
STABILITY OR STABILIZABILITY? SEIDMAN’S
FCFS EXAMPLE REVISITED

Jośe A.A. Moreira�, Carlos F.G. Bispoy

� Agilent Technologies, Detschland GmbH,
Herrenberger Strasse 130, CCST-BUS, D-71034 Boeblingen, Germany

fax: +49-7031/464-4708
e-mail: jose moreira@agilent.com

y Instituto de Sistemas e Rob´otica – Instituto Superior T´ecnico,
Av. Rovisco Pais, 1049-001 Lisboa, Portugal

fax: +351-218 418 291
e-mail: cfb@isr.ist.utl.pt

Keywords: Queueing Networks, Distributed
Scheduling, Stability.

Abstract

We address the issue of stability for multi-class, non-
acyclic, and stochastic queueing networks. This has
been an exciting problem, addressed by the research
community in over a decade, where the nature of the
traffic intensity condition as being sufficient for such
networks to be stable has been debated and ques-
tioned. We argue that the concept of stability ought
to be replaced by that ofstabilizability and that this
property is intrinsic to the network’s topology. Un-
der this more generic setting, and resorting toidling
policies, we provide a distributed supervisory con-
troller that is able to stabilize a large set of net-
works, provided that the traffic intensity condition
holds. Seidman’s example, [12], is used to demon-
strate such property.

1 Introduction

The objective of this paper is to present an alter-
native perspective over the problem of multi-class
queueing networks’ stability. The need for such per-
spective has been motivated by a series of exam-
ples published over the last decade, where relatively
simple networks operated by reasonable distributed
scheduling policies are not stable, although the traf-

fic intensity condition holds. By reasonable poli-
cies is usually understood the class of policies that
keep each server busy as long as there is a queue of
customers demanding its service – non-idling poli-
cies. The rational behind this is that doing the oppo-
site would result in a waste of service capacity, con-
trary to the objective of getting the customers out of
the system within a reasonable amount of time upon
their arrival to the system.

There are many ways in which to define stability for
networks. For our purposes, suffices to say that as
long as the expected queue lengths remain bounded
at each server, or as long as the expected time to
flow through the system remains bounded for all cus-
tomers, the network is stable.

In the past it was thought that the order in which
customers are served would only affect the perfor-
mance of the system, as long as the service capacity
was above the load imposed by the arrival processes.
However, as shown in [8, 12, 2] the order by which
customers are served does affect the ability of the
networks to remain stable, under non-idling policies.
Confronted with these puzzling examples the com-
munity undertook the task of determining stronger
conditions, besides the traffic intensity, that would
suffice to ensure stability and kept focused on non-
idling policies, [6, 1, 3].

One exception to this was [5], with theClear-a-
Fraction Policies with Backoff. There, in the context



of multi-class networks with non-zero set-up times,
the authors resorted to a supervisory mechanism that
would essentially add a little more idling time, by in-
creasing set-up frequency. This way, it was possible
to establish a class of provably stable policies.

Curiously, such idea did not have much impact on
the work developed afterwards, as the grand major-
ity of the authors kept concentrated on non-idling
policies. It is our opinion that [5] holds the key
to solve the stability problem, although we do not
agree entirely with the options made then. Essen-
tially, their system would be run by a non-idling pol-
icy that would reduce the set-up frequency to a min-
imum and when a given run over a specific class
would exceed a given amount of time, there would
be a switch to a new class and all remaining cus-
tomers of the first class would be sent to a special
priority queue to be processed later on a first come
first serve basis. We disagree with the fact that regu-
lar queues and the priority queue are run under pos-
sibly different policies, as the regular policy might
not be theFCFS. Moreover, their result is only es-
tablished for deterministic processing times.

What we believe to be the key to solve the stability
problem is the fact that the resulting policy adds idle
time in the presence of work, or put in another way,
is the fact that the class/buffer switching frequency
is increased at the expense of wasting capacity.

