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Abstract

We address several aspects related to managing re-entrant lines in a uni�ed manner {
capacity allocation, inventory management and production control. Our approach to study
these systems is through simulation based optimization. Simulation o�ers the 
exibility
to model the complexities adequately while the gradient computation (via In�nitesimal

Perturbation Analysis) helps identify good solutions quickly. Our framework is a discrete
time capacitated multiple product production-inventory system operating under a base stock
policy. We analyze several di�erent production and capacity allocation rules. We develop
expressions for and validate the appropriate IPA derivatives. These derivatives can then
be used in an optimization tool which enables the determination of optimal parameters for
the several policies proposed. We also present a summary of insights obtained through an
extensive computational study.

1 Introduction

A 
ow line is a manufacturing system where several products 
ow through the same sequence

of operations. Re-entrant 
ow lines are 
ow lines where the same sequence is traversed several

times (levels) to complete the products. In semiconductor manufacturing, wafers traverse 
ow

lines several times to produce the di�erent layers composing each circuit. The need to under-

stand and manage the complexities of semiconductor manufacturing has motivated a large body

of research on re-entrant lines. Our work presents a uni�ed treatment of several managerial

issues for a family of re-entrant 
ow lines, including capacity allocation, inventory manage-

ment, and production control. Our framework is a discrete time, capacitated, multi-period,

multi-product system operating under a capacitated multi-echelon base stock policy. Due to the

intractability of analytic models, our approach is supported on simulation based optimization,

which o�ers modeling 
exibility and the ability to quickly obtain good solutions based on gradi-

ent estimates derived through In�nitesimal Perturbation Analysis (IPA). Our goal is to derive

insights and establish a framework to study more complex re-entrant systems. The special

case without re-entrance is applicable very widely in discrete-part manufacturing (in furniture

industry and at Tier-1 automotive supplier plants for example) and thus our framework has

broader applicability than the semi-conductor industry.

It is well known that base stock policies are optimal in a variety of settings for single machine

and single product systems, and continue to be optimal for multiple machines in series and a

single product in an uncapacitated setting; see [Tayur et al., 1999]. When there are capacity

bounds, the optimal policy structure in a multiple stage setting is not easily characterized and

can be complex: see [Speck and der Wall, 1991]. Like much of the past research, therefore, we

concentrate on understanding implementable classes of policies { these are base stock policies
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(for discrete time models like ours) or workload regulating and starvation avoidance (in con-

tinuous time models) { via experimental studies based on approximations and simulation. We

validate a methodology to compute the optimal parameters within base stock policies. Our

experimental study considers capacity allocation, production rules, and inventory levels simul-

taneously, and we provide an understanding into the performance of capacitated multi-product

re-entrant 
ow lines.

An exhaustive review of related production planning and scheduling models can be found in

[Uzsoy et al., 1992, Uzsoy et al., 1994]. These mainly use continuous time models with rules

similar to a base stock policy, but do not consider the several inter-related issues simultaneously.

We mention only the papers that are closely related to our work. Closed queuing models

that address the control of the input of new material into the system are studied in [Wein,

1990, Harrison and Wein, 1990, Wein, 1988, Glassey and Resende, 1988]. Their input policies

are conceptually of the base stock type for the amount of work in the system. In contrast,

[Perkins and Kumar, 1989, Kumar and Seidman, 1990, Lu and Kumar, 1991, Lu et al., 1994]

use open queuing models assuming no control over the input process, to address the scheduling

problem of each server. Open queuing systems are implicitly operated under a base stock policy,

since each server \wants to see" zero costumers in front of it. A third stream of research that

includes [Kimemia and Gershwin, 1983, Akella et al., 1984, Akella and Kumar, 1986, Lou and

Kager, 1989, van Ryzin et al., 1993, Bai and Gershwin, 1996] applies a hierarchical control

framework, in the context of 
ow control. Their optimal policies are shown to be of the hedging

point type for end-product surplus, which is also a version of base stock policy.

The rest of the paper is organized as follows. We introduce the basic recursion equations for

the state variables, the production decisions, and performance measures in Section 2. Section 3

develops the recursion equations of their derivatives. In Section 4 we validate the IPA procedure;

[Ho and Cao, 1991] is a basic reference and we use [Glasserman and Tayur, 1995] heavily. In

Section 5 we present experimental data illustrating the main insights. We conclude in Section 6.

2 Model

Consider a production system composed of M machines, able to process P di�erent products,

each needing to cycle K times through all the machines. Moreover, we assume that each

product unit at any given point imposes the same load on the visited machines (uniform load)

and that the yield is perfect. Products which are visiting a given machine for the k-th time,

k = 1; 2; : : : ; K, are said to be in level (K � (k � 1)), and each machine we term a stage. The
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�rst machine to be encountered by any product is stage M and the last is stage 1. We denote

the inventory of product p on stage m and level k at the beginning of period n as Ikmp
n . With

our numbering, the end product inventory for any product at the beginning of period n is I11pn ,

p = 1; 2; : : : ; P , irrespective of the values of K and M .

In any period, each machine can process di�erent parts belonging to di�erent levels; the total

production is limited by the machine's capacity. After being processed by a machine, parts

are placed in intermediate bu�ers, where they wait their turn to be processed by next machine

or until they are depleted by external demand once they complete all KM operations. We

assume these bu�ers to have in�nite capacity. Demand is satis�ed out of the end product

inventory or backlogged for future replenishment whenever demand exceeds the available in-

ventory. Demands are assumed continuous (with density �p), independent across products, and

i.i.d. for each product along time, possibly with a point mass at zero. Although semiconduc-

tor manufacturing in general, and wafer fabrication in particular possesses many other sources

of uncertainty we have chosen to present a model stripped of those, given that managing re-

entrant systems with deterministic capacity, deterministic processing times, and perfect yield

in a multiple product setting with random demand is not well understood yet.

In each period, the sequence of events is as follows. Demands occur, and then production

decisions will be made upon observing the inventories. Cost is incurred as a function of the

amount of inventory at the end of each period. We restrict our study to the following class of

inventory control, capacity allocation, and production rules.

Inventory Control { Every level and stage operates on a capacitated base stock policy for

echelon inventory. This means that given a particular product, the decision maker adds all

inventory downstream from that level and stage to determine the echelon inventory. If the

echelon inventory falls below the corresponding base stock value, the decision will be to produce

the di�erence, provided there is enough capacity and (relevant) upstream inventory.

How much capacity is available depends on all products competing for capacity at any given

machine and on the capacity allocation policy. We propose and analyze several production and

capacity allocation rules.

Capacity Allocation { Each machine m, with m = 1; : : : ;M , has a �xed total capacity Cm. We

can take this total capacity and de�ne di�erent degrees of capacity sharing. If we divide the

capacity of each machine into K�P slots and assign each slot to a single product and level, we

have what we call the no sharing mode (NS). If we de�ne K slots and allow each of these to be

shared by all products belonging to the same level, we have the partial sharing mode (PS). The
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total sharing mode, (TS), is the extreme case where the capacity of each machine is accessible

to any product and level. Note that the NS mode corresponds to a situation where we would

be managing P di�erent production systems, each with a single product and non re-entrant


ow. We consider it here to compare with the other two sharing modes.

