different maximum time frac-
tions. This could allow some degree of interfer-
ence between the classes. This is an issue of perfor-
mance optimization, which is outside the scope of

The amount ofActive Idle Time introduced by our
controller is relatively small — the maximum occurs

the present paper, but constitutes the challenge Wae paper presents one example to illustrate the

face now. claim. Although we do not provide any formal
proofs here, the approach provably stabilizes queue-
4.1 Discussion ing networks, as long as the processing times of

each class possess an upper bound. This constraint

The question to be addressed here is to provide SOfgans, for instance, we cannot ensure to stabilize
intuition on as to why do we get such tremendoydarkovian networks.

performance change at the expense of forcing some _ _
customers to wait when the server is available. whigvertheless, the example presented is a Markovian

we only have a single server it does not make aﬁﬁtwork._ On the other han_d, in reality no queueing
sense to keep customers waiting while the serverleWOrk is such that there is no upper bound on the

available, because there is no gain for anyone Horocessing times of individual customers. Therefore,

ever, in a network what seems to be good for eallie range of application of the controller is very sig-

individual server may — and in fact does — hurt thdficant.
network as whole. The essence of the stability proof, which can be

Given there is no control over the input of customef@und in [9], is as follows. The smoothing parameter
into the system, all burstiness the arrival process&$€! 10 zero. The fractions are setto add up to one in
contain will be transferred to the network and af Way thateach class has a fraction slightly above its

lowed to propagate freely. Burstiness in the arrivind range needs. The window size is set equal to all
process is directly connected to variance. It is wéil2SSes and a function of the upper bound on the pro-

known the impact that variance has on queueing n§ESSINg times of all classes. This choice of parame-
works. ters is one possible instance of all values they can

take. With this particular choice of values it is possi-
The TW Controller, with its short/medium term pje to show by induction that each class will have an
bounds on capacity utilization by each class of Cuggerage availability of its server above its long range
tomers, acts as a burstiness filter, that is, contribui@Seds and that the longest service will not take ca-
to reduce the variance on all the internal arrival Premcity away from other classes. Given that we can,
cesses. by construction, provide a provably stable instance,

Another way of looking at this controller is the fol-it follows that the optimal choice of these parameters
lowing. Most local scheduling policies implemengannot lead to instability, provided all queues are ob-
local feedback but the overall network is operategrvable on the performance measure being used.

in open loop. The proposed controller adds soMge most relevant consequence of this result is that
measure of global feedback to the local decisionge Traffic Intensity Condition is sufficient to ensure

Moreover, that global feedback only relies on knOV‘étabiIizabiIity on a very wide class of networks.

ing the external arrival rates of customer types, but _ _
\Ve have also been able to obtain performance im-

its implementation preserves the locality of the dec o -)

sion making process. provements over non-idling policies which do not
generate instability. This second feature is also par-
ticularly interesting because, provided an optimiza-

5 Conclusion tion procedure is in place, the adequate measure of

We proposed a supervisory controller that resorts2Gtive ldleness can be determined through the ad-
Active Idieness to ensure the stabilization of multi-€duate choice of maximum time fractions for each

class, stochastic queueing networks operated witiSS:
non-idling scheduling policies and are unstable, de-
spite the fact that thdraffic Intensity Condition

holds.

6 Acknowledgements

The work described in this paper was partially
funded by Fundgio para a @hcia e Tecnolo-

gia under references SRI/34646/99-00 and Praxis

XX1/BM/21090/99.

[10]

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Dimitris Bertsimas, David Gamarnik, and
John N. Tsitsiklis. Stability conditions for mul-
ticlass fluid queueing networkd.EEE Trans-

actions on Automatic Control, 41(11):1618— [11]

1631, November 1996.

Maury Bramson. Instability of FIFO queueing
networks. The Annals of Applied Probability,
4(2), 1994.

Hong Chen and Hangin Zhang. Stability
of multiclass queueing networks under prior-
ity service disciplines. Operations Research,
48(1):26-37, 2000.

Stephen C. Graves. A review of production
scheduling. Operations Research, 29, 1981.
July-August.

P. R. Kumar and Thomas |. Seidman. Dy-
namic instabilities and stabilization methods in
distributed real-time scheduling of manufactur-
ing systems.|EEE Transactions on Automatic
Control, 35(3), March 1990.

Sunil Kumar and P. R. Kumar. Performance
bounds for queuing networks and scheduling
policies. |EEE Transactions on Automatic
Control, 39(8):1600-1611, August 1994.

Steve C. H. Lu, Deepa Ramaswamy, and P. R.
Kumar. Efficient scheduling policies to reduce
mean and variance of cycle-time in semicon-
ductor manufacturing plantsIEEE Transac-
tions on Semiconductor Manufacturing, 7(3),
August 1994.

Steve H. Lu and P. R. Kumar. Distributed
scheduling policies based on due dates and
buffer priorities. IEEE Transactions on Auto-
matic Control, 36(12), December 1991.

[12]

[9] Jo¥ A. A. Moreira. Distributed Scheduling

with Active Idleness. A key to the stabilization
of multiclass queuing networks. MSc Thesis,
Instituto Superior €cnico, Technical Univer-
sity of Lisbon, 2001.

Tomohito Nakata, Koichi Matsui, Yasuhisa
Miyake, and Kyusaku Nishioka. Dynamic bot-
tleneck control in wide variety production fac-
tory. |EEE Transactions on Semiconductor
Manufacturing, 12(3), August 1999.

S. S. Panwalkar and Wafik Iskander. A sur-
vey of scheduling rulesOperations Research,
25(1), 1977.

Thomas I. Seidman. ’first come, first served’
can be unstable!ll EEE Transactions on Auto-
matic Control, 39(10), October 1994.