We argue that the networks’ stability problem should
be addressed as whether a given network is stabi-
lizable and not whether the pair network-policy, or
network-class of policies, is stable, as it has been
the main focus in the past. We argue also that
stabilizability is an intrinsic property of each net-
work’s topology. By network’s topology we under-
stand how the different classes of customers flow
through it – their routes –, how many servers are
present, what are the service distributions for each
pair server-class of customers, and what are the ar-
rival distributions for each different customer class.
Under this setting, and by imposing reasonably mild
constraints on the service and arrival processes, we
claim that the traffic intensity condition is sufficient
to ensure stabilizability.

To achieve this we introduce the concept ofActive

Idleness. This concept consists on allowing a server
to stay idle in the presence of waiting customers. To
implement this concept in a real setting, a supervi-
sory mechanism, denominatedTime Window (TW)
Controller, is presented. This mechanism consists
on assigning to each class in the network a fraction
of the available capacity. If a given class uses more
than its share of capacity, it is blocked from being
processed by a certain amount of time, which only
depends on the system’s evolution, that is, it is not
calculateda priori. With theTW Controller it is pos-
sible to stabilize a significant amount of non-acyclic,
multi-class, queueing networks, which are unstable
under their original scheduling policy, provided that
the original policy is non-idling.

The paper presents results obtained for Seidman’s
example, [12], as an instance to demonstrate by sim-
ulation the technique’s potential. It turns out also
that, besides stabilizing unstable systems, we have
been able to improve performance on systems which
are already stable with the original policy. This last
feature is of particular relevance, given that the fine
tuning of our controller will allow the optimization
of any given non-idling policy concerning the degree
of Active Idleness that should be allowed to exist.

In the next section we briefly introduce the models
addressed. In Section 3 we present the basics of the
TW Controller. Then, in Section 4, we present a
summary of results for Seidman’s example, and we
conclude, in Section 5, with a qualitative discussion
of the concept proposed.

2 Queueing Networks, Scheduling, and
Stability

We consider that a queueing network is constituted
by two components: thequeueing network topology
and thecontrol policy. Thequeueing network topol-
ogy contains the layout of the network in the form of
the routing each class of customers must follow. The
topology also includes the description for customer
arrival and processing time distributions. Thecon-
trol policy performs two functions: controlling the
admission of new customers into the network, which
is usually referred as theadmission policy, and de-
ciding in which order each server processes cus-



tomers, known as thescheduling policy. Although
all queueing networks must have some scheduling
policy, it is not mandatory for them to possess an ad-
mission policy. Those which do not are calledopen
networks, as opposed to theclosed networks which
have an admission policy.

As to the layout, queueing networks can be called
acyclic or non-acyclic. The first group includes net-
works which do not have cycles in the flow of cus-
tomers, and the second imposes no restriction on the
flow of customers. This later group includes net-
works where a given class of customers may visit
the same server more than once before leaving the
system.

Our setting is that of open and non-acyclic net-
works, processing multiple classes of customers.
First we consider there are different types of cus-
tomers, where each type is characterized by its ex-
ternal arrival process, by its routing through the net-
work, and by the service distributions at each server
and visit number, if more than one visit is paid to
a server. We assume the routing of each type to
be deterministic. Furthermore, we consider a given
type to be constituted of different classes, in the fol-
lowing sense: a customer is processed by a server
and upon being sent to the next server it will change
class. This allows the distinction of the same type
of customers on different visits to the same server, if
ever they occur.

Given that the same server may have different pro-
cessing distributions for different classes, these are
not Jackson networks. Otherwise, a simple product
form distribution could be computed for the number
of customers in the system, if each server would pro-
cess customers according the the FCFS scheduling
policy. For those, the traffic condition is sufficient
for the existence of such invariant distribution and,
consequently, for stability to be ensured.

Given that the networks may have a significant di-
mension in terms of servers and classes, the state
space is too large to allow a centralized scheduling
policy to be computed. Therefore, usually these are
controlled by distributed scheduling policies, which
are solely based on the contents of each server’s
waiting queue. See [4, 11] for surveys on distributed

scheduling policies. For a very good example of
non-local scheduling policies see [7] with theirFluc-
tuation Smoothing policies, which suffer from the
fact that they require complex implementation, as
discussed in [10].