Production Rules {Whenever there is some degree of capacity sharing, it is necessary to establish

a capacity management scheme, which de�nes how capacity is distributed among all products

when there is a bound in capacity. To take care of this dynamic decision we propose three

production rules: Linear Scaling (LSR), Priority (PR), and Equalize Shortfall (ESR).

The basic recursions governing a re-entrant 
ow line are discussed next.

2.1 Basic Recursions

The inventory dynamic equations are given by

I
kmp
n+1 = Ikmp

n � P (km)�p
n + P kmp

n ; (1)

where Ikmp
n is the inventory of product p, on level k and stage m at the beginning of period n;

P kmp
n is the production decision for period n; and (km)� designates the level and stage which

produces out of inventory on level k and stage m. The external demand for product p during

period n, dpn, is represented by P
(11)�p
n .

De�ning E
(11)�p
n = 0, the echelon inventories at the beginning of period n are given by

Ekmp
n = Ikmp

n +E(km)�p
n : (2)

Except for I11pn , every inventory variable is always non negative, given that the production de-

cisions are always bounded by the available inventory. However, any echelon inventory variable

may take negative values, as long as the value of I11pn is su�ciently negative. The shortfall is

de�ned as

Y kmp
n = zkmp �Ekmp

n ; (3)

where zkmp is the echelon base stock for product p, on level k, and stage m. The shortfall

measures the distance to the target echelon inventory and is always non negative. The dynamic

equations for the shortfall are
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Y kmp
n+1 = Y kmp

n + dpn � P kmp
n : (4)

The production decision is in
uenced by the production rule being used, which becomes active

when the available capacity is exceeded. We de�ne the amounts that would be produced should

there be no capacity bounds as the production net needs for each product, level, and stage as:

fkmp
n = min

n
zkmp + dpn �Ekmp

n ; I(km)+p
n

o
; (5)

where (km)+ denotes the level and stage which provides inventory to production at level k and

stagem. We assume in�nite raw material, so I
(KM)+p
n =1 for all n. Note that zkmp+dpn�E

kmp
n

is always positive, since it is the shortfall plus one demand occurrence. We assume the system

to start with inventories at their base stock values: Ikmp
0 = zkmp � z(km)�p and the echelon

inventories set according to (2). All other initial variables are set to zero.

For convenience, we de�ne the control policy by an alternative set of control variables that are

directly related to the multi-echelon base stock variables:

�kmp = zkmp � z(km)�p; (6)

with z(11)
�p = 0. We refer to these as the � (or `delta') variables.

2.2 The Production Decisions

2.2.1 Linear Scaling Rule

For the Linear Scaling Rule (LSR) with partial sharing of capacity (PS mode), the production

decision for period n is de�ned as

P kmp
n = fkmp

n gkmn ; (7)

with fkmp
n given by (5) and gkmn , expressing the way capacity is distributed, is given by

gkmn = min

(
CkmP
p f

kmp
n

; 1

)
; (8)

where Ckm is the amount of Cm assigned to level k. For the LSR in the TS mode, gkmn is

replaced in (7) by gmn , where
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gmn = min

(
CmP

p

P
k f

kmp
n

; 1

)
:

2.2.2 Priority Rule

Consider the PS mode. We assign capacity according to a static priority for the products. Let

p(i), for i = 1; : : : ; P , be the product that comes in the ith position on the priority list; that is,

product p(1) is the product with the highest priority and product p(P ) has the lowest priority.

The production is

P kmp(i)
n = minffkmp(i)

n ;maxf0; Ckm �
i�1X
j=1

P kmp(j)
n gg: (9)

In the TS mode, we assign capacity according to a priority for the products and levels. Let k(i)

and p(i), for i = 1; : : : ; K � P be the level and product with the ith position on the priority

list. The production decision is similar in structure to (9).

2.2.3 Equalize Shortfall Rule

Another way to dynamically allocate capacity is to equalize the shortfall for every product.

The shortfall has been de�ned in (3). In contrast to the previous two production rules, the

production decision is obtained iteratively. We �rst allocate capacity to the product with the

highest shortfall, until it reaches the level of the product with the second highest shortfall.

At this point, capacity will be assigned in equal parts to both products until their individual

shortfalls equal the third highest shortfall, at which point these three products share capacity

equally, and so forth. (Note that at any point it may be the case that the equalization cannot

be accomplished because of insu�cient feeding inventory or because capacity is exhausted.) See

Appendix A for the procedure in the PS mode.

At the end of this procedure, P kmp
n is the production decision and P 0kmp

n is its derivative with

respect to the parameters being optimized. To handle the TS mode, only minor changes of this

procedure are necessary; we skip the details.

6



2.3 Performance Measures

We concentrate on in�nite horizon average cost and Type-1 service level. The average cost

is calculated through the assignment of cost to inventories and backlogs in each period and

averaging across periods. The service level relates to the fraction of times where a stock-out

does not occur. Let hkmp be the holding cost rate for level k, stage m, and product p. Let bp be

the back-logging cost rate for level 1, stage 1, and product p. The single period cost is de�ned

as Jn =
PP

p=1 J
p
n , with Jpn given by

Jpn = (I11pn )�bp + (I11pn )+h11p +
MX
m=2

I1mp
n h1mp +

KX
k=2

MX
m=1

Ikmp
n hkmp; (10)

where (X)� = maxf0;�Xg and (X)+ = maxf0; Xg. We consider the in�nite horizon average

cost

J1 = lim
N!1

E

"
1

N

NX
n=1

Jn

#
: (11)

As to the service level, let

V p
N =

1

N

NX
n=1

1fI11pn � dpn or dpn = 0g (12)

be the fraction of periods in which demand for product p is �lled immediately. Let �VN =
1
P

PP
p=1 V

p
N and �vN = E[ �VN ]. We study the in�nite horizon version �v1 = limN!1 �vN .

3 Derivative Recursions

Here we only detail the process of taking derivatives with respect to the echelon base stock

variables. We assume that for each p, 0 < zkmp < z(km)+p for all k;m. Let z� = zk
�m�p� denote

the variable with respect to which the derivatives are taken for some k� = 1; : : : ; K;m� =

1; : : : ;M ; p� = 1; : : : ; P .