Under our setting the traffic intensity condition can
be stated as

�i =
NiX
k=1

�
c(i;k)
i :�

c(i;k)
i < 1; (1)

for i = 1; 2; : : : ; I, whereI is number of servers,Ni

is the total number of different classes visiting server
i, �c(i;k)

i is the first moment of the processing time
distribution of classc(i; k) on serveri, and�c(i;k

i ) is
the first moment of the arrival rate of customers of
classc(i; k) to serveri. Furthermore, given that each
class belongs to some type of customer it has to hold
that

�
c(i;ki)
i = �

c(j;kj)
j ; (2)

for all classes and servers such that, if classc(i; ki)
upon being served on serveri visits next serverj
termed as classc(j; kj). That is, classc(i; ki) and
classc(j; kj) belong to the same customer type.

The pair constituted by Equations 1 and 2 estab-
lishes that the load imposed by the external arrival
processes on each server is below its capacity. Any
scheduling policy that ensures the internal arrival
processes to verify Equation 2, when Equation 1
holds, ensures stability of the overall network.

3 The Time Window Controller

To simplify the notation we assume that there is
a global numbering of classes ranging fromk =
1; 2; : : : ; K. We definef�k(n)g as the time between
the external arrival of thenth and the(n� 1)th cus-
tomer of classk. These are assumed to be inde-
pendent and identically distributed and, for somek,
�k(n) = 1 for all n, in which case the external ar-
rival process to classk is null. This means that class
k is generated from another class in the system when
moving from a server to the next.



A customer of classk, after being served at a unique
serverj, written j = s(k), or converselyk 2 c(j),
becomes a customer of classR(k), whereR is a bi-
jective function representing the routing map for the
queueing network.

Therefore we can uniquely assign a service distribu-
tion to each class and denote by�k its first moment.
Customers of different classes do not merge into a
single class, nor does a single class split in more than
one class. For each classk, defineF (k) as

F (k) =

8>>>>>>>>>>><
>>>>>>>>>>>:

k if class k has a non null
exogenous arrival rate:

F (j) if k has a null exogenous
arrival rate; where j is the
class that directly feeds to
class k for which F (j) has
been de�ned:

(3)

Note that, since there is no class split nor merge,
F (k) is an injective function. For each classk let

�k =
1

E[�F (k)(1)]
: (4)

One interprets�k as the effective mean arrival rate
of classk.

TheTW Controller is introduced with a series of def-
initions, the first of which is theTime Window asso-
ciated to a class.

Definition 3.1 (Time Window) Consider a class
k of a multi-class, non-acyclic, queueing network.
The Time Window associated to that class is de-
fined as the finite time interval that starts at the
current system timetc and extendsTk time units
into the past.

The Time Window of a class represents the amount
of past time needed by theTW Controller for class
k. The use of a finite size window is not only due
to memory and computational requirements, but is
also essential to achieve the short/medium term ob-
jectives set to theTW Controller, as will be shown in

the next section. Next, the definition of theProcess-
ing History associated to a class is introduced.

Definition 3.2 (Processing History)For each
customeri of classk, definetstartk;i andtendk;i as the
start and finish time instant for the processing
of that customer, respectively. TheProcessing
History of classk is defined as a functionHk(t)
given by:

Hk(t)
0�t�tc

=

(
1 if tstart(k;i) � t � tend(k;i) 9i

0 otherwise:
(5)

The Processing History associated to a class repre-
sents a function that describes the amount of time
used by the server to process customers of that class.
The objective is to obtain a chronological description
of the processing time used by each class from the
corresponding server. The next definition presents
the concept of theTime Fraction of a classk at a
given timet.

Definition 3.3 (Time Fraction) The Time Frac-
tion of classk with a Time Window of sizeTk at
time t is defined asfk(t) and is computed by the
following expression:

fk(t) = �k

Z t

t�Tk

e�k:(��t)Hk(�)d� (6)

where�k 2 [0;1[, is a Smoothing Parameter and
�k is a normalization parameter, given by:

�k =
�k

1� e��k:Tk
(7)

The Time Fraction of a class is an estimate of the
fraction of the total time contained in itsTime Win-
dow during which the server was processing cus-
tomers of that class. It clearly represents a measure
of the amount of server capacity assigned to that
class. If�k = 0, it measures the exact time frac-
tion allocated to classk over theTime Window span,
given that�k becomes1=Tk. The need to use an ex-
ponential function to smooth theProcessing History



is to eliminate sudden changes on theTime Frac-
tion value of a class. The objective is that when
computing theTime Fraction, the more recent pro-
cessing history has a larger weight to the computa-
tion than the processing history near the end of the
Time Window. Since theTime Window size is finite,
it was necessary to include the normalization factor
�k. This guarantees that, if during the entireTime
Window the server is always processing customers
of a given class, the computed value for theTime
Fraction of that class will be 1. The last concept
necessary is that of aBlocked class, which has the
following definition.

Definition 3.4 (Blocked class)A classk is said
to be Blocked at time t with parameterfmax

k , if
fk(t) > fmax

k , wherefmax
k is theMaximum Time

Fraction allowed for classk.

A Blocked class is simply a class that has exceeded
thefmax

k awarded to it. Since thefk(t), is a measure
of the server capacity used by classk in its Tk, fmax

k

represents the maximum level of capacity that class
k can use duringTk without becomingBlocked. Fi-
nally, using the previous definitions the definition of
theTime Window Controller is presented.

Definition 3.5 (TW Controller) Let ! be a
multi-class, non-acyclic, queueing network,
where each service station is controlled by
the non-idling scheduling policy�. The Time
Window Controller for this queueing network
consists on assigning to each classk an fmax

k

and aTk, for which it is possible to compute
Hk(t), with a Smoothing Parameter, �k. Each
service station performs its scheduling decisions
using policy�, with the exception that all classes
that areBlocked should be considered empty of
customers.

The definition states that theTW Controller is de-
scribed by a set of parameters(�k; Tk; f

max
k ) with

k = 1; : : : ; K. The functioning of theTW Con-
troller is very simple. Each time a server has to make

a scheduling decision, theTW Controller calculates
thefk of all classes in that server. If any class has an
fk abovefmax

k , then theTW Controller blocks that
class from the set of classes from which the server
can remove customers to process. Note that there is
no interruption nor preempting of ongoing services
– these decision points coincide with the end of ser-
vice.

At certain times the scheduling policy may not be
able to choose a customer to be processed because
all customers are in classes that areBlocked. In
this case the server becomes idle, not because the
server is empty of customers, but because theTW
Controller forbids the scheduling policy of using the
available customers.

For this reason this type of idleness is termed asAc-
tive Idleness. In the present context, idleness in-
curred for actual lack of customers, would be con-
sidered asPassive Idleness.

After beingblocked, a class will see its correspond-
ing fk decrease with time, guaranteeing that at some
point in the future it will cease to beBlocked.
Note that adding theTW Controller keeps the over-
all scheduling policy distributed. Each server, in
essence, has aTW Controller with the(�k; Tk; f

max
k )

parameters corresponding to the classes it processes,
and those parameters can be set up-front.

3.1 Qualitative discussion on properties

As it has been defined, theTW Controller can be ad-
justed in order not to influence the original policy.
If all smoothing parameters are set to zero and if all
maximum time fractions are set to one, no matter
the window size for each class, no class will ever
be blocked. This way, the system will be ran with
the original policy. As some maximum time frac-
tions are decreased to a number less than one, the
TW Controller will progressively increase its influ-
ence over the original policy, as those classes will
start getting blocked with increased frequency.

Naturally, if a given class receives a maximum time
fraction below its long term needs in terms of arrival
rate and processing time, instability will occur.

Therefore, each class should be awarded a maximum



time fraction slightly above its individual needs.
Note that these fractions are short term fractions.
They need to be above the long term needs to allow
each class to have access to its necessary long term
share of capacity.