3.1 Derivatives of the State Variables

For the state variables de�ned in Section 2.1 we start by di�erentiating the dynamic equation

for the inventories, yielding
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I 0
kmp
n+1 = I 0

kmp
n � P 0

(km)�p
n + P 0

kmp
n ; (13)

where P 0(11)
�p

n = d0pn = 0, since demands are independent of the control policy. The derivatives

for equations (2) and (4) follow a similar principle. Expressions (3) and (5) deserve a particular

attention because of their explicit dependence on the echelon base stock variables. We detail

the speci�cs of the latter, since it possesses a more interesting structure, due to the existence

of the minf:g operator. The derivative of the production net needs is given by

f 0
kmp
n =

8>><
>>:

1fz� = zkmpg �E0kmp
n if zkmp + dpn �Ekmp

n < I
(km)+p
n

I 0(km)+p
n if zkmp + dpn �Ekmp

n > I
(km)+p
n

0 if fkmp
n = 0

(14)

Note that I 0(KM)+p
n = 0 because raw material is assumed to be in�nite. The derivative for the

initial inventories is given by I 0kmp
0 = 1fz� = zkmpg � 1fz� = z(km)�pg; note that z(11)

�p = 0

is not a variable of the problem. For the initial echelon variables, the derivatives are trivially

given by E 0kmp
0 = 1fz� = zkmpg. The derivatives for the initial shortfall variables are set to

zero.

3.2 Derivatives for the Production Decisions

We now consider the derivatives of the production decisions for each of the production rules

proposed in Section 2.2. We detail only the PS mode for the LSR and the PR. The TS mode

is a simple extension and the derivatives under ESR are detailed in Appendix A.

The derivative under LSR in the PS mode is

P 0
kmp
n = f 0

kmp
n gkmn + fkmp

n g0
km
n : (15)

The derivative of gkmn is

g0
km
n =

8><
>:

�Ckm
P

p
f 0
kmp
n

(
P

p
f
kmp
n )2

if
P

p f
kmp
n > Ckm

0 if
P

p f
kmp
n < Ckm

(16)

The derivatives obtained under PR in the PS mode are given by
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P 0
kmp(i)
n =

8>><
>>:

f 0kmp(i)
n if 0 < fkmp

n < Ckm �
Pi�1

j=1 P
kmp(j)
n

�
Pk�1

j=1 P
0kmp(j)
n if 0 < Ckm �

Pi�1
j=1 P

kmp(j)
n < fkmp

n

0 if Ckm �
Pi�1

j=1 P
kmp(j)
n < 0

(17)

3.3 Derivatives of the Performance Measures

To determine the derivatives of our in�nite horizon performance measures, we need the deriva-

tives of their single period and �nite horizon counterparts. The cost derivative in period n is

J 0n =
P

p J
0p
n, where

J 0
p
n = �1fI11pn < 0g(I 0)11pn bp + 1fI11pn > 0g(I 0)11pn h11p +

(18)

+
MX
m=2

I 0
1mp
n h1mp +

KX
k=2

MX
m=1

I 0
kmp
n hkmp;

Since �VN is not continuous, to obtain a di�erentiable representation, we replace the indicator

function in (12) with a conditional expectation. This is explained in [Glasserman and Tayur,

1995] for the single product case. It is trivial to extend their method to the multiple product

case in order to show that

P�1
PX
p=1

N�1
NX
n=1

1fI11pn > 0g�pn(I
11p
n )(I 0

11p
n ) (19)

is the derivative of �VN (see [Bispo, 1997] for details).

4 Validation of IPA Derivatives

We show that the system variables are smooth functions of the control parameters. This is a

relatively easy task if it were not for the existence of minf:g and maxf:g functions in some of

the expressions. The derivative of such functions is well de�ned away from the points where ties

occur. We show that either (1) ties occur with zero probability or (2) the derivative is the same

for all the arguments. We only detail the validation under LSR in the PS mode for brevity.
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A function �mapping S 2R intoR is Lipschitz if there exists a constant k�, called the modulus,

for which j�(x)��(y)j � k�jx� yj: A random function is Lipschitz with probability one if there

exists a random variable K that serves as a path-wise modulus. Our validation in the �nite

horizon setting will be based on Lemma 3.2 of [Glasserman and Tayur, 1995]:

Lemma 4.1 Let fX(s); s 2 Sg be a random function with S an open subset ofR. Suppose that

E[X(s)] <1 for all s 2 S. Suppose, further, that X is di�erentiable at s0 2 S with probability

one, and that X is almost surely Lipschitz with modulus KX satisfying E[KX ] < 1. Then

E[X(s0)]
0 exists and equals E[X 0(s0)].

Theorems 4.2 and 4.3 establish the main validation result for the state variables, decisions, and

their derivatives with respect to the echelon base stock variables.

Theorem 4.2 If fdpn; n = 1; 2; : : : ; p = 1; 2; : : : ; Pg are independent and each dpn has a density

on (0;1), then the following hold:

� For k = 1; : : : ; K;m = 1; : : : ;M; p = 1; : : : ; P; and n = 1; 2; : : :, each Ikmp
n as given by (1)

is, w.p.o., di�erentiable at (z111; : : : ; zKMP ) with respect to each zqrs, q = 1; : : : ; K; r =

1; : : : ;M; and s = 1; : : : ; P: Moreover, these derivatives satisfy (13).

� P kmp
n as given by (7), with fkmp

n and gkmn given by (5) and (8), respectively, is also

di�erentiable w.p.o. and its derivative satis�es (15), with f 0kmp
n and g0kmn given by (14)

and (16), respectively.

Proof: The di�erentiability of the state variables relies on the structure of the recursive equations

de�ning them. Due to the structure of (7), we only have to check if (5) and (8) are di�erentiable.

The remaining equations are linear combinations of state variables and so do not pose any

problem.

We start with expression (5). A tie between the two terms may induce non-di�erentiability.

Since demands are continuous with only a point of mass at zero, ties occur with probability

zero, except for the case where both terms are zero. The term zkmp + dpn �Ekmp
n equals zero if

dpn = 0, in which case the echelon inventory reached its base stock level in the previous period.

If this happens at some value for z�, then w.p.o. it does so in a neighborhood of z�, which

implies that the derivative is zero. A similar reasoning is valid for the second term of (5), i.e.,

if the second term is zero, then it remains zero in a neighborhood of z� w.p.o. Since both terms

have zero derivative, the expression is di�erentiable and its derivative is a de�ned in (14).
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Now consider (8). Again, a tie in the two terms may induce non-di�erentiability. The random

variables fkmp
n have two points of mass: one at zero and the other at �(km)+p. This latter

occurs when the net needs are bounded by feeding inventory, and this equals its local base

stock level. Thus, the tie between
P

p f
kmp
n and Ckm may occur with non-zero probability as

in the following two cases.

1. The �rst case occurs when Ckm = C(km)+ . When this is the case, Prf
P

p f
kmp
n = Ckmg 6=

0, irrespective of the control parameters, because PrfIkmp
n = 0g 6= 0. If in a period the

feeding stage is bound by capacity at the same time stage (km) has zero inventory, in the

next period it may be the case that Ckm =
P

p f
kmp
n . However, since a bound in capacity

will occur w.p.o. in a neighborhood of z�, the derivative will be zero for both terms and

di�erentiability will be preserved.

2. The second case occurs when Ckm = �(km)+p or a sum of some delta variables matches

Ckm exactly. If this ever happens we have a case of non equal derivatives on both terms

because d

dz(km)+p

P
p f

kmp
n = 1 and d

dz(km)+p
Ckm = 0. Given that the simulation is run

with echelon base stock values resulting from iterations of an optimization procedure

generating real values, the probability of a perfect tie at a given simulation run is zero,

as in [Glasserman and Tayur, 1995].

Therefore, w.p.o., di�erentiability is preserved at each period.

2

Theorem 4.3 If, in addition to the conditions of Theorem 4.2, E[dpn] < 1 for all n, then

E[Ikmp
n ]0, and E[P kmp

n ]0 exist and equal E[I 0kmp
n ], and E[P 0kmp

n ].

Proof Sketch: We outline the logic of proof. To invoke Lemma 4.1, we have to show that with

probability one the system variables are Lipschitz functions with integrable moduli. Since the

state variables at time zero are linear on the base stock levels, they are Lipschitz. Since the

operators minf:g, maxf:g, addition, and multiplication preserve that property, it follows that

each Ikmp
n and P kmp

n is a composition of Lipschitz functions, and therefore is Lipschitz.

Since E[dpn] < 1 for all n, every Ikmp
n has �nite expectation. Also, each P kmp

n is integrable

because it is bounded. Division (in our context) does not pose a problem as whenever the termP
p f

kmp
n drops below Ckm, gkmn = 1.
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The main thrust of the proof is to show that if some echelon base stock variable changes by a

small amount �, this induces bounded derivatives for the state variables. This can alternatively

be done for the � variables and it turns out to be easier with these. Let us see what happens to

the state variables on a sample path if only one of the � variables is in�nitesimally disturbed.

Each production decision may be bounded by capacity or not. Also, each production decision

may be bounded by local inventory or not. The analysis has to be made for all possible

combinations of these, for the speci�c case of the product, level, and stage which has been

disturbed.

As long as the production decisions are not bounded by the disturbed inventory, with or without

capacity bound, the only change is the disturbed inventory, which incurs a derivative of zero

for all the other state variables and of one for the disturbed inventory. Things change for the

�rst time when there is a bound in inventory due to the disturbed inventory. For this we have:

1. No bound in capacity { Since there is no simultaneous bound in capacity the whole dis-

turbance moves down to next stage and level and stays associated with the same product.

Therefore, the derivative incurred is zero for all the state variables except for the inventory

fed by the originally disturbed inventory, for which the derivative is one.

2. Bound in capacity { Given the simultaneous bound in capacity, all production decisions for

the level (PS mode) will be a�ected. Since the capacity is linearly scaled, this translates

into fractions of the disturbance to be distributed among the inventories feeding the stage.

Given the fact that the total production of the stage is bounded by capacity, the stage

and level fed by this set of decisions will also be fractionally a�ected, but the sum of

the disturbances adds up to zero. This means that all derivatives are either zero or have

absolute values smaller than one.

Subsequent changes are similar: each time a production decision is solely bounded by disturbed

inventories, the disturbance moves down the production line keeping the same magnitude. If it

is simultaneously bounded by capacity, it redistributes itself in fractions among the stage and

level for which the capacity bound occurs and some disturbance is provoked on the inventories

fed in a way that the total added disturbance is zero. If the production decisions are solely

bounded by capacity, the disturbances remain unchanged.

Whenever a single production decision of a disturbed inventory is solely bounded by demand

we have two cases:

1. This is the originally disturbed variable { this has the e�ect of recovering the original
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echelon base stock value, which means that the original disturbance returns to its original

place, in terms of echelon inventory. Naturally if individual inventories for this product

down the line are not yet reset to their original values the sum of disturbances for those

will be zero.

2. This is not the originally disturbed variable { it moves the disturbance upwards to the

feeding inventory, given that a bound by demand resets the whole echelon to its original

value. The last sentence of case 1 above applies here as well.

Concluding, it can be shown that a singular disturbance propagates along the line only on levels

and stages fed by it; the transference of disturbances does not increase from the original size;

the transference of a mixture of disturbances can at most add up to the existing disturbances;

when disturbances are moved upwards they will not go beyond the originally disturbed variable.

Given the line is �nite in length there is a bound on the amount of forward propagation, which

imposes a bound on the maximum disturbed amount for the �nished goods inventory. This

bound is proportional to �. Therefore, jI 0kmp
n j and jP 0kmp

n j are bounded as functions of the

echelon base stock variables in a �nite horizon setting. Thus, Lemma 4.1 is applicable and the

result follows.

2

Although technically more complex, it is also possible to establish the above result for the TS

mode and for the other production rules using similar arguments. For the ESR, a couple of

technical results are required to validate IPA and are presented in Appendix A. The validation

for the �nite horizon cost function follows because Cn is Lipschitz with modulus KI(
PP

p=1 b
p+PK

k=1

PM
m=1

PP
p=1 h

kmp), and KI given by maxk;m;p;nfjI
0

(z)
kmp

n
jg is �nite. Lemma 4.1 applies.

For the in�nite horizon, we �rst note (see [Bispo and Tayur, 1997]) that the necessary and

su�cient condition for stability in the PS mode is

E[
PP

p=1 d
p
0] < mink;mfCkmg; (20)

and for the TS mode it is

KE[
PP

p=1 d
p
0] < minmfC

mg: (21)

We can show, as in [Glasserman and Tayur, 1995], that these conditions imply regeneration in

�nite time with probability one. Applying the same logic as in [Glasserman and Tayur, 1995],

the validation of the derivatives of the cost and service level follow, and we have:
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Theorem 4.4 Suppose fdpn; n = 1; 2; : : :g are i.i.d. for each p with �nite expectation and that

the adequate stability condition holds. Then N�1PN
n=1 C

0

n ! c01, with probability one, at

almost every z�. If, in addition, supx f
p(x) < 1, then �V 0N ! �v0

1
with probability one, at

almost every z�.

5 Experimental Study

A comprehensive study of re-entrant systems is an enormous task to perform, given the num-

ber of parameters to be taken into account: average demand, demand variance, holding costs,

penalty costs, number of machines, number of levels, capacity of the machines, capacity allo-

cation modes, and production rules. We have limited our computational study to one and two

products (in Section 5.1 and 5.2 respectively) and assumed re-entrant structure on a single ma-

chine. Even in this simpli�ed setting the range of parameters is very wide. All our experiments

concern the in�nite horizon average cost setting. Our task is somewhat simpli�ed due to the

following connection between optimal cost performance and achieved service level.

Theorem 5.1 For a production system, composed of any number of machines and levels, oper-

ated under a multi-echelon base stock policy, if fdpn; n = 1; 2; : : : ; p = 1; : : : ; Pg are independent

and stationary, where each dpn is drawn from a density on (0;1), the optimal base stock levels

for the in�nite horizon average cost measure for any production rule and any capacity sharing

mode are such that

Pr(dp0 � I11p) =
bp

bp + h11p
for all p = 1; : : : ; P: (22)

We call (22) as the optimality condition. We skip the proof as it follows along the lines of

[Glasserman and Tayur, 1996].