One possible and simple way to define these frac-
tions is to split each server’s capacity in such a way
that all of them are above the long term needs of their
classes, but their sum does not exceed one. This
is ensured to be feasible when the traffic intensity
holds, because each server will have some surplus
capacity.

When the choice of fractions is such that their sum
is equal to one, we are in some sense decoupling
the network, given that it behaves as if each server
is split into smaller servers dedicated to each class.
This particular choice makes theTW Controller sim-
ilar to theGeneralized Processor Sharing – GPS.

However, we may allow the fractions on a given
server to add up to more than one, meaning in this
case that some degree of coupling and interference is
allowed between different classes visiting the same
server. This particular feature makes our controller
drastically different from those based on theGPS.

The higher the degree of interference, the higher is
the potential to better use a given server, but also the
higher is the potential for instability. The example
of [12] is a case where, under our setting, each max-
imum time fraction is set to one for all classes. We
argue that this maximum interference causes short
term losses of capacity that will not be recovered in
the long run, causing the observed instability.

4 Simulation Results

Seidman, in [12], presented a queueing network
topology that in connection with theFirst In First
Out (FIFO) scheduling policy resulted in an unsta-
ble queueing network.

Figure 1 presents a diagram of the queueing net-
work layout, which is constituted by four servers
with twelve classes, corresponding to four different
types of customers.

Table 1 presents a set of parameters for this queueing

Figure 1: Seidman’s queueing network topology.

network that in conjunction with theFIFO schedul-
ing policy results in an unstable queueing network.
Note that the parameters respect theTraffic Intensity
Condition.

Table 1: Queueing network parameters.
Parameter Value Parameter Value

�2 1.000 �5 0.001
�3 1.000 �6 0.900
�10 1.000 �7 0.900
�11 1.000 �8 0.001
�1 0.900 �9 0.001
�2 0.001 �10 0.001
�3 0.001 �11 0.001
�4 0.001 �12 0.900

Figures 2 and 3 present the results obtained for a
simulation of the queueing network with theFIFO
scheduling policy using the queueing network pa-
rameters presented in Table 1. The simulation was
run for a total of 40,000 periods.

The figures show the sum of customers on each
server as a function of time. Basically one can ob-
serve that there are periods during which the servers
are available to work but their queues are empty –
starvation. These starvation periods are intertwined
with busy periods which grow in size and length al-
most linearly as time progresses. The same happens
with the idle periods. For instance, server 2 reaches
a total of customers of approximately 18,000 close
to the end of simulation.

Clearly, these results show that the queueing net-
work is unstable. The original example was shown
to be unstable with deterministic processing times.



We have used Poisson arrivals and exponential pro-
cessing times for our simulations. The behavior we
present is qualitatively similar to that presented by
Seidman in his article.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Server 1 inventory evolution

In
ve

nt
or

y

Time

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Server 2 inventory evolution

In
ve

nt
or

y

Time

Figure 2: Server inventory evolution for theFIFO
scheduling policy (server 1 and 2).

Through simulation we demonstrate that theTW
Controller is able to stabilize this queueing network.
The choice of parameters for theTW Controller was
made by allocating to each class aMaximum Time
Fraction, fmax

k , proportional to�k�k. The surplus
capacity was equally divided among all classes. Ta-
ble 2 presents the choice of parameters for theTW
Controller.

This choice of parameters is such that the sum of
fractions at each server is exactly equal to one.
Therefore, this is a choice made with the intent of
reducing to a minimum the degree of coupling be-
tween different classes. Also, we made the time win-
dows and smoothing parameters equal for all classes.

Figures 4 and 5 present a comparison of the server
inventory evolution of theFIFO scheduling policy
with the same scheduling policy supervised by the
TW Controller.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Server 3 inventory evolution

In
ve

nt
or

y

Time

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Server 4 inventory evolution

In
ve

nt
or

y

Time

Figure 3: Server inventory evolution for theFIFO
scheduling policy (server 3 and 4).