Remark. There are cases where the optimization algorithm stops short of achieving a set of

variables where the optimality condition is satis�ed. These are the cases where the cost function

is non di�erentiable at the optimum; we do see such situations in Section 5.1. Alternatively, as

in [Anupindi and Tayur, 1998], one can optimize directly using service level constraints, which

may be preferable in many cases.

Simulation details. The simulation length for each cost and gradient estimate is 20000 periods.

This simulation length ensures the 95% con�dence intervals are 2.5% wide relative to the central

value. The comparison of relative performance for di�erent production rules is made on a single
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sample path; see [L'Ecuyer, 1994] for reasons to do so. We implemented a discrete step version

of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm ([Bertsekas, 1999])

to generate the successive values of the delta variables. (More speci�c details regarding Hessian

updates and step sizes can be obtained from the authors.)

5.1 Single Product Setting

We �rst see how one should allocate a �xed total capacity to the di�erent levels in the NS

mode in Section 5.1.1. The results of [Glasserman and Tayur, 1995] show that capacity should

be non-decreasing along the 
ow line; however, they do not study how a �xed amount to be

allocated is distributed to the various levels. Next, in Section 5.1.2, we investigate the impact

of holding costs and machine load on the relative performance of the production rules in both

the NS and the TS modes. (There is no PS mode for single product systems.)

5.1.1 Capacity allocation to levels in NS mode

We take derivatives with respect to the capacity slots in order to determine their optimal values,

constraining their sum to a �xed constant. The optimization is done simultaneously with respect

to the base stock levels and capacity slots. One would expect the optimal allocation of capacity

to level to depend on the holding costs along the production line. Surprisingly, in the majority

of the cases, the optimal allocation is to divide capacity equally among the levels. We observed

this in most of our experiments with di�erent values of capacity, holding and penalty costs,

number of levels, number of machines, and di�erent demand distributions. A sample set of

results is shown in Figure 1 for a system with K = 2 and M = 1. Keeping the values of

h111 = 10 and b1 = 20 constant, we varied h211 from 0 to 10. The sum C21 + C11 was kept

constant and equal to 25. For each case we computed the optimal cost for the optimal capacity

allocation and the optimal cost for C21 = C11 = 12:5. (The second graph is a zoom of the

graph on the left for low values of h211=h111.) To see why this should be the case intuitively,

consider the situation when the penalty costs are high, and the large deviation approximation

applies (see chapter 3 by Glasserman 1 in [Tayur et al., 1999]). Then, the optimal inventory

levels (largely) depend on the bottleneck alone, and maximizing the capacity of the bottleneck

is achieved by equal allocation of a �xed total capacity. This same conclusion carries through

1Very brie
y: Under certain conditions, such as the one where the penalty costs are high, the tail distribution

of the stochastic process that drives the inventory and backlog processes, can be approximated by an exponential

distribution, whose parameters depend on capacity of the machines. In the limit, only the most stringent machine

dominates the approximation.
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for multiple products; we do not present the graphs here.

As the holding costs of early levels decrease to very low values, the optimal allocation of

capacity changes. We notice that for values of h211 above 10% of h111, the optimal capacity

allocation is achieved by dividing C1 into two exactly equal slots while below the 10% ratio,

the optimal capacity allocation is achieved with C11 > C21. It appears that the bene�t of

non-equal allocation to exploit holding cost di�erences gets washed away pretty quickly as it

requires that the di�erential in holding costs be quite high. We also observed that the value of

the penalty cost a�ects this ratio: The higher the value of b1, the higher the value of h211=h111

above which it is optimal to have C21 = C11. As instances, take a case with b1 = 100 where such

solution is optimal for h211=h111 � 0:18, and with b1 = 1000 it is optimal for h211=h111 � 0:21.

This indicates that the bene�t of exploiting the di�erential in holding costs is higher when the

penalty cost is higher.

In the rest of our experiments, we allocate capacity to levels equally.

5.1.2 Performance of Production Rules in TS mode and Comparison between NS

and TS modes

Before we can compare across the production rules, we need to �nd which is the best priority

within PR. In the single product setting in the TS mode, among theK! choices for static priority,

the rule that gives priority to levels closer to demand always achieves the lowest cost. This

is consistent with the LBFS (last bu�er �rst serve) rule of [Lu and Kumar, 1991] and results

of [Glassey and Resende, 1988, Lu and Kumar, 1991, Kumar and Kumar, 1994]. Consider a

system with K = 3, M = P = 1, and 80% load to illustrate this fact. There are 3! = 6 di�erent

priority assignments for the levels. Table 5.1.2 displays the optimal costs for each one of the

priority assignments. The leftmost column lists the levels by decreasing order of their priority.

Thus, 1-2-3 stands for priority to level 1, then to level 2, and �nally to level 3. As shown in

the table, the order 1-2-3 achieves a cost that is no higher than any other assignment. (In this

example, 2-1-3 is also tied for �rst place; this is not always the case, although any sequence

with stage 3 last in the priority is competitive with 1-2-3.)

Let us now compare the best of PR with the others. We thus compare the three production

rules in the TS mode (LSR, ESR and PR) and the NS mode. We use the results obtained for

a system with K = 3, M = 1, and P = 1 as the basis for discussion. We study the e�ect of

di�erent holding cost structures at di�erent loads on relative performance.

Experimental Setup. We �xed the values of h111 = 10 and b1 = 20. The other two holding
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Figure 1: Capacity allocation as a function of holding costs. The upper �gure shows that for
a large range, the equal capacity allocation is optimal. The lower �gure displays the small
range when equal capacity allocation is not optimal. A total of 25 units of capacity are being
allocated to two levels in a single stage, single product system.
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Table 1: Optimal costs for alternative priority assignments.
Priority of levels Optimal Cost

1 - 2 - 3 463.57
1 - 3 - 2 677.69
2 - 1 - 3 463.57
2 - 3 - 1 1110.14
3 - 1 - 2 701.75
3 - 2 - 1 1390.86

costs were varied from 0 to 10. With [h311; h211; h111; b1] as notation, we study [0; 0; 10; 20] to

[10; 10; 10; 20]. On the x-axis of the �gures, the entry (4; 4) represents a system with h311 =

h211 = 4, h111 = 10, and b1 = 20, that is, [4; 4; 10; 20]. Between label (2; 2) and label (4; 4)

lie labels (2; 4); (2; 6); (2; 8), and (2; 10) in that order, which correspond to the cost structures

[2; 4; 10; 20], [2; 6; 10; 20], [2; 8; 10; 20], and [2; 10; 10; 20] respectively. We summarize the cost

performance, the inventory behavior, and the connection with the Type-1 service level.

Cost Performance. In Figure 2 we compare all four possibilities in terms of cost for 90% load.

(Di�erent loads do not qualitatively change the relative performance of the rules; we do not

display the plots here of our experiments conducted with 80% and 85 % loads.) It is easy to

see that the Priority Rule outperforms the other two rules in the TS mode and also dominates

the NS mode. The Equalize Shortfall Rule has only a very slight advantage relative to the NS

mode, and converges to the same levels of performance as those of the Priority Rule as the

intermediate holding costs increase.

It is worth noting that LSR performs terribly in the TS mode. The intuition is as follows. A

closer inspection reveals that this is due to the way the scaling of production net needs is done.

All levels except the entering level (level K) may be bound by feeding inventory. Level K is

never bound by feeding inventory because this is assumed to be in�nite. If there is a large

shortfall, the production net needs of level K match the shortfall, but all other levels may be

bound by inventory. Since the scaling (for capacity allocation) is done in terms of production

net needs, it turns out that level K gets a higher share, thus a�ecting the lower levels. It is as

if we are giving a higher priority to level K. As we saw in our study among the K! choices for

PR, this leads to the worst performances.

Inventory behavior. Figure 3 shows how the optimal � levels behave for the NS mode at 85%

load. The reason we choose these plots, rather than the plots of the base stock variables, is
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Figure 3: NS mode at 85 % load. We notice that inventory levels can be 
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because they help make some of the structural properties of the solutions more evident.

Note the almost constant behavior of z311 = �311 + �211 + �111 across the di�erent holding

costs. Simply add the dashed lines with the starred lines. This also occurs for the three rules

in the TS mode for a signi�cant range of intermediate holding costs, namely very soon after

moving away from zero for h311 and h211. This seems to imply that the highest base stock is

more sensitive to the terminal holding and penalty costs than it is to the intermediate holding

costs, as long as these are not too small. For all the rules it is also evident that the di�erent

distribution of holding costs along the the system has the e�ect of just distributing the inventory

on the di�erent levels. Note in Figure 3 that �311 = z311�z211 approaches zero when h311�h211

approaches zero and that �211 = z211� z111 also approaches zero when h211� h111 approaches

zero.

It is interesting to note that for some instances the sum �311 + �211 is constant for a range

of parameters The value achieved for those instances equals 2
3C

1. In some other instances,

the value �311 or �211 is constant and equals 1
3C

1. This shows that the interaction between

capacity and inventory levels is subtle, and in some sense, exact.

Connection with service level. Recall the optimality condition. Using a trivial gradient based

optimization procedure most of the simulation runs converge to values where the condition is

satis�ed. Some times this simple optimization procedure fails to converge to values where the

optimality condition holds. The failure to achieve this condition coincides with cases where

either �311+�211 = 2
3C

1, �311 = 1
3C

1, �211 = 1
3C

1, or some �k11 = 0 at the optimal. In these

cases the cost function is not di�erentiable around the optimum, which calls for the utilization

of more sophisticated optimization techniques; see [Lemar�echal, 1989].

5.2 Multiple Products

We now turn to systems processing multiple products. As in the single product case, we �nd

that the best production rule for the TS mode always achieves better costs than the best

production rule for the PS mode, although in some cases the di�erence may be very small.

This reinforces the generally held belief that the larger the 
exibility the better one can make

use of the available resources. A notable fact is that LSR degrades its performance in TS mode

relative to PS mode; this is intuitive because with a larger 
exibility in capacity compared to

PS mode, the LSR (implicitly allowing level K to have priority) is doing more damage.

First, in Section 5.2.1, we discuss the issue of priority assignment alternatives in the context of

multiple products. In Section 5.2.2 we analyze the e�ect of holding costs, in (Section 5.2.3) the
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e�ects of the penalty costs, and in (Section 5.2.4) the e�ects of demand variance.

5.2.1 Finding the best PR

We consider systems with a single machine processing two types of products, where each product

is required to visit the machine three times before completion: K = 3, M = 1, P = 2. The

presence of multiple products introduces additional options in the way priority can be assigned

within the PR. There are a total of (K � P )! = 6! = 720 di�erent priority assignments. We

restrict our attention to a logical subset of these.

Method 1: \Level �rst, Product second"

A situation where the priority for levels is f2; 1; 3g and the priority of products is f2; 1g signi�es

that, in the TS mode, production decisions are taken in the order:
�
P 212 , P 211, P 112, P 111,

P 312, P 311
	
. That is, we decide the production amounts level by level, according to the priority

to levels and in each level we use the product priority. Comparing the optimal costs for the 12

di�erent combinations (six di�erent priority lists for each possible product priority), the order

1-2-3 always achieves the lower cost for each product priority (results not displayed here). This

is in line with what we observed for single product.

Method 2: `Product �rst, Level second'

Alternately, we may choose to prioritize primarily by product. That is, if priority to levels is

f2; 1; 3g and to products is f2; 1g the production decisions may be taken by the order
�
P 212 ,

P 112, P 312, P 211, P 111, P 311
	
. In Table 2 we present the comparison of this method with the

previous one. (We only ran the systems for the best choice of priority for the levels based on

previous observations.) We also investigated if changing demand variance and penalty costs

produces any qualitative change to the above conclusions. We found that neither the penalty

cost nor the demand variance a�ect the conclusion of this test. Thus, in what follows we use

method 1 for PR.

Table 2: Comparison of method 1 and method 2.

Priority of levels Priority of products Method Optimal Cost

1 - 2 - 3 1 - 2 1 771.41
1 - 2 - 3 1 - 2 2 786.38

1 - 2 - 3 2 - 1 1 752.62
1 - 2 - 3 2 - 1 2 783.04
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5.2.2 Varying the holding cost structure for products

We study the impact of the holding costs on the performance of the several rules. This ex-

periment is composed of two parts: (1) same holding cost for the di�erent products; and (2)

di�erent holding costs for the products.

Experimental setup #1. We have K = 3, M = 1, and P = 2. The average demand for both

products is �xed: E[d10] = 8 and E[d20] = 12. The total capacity of the single machine is �xed

to an average load of 80%, that is, C1 = (3� 8 + 3� 12)=0:8 = 75. The coe�cient of variation

for both products is �xed at 1. The costs h11p and bp were �xed at 10 and 20, respectively for

p = 1; 2. We generated 21 di�erent systems by changing the holding costs of level 3 and level

2, that is h31p and h21p for p = 1; 2. All the 21 systems have identical cost structure for both

products, that is, h311 = h312 and h211 = h212. The cost structure of the �rst system is given

by [0; 0; 10; 20] for both products and the cost structure of system number 21 is [10; 10; 10; 20].

For each one of the 21 systems we obtained the optimal solution for all three production rules

each with PS and TS. For the case of the PR, recalling the study on priorities, we only have

to consider two choices (out of 120): either product 1 has priority or product 2 has priority. In

all, therefore, we generated (4 for PS + 4 for TS =) 8 solutions per system and so obtaining

(21(8)=) 168 solutions.