Table 2:TW Controller parameters.
Parameter Value Parameter Value

Tk 100 fmax
6 0.996

�k 0.010 fmax
7 0.996

fmax
1 0.996 fmax

8 0.002
fmax
2 0.002 fmax

9 0.002
fmax
3 0.002 fmax

10 0.002
fmax
4 0.002 fmax

11 0.002
fmax
5 0.002 fmax

12 0.996

We had to switch the scale of the plots in order to bet-
ter see the buffer sizes at each server when compared
with the original values. Now, server 2 has a max-



imum of less than 600 customers along the 40,000
periods of the simulation. Besides the reduction of
the maximum value, the total number of customers
as a function of time exhibits a stationary behavior.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

100

200

300

400

500

600

700

800

900

1000
Server 1 inventory evolution

In
ve

nt
or

y

Time

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

100

200

300

400

500

600

700

800

900

1000
Server 2 inventory evolution

In
ve

nt
or

y

Time

Figure 4: Comparison of the server inventory evolu-
tion for theFIFO (light grey) andFIFO + TW Con-
troller (dark grey) scheduling policies (server 1 and
2).

The results show that the unstable behavior observed
for the FIFO scheduling policy is due to the inabil-
ity of the servers to use enough resources to process
the customers, since the scheduling policy creates a
starvation phenomena between the servers.

The TW Controller is able to stabilize the system,
adding in the process someActive Idleness, as pre-
sented in Table 3. Naturally, the total idle time is
higher on the original system. But the original sys-
tem only hasPassive Idle Time.

The amount ofActive Idle Time introduced by our
controller is relatively small – the maximum occurs

for server 3 and amounts to less than 2.4% of the
total simulation length –, but produces a huge differ-
ence in the overall performance.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

100

200

300

400

500

600

700

800

900

1000
Server 3 inventory evolution

In
ve

nt
or

y

Time

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

100

200

300

400

500

600

700

800

900

1000
Server 4 inventory evolution

In
ve

nt
or

y

Time

Figure 5: Comparison of the server inventory evolu-
tion for theFIFO (light grey) andFIFO + TW Con-
troller (dark grey) scheduling policies (server 3 and
4).

Table 3: Comparison of theActive Idle Time used in
each server.

Statistic Original TW
Server 1 0 0.0128
Server 2 0 0.0218
Server 3 0 0.0234
Server 4 0 0.0123

It would be possible to further improve the perfor-
mance by choosing different maximum time frac-
tions. This could allow some degree of interfer-
ence between the classes. This is an issue of perfor-
mance optimization, which is outside the scope of



the present paper, but constitutes the challenge we
face now.

4.1 Discussion

The question to be addressed here is to provide some
intuition on as to why do we get such tremendous
performance change at the expense of forcing some
customers to wait when the server is available. When
we only have a single server it does not make any
sense to keep customers waiting while the server is
available, because there is no gain for anyone. How-
ever, in a network what seems to be good for each
individual server may – and in fact does – hurt the
network as whole.

Given there is no control over the input of customers
into the system, all burstiness the arrival processes
contain will be transferred to the network and al-
lowed to propagate freely. Burstiness in the arrival
process is directly connected to variance. It is well
known the impact that variance has on queueing net-
works.

The TW Controller, with its short/medium term
bounds on capacity utilization by each class of cus-
tomers, acts as a burstiness filter, that is, contributes
to reduce the variance on all the internal arrival pro-
cesses.

Another way of looking at this controller is the fol-
lowing. Most local scheduling policies implement
local feedback but the overall network is operated
in open loop. The proposed controller adds some
measure of global feedback to the local decisions.
Moreover, that global feedback only relies on know-
ing the external arrival rates of customer types, but
its implementation preserves the locality of the deci-
sion making process.

5 Conclusion

We proposed a supervisory controller that resorts to
Active Idleness to ensure the stabilization of multi-
class, stochastic queueing networks operated with
non-idling scheduling policies and are unstable, de-
spite the fact that theTraffic Intensity Condition
holds.