Experimental setup #2. The study is further subdivided into two subsets of experiments. In the

�rst subset, the cost structure of product one was kept constant at [2; 6; 10; 20], and we changed

the cost structure of product two from [0; 0; 10; 20] to [10; 10; 10; 20] thus generating 21 di�erent

systems. In the second subset we exchanged the positions of product one and product two,

generating another set of 21 di�erent systems. For each one of the two subsets of experiments

we generated 8 solutions as before, leading to 336 cases.

For the sake of brevity we do not display the plots. In qualitative terms, they are no di�erent

from the ones presented for the single product setting. We summarize the main �ndings.

Cost Performance in PS mode. In the PS mode, the change in holding costs does not a�ect the

relative performance for the several rules. The LSR and the ESR achieve practically the same

costs and perform better than any of the two tested priority assignments. Within PR, priority

should be given to product 1 over product 2 to achieve the best performance. In general, all

things being equal, priority should be given to products with the lower average demand within

PR, which we explain intuitively later. Exceptions to this rule only occur when initial holding

costs are close to zero.
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Cost Performance in TS mode. There is no one best rule across all costs in this setting in

contrast to the PS setting. For the TS mode also, priority should be given to the product

with the lowest demand to achieve better performance. Priority to either product achieve

practically the same best costs for situations where h31p and h21p are low. ESR performs best

in any situation with higher holding costs. The advantage of the PR in the low holding cost

cases is due to the build up of inventory since the costs are so low. Intuitively, the good

performance of ESR is due to the following. Since the penalty for backlog is the same for both

products, as are the terminal holding costs, it is as if the shortfall has the same price (or cost),

and therefore trying to equalize it should be a good strategy.

These studies have shown that the average demand seems to be a determinant factor in deciding

to which product we should give higher priority. However, there is a relationship with costs

as well. Priority to product 2 is better than priority for product 1 only for low holding costs.

For moderate to high costs, priority to product 1 outperforms priority to product 2, the lowest

average demand has a strong e�ect. To intuitively see why this is so, consider again the large

deviation approximation. It is easy to show that (if product [1] is the �rst in priority and

product [2] is second priority sharing a capacity C), the required inventory levels (and costs)

are asymptotically proportional to
�2
[1]

2(C��[1])
ln

b[1]+h[1]
h[1]

and
�2
[1]
+�2

[2]

2(C��[1]��[2])
ln

b[2]+h[2]
h[2]

respectively

for products [1] and [2]. (Note that h; b; �; � stand for holding, penalty, mean demand and

standard deviation of demand respectively for the appropriate products.) This shows that if

both products have the same holding and penalty costs, and the same coe�cient of variation,

then the product with a lower mean demand should be given a higher priority. As the costs

change, and if the product with the higher mean demand also has higher penalty cost, the

switch takes place in priority.

5.2.3 Varying the penalty costs

Experimental setup. The basic features remain the same as those of the two earlier studies.

We ran two sets of experiments. In the �rst set we kept the cost structure for product one

�xed at [6; 8; 10; 20] and the cost structure of product two is [2; 6; 10; b2], with b2 2 [10; 50].

For the second set of experiments we set the cost structure of product one at [6; 8; 10; b1], with

b1 2 [10; 50] and kept the cost structure of product two �xed at [2; 6; 10; 20]. Each of the two

sets comprises 21 di�erent systems, leading to the generation of 336 di�erent solutions as before.

We summarize the results.

Set 1: Cost performance in PS mode. Figure 4 (upper) shows that both ESR and LSR are tied
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for the �rst place (as before). It turns out that the ESR wins for high values of b2 and loses to

the LSR for low values. For the PR, the penalty cost variation introduces a more interesting

behavior. There is a value of b2 above which the best performance is achieved by PR when

priority is given to product 2. (On the other hand, when b2 is very low, priority to product 1

approaches the performance of the ESR and the LSR).

Set 1: Cost performance in TS mode. The ESR is still the winner for the TS mode for a wide

range of values. O� those cases, the PR with priority given to product 1 achieves the best

performance for low values of b2. As in the PS mode there is a value for b2 above which priority

should be given to product 2. Observing the slope of the curves in the Figure 4 (lower), we

can argue that eventually there will also be a value for b2 above which the best production rule

is the PR, with priority given to product 2. To con�rm this, we ran a case with b2 = 200.

The optimal cost achieved with the ESR was 1204.4 and the PR, giving priority to product 2,

achieved a cost of 1176.5.

In the second set of this study, where we changed the value of b1, we observed the same

qualitative features as in the �rst set. Thus, we omit the plots and a summary.

Concluding, in the PS mode, ESR works well. In the TS mode, ESR works best except when

b1 or b2 is high: PR outperforms ESR in this case. Priority, in either modes, should be given

to the product with lower mean demand (all other things being equal). However, if the penalty

cost of the product with higher mean demand is signi�cantly higher, then priority should be

given to this product.

5.2.4 Varying the coe�cient of variation (cv) for the demand

Experimental setup. The average demand for the products was kept the same as before in a

K = 3; P = 2 and M = 1 system. We ran eight sets of experiments (di�ering in costs and

product for which cv is changed). The cv range was between 0.1 to 1.0. Each of the eight

sets has 10 di�erent systems (one for each coe�cient of variance). For each of the 80 settings,

we generate 8 solutions (4 for PS and 4 for TS). The total is 640 solutions. The summary of

the experiment is as follows. ESR performs the best in both PS and TS modes, unless the

combination of high penalty cost, low mean demand and low variance in demand occurs, in

which case PR with priority to this product wins. LSR is competitive in the PS mode, but falls

substantially behind in the TS mode.
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Figure 4: Optimal cost for the PS and TS mode as a function of the penalty cost for product
2. ESR performs well in both PS and TS modes. Note the switch in priorities on the products
as a function of penalty cost, as explained by the large deviation approximation. LSR degrades
in performance as we move from PS to TS mode.
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6 Conclusions

This paper proposed a framework to manage re-entrant 
ow lines producing multiple prod-

ucts. It concentrated the analysis on a simple (and implementable) set of capacity manage-

ment schemes and production rules as a �rst step towards understanding broader classes of

systems. The re-entrant lines were modeled as discrete time capacitated multi-product produc-

tion/inventory systems, operating under modi�ed multi-echelon base stock policies { production

decisions are constrained by available inventory and capacity. Several capacity sharing mech-

anisms were discussed and some production rules to manage capacity both from dynamic and

static points of view were proposed.

Since these systems are too complex to handle analytically, the study used simulation-based

optimization. After validating In�nitesimal Perturbation Analysis (IPA), a series of computa-

tional studies provided many insights on how to manage re-entrant systems. We brie
y review

some interesting �ndings. Equalize Shortfall Rule achieves the best performances across a wide

range of parameters. The Priority Rule outperforms the Equalize Shortfall Rule when it is

possible to unambiguously order the products with these three combined parameters, i.e., when

the product with the lowest expected demand has lowest variance and highest penalty cost.

The equivalence between penalty costs and service level estalished by Theorem 5.1 allows one

to de�ne a target service level instead of a penalty cost.

There are other issues that are worthy of investigation, such as systems with non-uniform loads

and managing other sources of uncertainty. We are studying these at this time.
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A Equalize Shortfall Rule

Under partial sharing and uniform loads the following algorithm is applied for each k = 1; : : : ;K and
m = 1; : : : ;M .

Algorithm for ESR

Step 0. For all p = 1; : : : ; P set Y kmp = Y kmp
n + dpn, Y

0kmp
= Y 0kmp

n , P kmp
n = P 0kmp

n = 0, Ikmp =

Ikmp
n , and I 0kmp

= I0kmp
n .

Also, set Ckm = Ckm, C 0km = C0km, and j = P .

Step 1. Order the products by decreasing value of their shortfall after demand is realized. Let
p(1); : : : ; p(j) denote that ordering, that is Y kmp(1) is the maximumvalue and Y kmp(j) is the
minimum.

Set l = 1 and Y km(j+1) = Y 0km(j+1)
= 0.

Step 2. Let H = Y kmp(l) � Y kmp(l+1). If H 6= 0, set H0 = Y 0kmp(l)
� Y 0kmp(l+1)

and go to Step 4.
Otherwise, continue.

Step 3. If l < j, set l = l + 1 and go to Step 2. Otherwise, STOP.

Step 4. We have the �rst l products tied. Therefore the production decision and its derivative are
updated as follows:

P kmp(i)
n = P kmp(i)

n + Pkmp(i) for i = 1; : : : ; l: (23)

P 0kmp(i)
n = P 0kmp(i)

n + P 0kmp(i)
for i = 1; : : : ; l: (24)

where

P kmp = minfH; I(km)+p; Ckm=lg (25)

and

P 0kmp
=

8><
>:

H0 if bound by the jump size

I 0(km)+p
n if bound by inventory

C0km=l if bound by capacity

(26)
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Step 5. Update the shortfalls, inventories, and available capacity.

Y kmp(i) = Y kmp(i) � Pkmp(i)

I(km)+p(i) = I(km)+p(i) � Pkmp(i) for i = 1; : : : ; l; (27)

Ckm = Ckm �

lX
i=1

Pkmp(i)

The derivatives are

Y 0kmp(i)
= Y 0kmp(i)

� P 0kmp(i)

I0(km)+p(i)
n = I 0(km)+p(i)

n � P 0kmp(i)
for i = 1; : : : ; l: (28)

C0km = C0km �

lX
i=1

P 0kmp(i)

Step 6. If Ckm = 0, STOP. The total production for level k and stage m is bound by capacity.
Otherwise, continue.

Step 7. For each i = 1; : : : ; l, if I (km)+p(i) = 0 remove product p(i) from the list and set j = j � 1.
If j = 0, STOP. The total production for level k and stage m does not use up all capacity.
Otherwise, go to Step 1.

In order to validate the above procedure two results speci�c to the ESR are needed. Consider the PS
mode. Recall that the �nal production decision for any period is computed iteratively. Each time a new
amount is added its respective derivative has to be computed also as in (25) and (26). The derivative in
(26) is only valid if the parameter l does not change with small changes of the control parameters. The
following two results establish this.

Theorem A.1 If fdpn; n = 1; 2; : : :; p = 1; 2; : : : ; Pg are independent and each dpn has a density on (0;1),
the ordering generated in Step 1 at the end of the �rst iteration remains unchanged with probability
one, (w.p.o.), in a neighborhood of the base stock levels.

Proof: Assume �rst that for a given vector z there are no ties in the shortfall quantities after demand
is realized at the beginning of period n. Under this assumption, there exists a � = minifY

kmp(i) �

Y kmp(i+1)g > 0. Therefore, there exists an � > 0 such that a change smaller than � in any of the
components of z will produce a change in shortfall variables which is smaller than �. Thus, the ordering
remains unchanged.

Now consider the case where at least two shortfall quantities are tied at period n. A tie in Y can only
occur if they were equal at the end of period n�1 and demand in period n was zero for at least those two
products. However, if at least two shortfall quantities were made equal in period n�1 for a given vector
z, this means that with probability one they will also be made equal in period n� 1 in a neighborhood
of z because with probability one either (1) capacity was exhausted but there was some inventory not
used up for at least those two products in period n� 1 with vector z, or (2) capacity was not exhausted
and the shortfalls were made zero on period n� 1.

2
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Theorem A.2 Under the same assumptions of Proposition A.1, at each iteration of the algorithm, the
number of tied products, l, at the beginning of Step 4 remains unchanged w.p.o. in a neighborhood of
z.

Proof: The proof proceeds by induction on the number of iterations of the above algorithm. Denote
by l(r) the number of products tied at the beginning of Step 4 during iteration r. Proposition A.1
establishes the result for the �rst iteration. Now assume that at some iteration r�1, l(r�1) is invariant
relative to su�ciently small changes in the base stock variables. We want to see what happens to l(r).

From the l(r� 1) products, let us assume that some �(r� 1) � l(r� 1) remain tied upon application of
Step 4. With probability one there are only two ways under which this can happen. (1) The �(r � 1)
have each enough inventory so that H can be assigned to them and adequate capacity is available to do
so. In this situation, for a su�ciently small neighborhood of z, the inventory and the capacity available
will still allow the same �(r� 1) products to remain tied. (2) There is a bound in capacity (a�ecting all
�(r� 1) products). However, a bound in capacity will remain for a su�ciently small neighborhood of z,
w.p.o. Also, �(r� 1) < l(r� 1) if and only if some products have their share reduced due to insu�cient
inventory, which again will remain so w.p.o. in a neighborhood of z. Thus, �(r � 1) is invariant in a
neighborhood of z.

The value of l(r) depends on �(r� 1) and on what happens in Step 4. If the production decision for the
�(r� 1) products is bound by H, then there is more capacity available to execute a new iteration. Also,
a new iteration will take place if there are still products with non-zero shortfalls. In this case l(r) will
be the sum of �(r � 1) with the products that were tied in second place before iteration r � 1. This is
because the shortfall of the �(r� 1) products were brought down to the same levels as these. By similar
arguments, the number of products tied for second place does not change for su�ciently small changes
of any base stock variable.

There is also the possibility that the tie of the �(r � 1) products occurred due to a bound in capacity.
In this situation, if �(r � 1) = l(r � 1), there will be no more iterations, since the available capacity
at the beginning of iteration r � 1 will be exhausted during this iteration. It can also happen that
�(r � 1) < l(r � 1), since some of the products may have been bounded by inventory. In this situation,
there will be capacity available to perform at least one more iteration, and l(r) = �(r � 1).

Therefore, the result follows.

2

Propositions A.1 and A.2 are valid for the TS mode without change. These two results establish that l
in (26) is not a function of the base stock variables.
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