The paper presents one example to illustrate the
claim. Although we do not provide any formal
proofs here, the approach provably stabilizes queue-
ing networks, as long as the processing times of
each class possess an upper bound. This constraint
means, for instance, we cannot ensure to stabilize
Markovian networks.

Nevertheless, the example presented is a Markovian
network. On the other hand, in reality no queueing
network is such that there is no upper bound on the
processing times of individual customers. Therefore,
the range of application of the controller is very sig-
nificant.

The essence of the stability proof, which can be
found in [9], is as follows. The smoothing parameter
is set to zero. The fractions are set to add up to one in
a way that each class has a fraction slightly above its
long range needs. The window size is set equal to all
classes and a function of the upper bound on the pro-
cessing times of all classes. This choice of parame-
ters is one possible instance of all values they can
take. With this particular choice of values it is possi-
ble to show by induction that each class will have an
average availability of its server above its long range
needs and that the longest service will not take ca-
pacity away from other classes. Given that we can,
by construction, provide a provably stable instance,
it follows that the optimal choice of these parameters
cannot lead to instability, provided all queues are ob-
servable on the performance measure being used.

The most relevant consequence of this result is that
theTraffic Intensity Condition is sufficient to ensure
stabilizability on a very wide class of networks.

We have also been able to obtain performance im-
provements over non-idling policies which do not
generate instability. This second feature is also par-
ticularly interesting because, provided an optimiza-
tion procedure is in place, the adequate measure of
Active Idleness can be determined through the ad-
equate choice of maximum time fractions for each
class.



6 Acknowledgements

The work described in this paper was partially
funded by Fundac¸ão para a Ciˆencia e Tecnolo-
gia under references SRI/34646/99-00 and Praxis
XXI/BM/21090/99.

References

[1] Dimitris Bertsimas, David Gamarnik, and
John N. Tsitsiklis. Stability conditions for mul-
ticlass fluid queueing networks.IEEE Trans-
actions on Automatic Control, 41(11):1618–
1631, November 1996.

[2] Maury Bramson. Instability of FIFO queueing
networks. The Annals of Applied Probability,
4(2), 1994.

[3] Hong Chen and Hanqin Zhang. Stability
of multiclass queueing networks under prior-
ity service disciplines.Operations Research,
48(1):26–37, 2000.

[4] Stephen C. Graves. A review of production
scheduling. Operations Research, 29, 1981.
July-August.

[5] P. R. Kumar and Thomas I. Seidman. Dy-
namic instabilities and stabilization methods in
distributed real-time scheduling of manufactur-
ing systems.IEEE Transactions on Automatic
Control, 35(3), March 1990.

[6] Sunil Kumar and P. R. Kumar. Performance
bounds for queuing networks and scheduling
policies. IEEE Transactions on Automatic
Control, 39(8):1600–1611, August 1994.

[7] Steve C. H. Lu, Deepa Ramaswamy, and P. R.
Kumar. Efficient scheduling policies to reduce
mean and variance of cycle-time in semicon-
ductor manufacturing plants.IEEE Transac-
tions on Semiconductor Manufacturing, 7(3),
August 1994.

[8] Steve H. Lu and P. R. Kumar. Distributed
scheduling policies based on due dates and
buffer priorities. IEEE Transactions on Auto-
matic Control, 36(12), December 1991.

[9] José A. A. Moreira. Distributed Scheduling
with Active Idleness: A key to the stabilization
of multiclass queuing networks. MSc Thesis,
Instituto Superior T´ecnico, Technical Univer-
sity of Lisbon, 2001.

[10] Tomohito Nakata, Koichi Matsui, Yasuhisa
Miyake, and Kyusaku Nishioka. Dynamic bot-
tleneck control in wide variety production fac-
tory. IEEE Transactions on Semiconductor
Manufacturing, 12(3), August 1999.

[11] S. S. Panwalkar and Wafik Iskander. A sur-
vey of scheduling rules.Operations Research,
25(1), 1977.

[12] Thomas I. Seidman. ’first come, first served’
can be unstable!IEEE Transactions on Auto-
matic Control, 39(10), October 1994.


