

lol

Railway Traffic Management

Pedro Alexandre de Carvalho Afonso

Dissertation submitted for obtaining the degree of

Master in Electrical and Computer Engineering

Jury

Advisor: Prof. Carlos Filipe Gomes Bispo

Thesis Comitee

President: Prof. Carlos Jorge Ferreira Silvestre

Members: Prof. Paulo Fonseca Teixeira

 Dr. Matthijs Theodor Jan Spaan

Prof. Carlos Filipe Gomes Bispo

September 2008

ii

iii

Acknowledgements

Acknowledgements

My first words go to my family, to whom I deeply thank, for the infinite patience and infinite support.

I would also like to thank Prof. Carlos Bispo, for his guidance throughout this year and availability,

especially in the final stage.

I want to dedicate a very special word to my group of friends namely, Diogo Couto, Ricardo Mah,

Bruno Baleizão, Duarte Estrada, Rui Tavares, André Violante, Miguel Pacheco, Armando Marques

and Paulo Andrade, who give me the honour to be my friends.

A deep thank you, to all of the above mentioned as well as to everyone close to me, which, in their

own way, contributed for the development of this Thesis.

iv

v

Abstract

Abstract

With the growing interest in the railway sector, mainly because of energetic reasons, there is also a

need to increase the efficiency of the railway lines. One way to optimize this sector is to improve

quality in the train control process itself. Nowadays, train dispatching is still mostly done by human

operators that use elementary tools and thereby solving conflicts sub-optimally.

Motivated by these factors, this report presents a model capable of detecting and solving conflicts, for

single track railways. More specifically, this model proposes two resolution methods: a heuristic

resolution and a search for the optimal solution.

To evaluate the quality of the developed model, several tests were made, obtaining encouraging

results. These results showed that it is possible to solve conflicts optimally or near optimally, in a

feasible amount of time.

This program comes with a graphic interface so that the interaction with the dispatcher can be more

user friendly.

The major novelties of this work regard the improvement on the conflict detection process, the

introduction of capacity conflicts, and the creation of several parameters to adjust the search for the

optimal solution.

Keywords

Re-scheduling, Single Track, Railway, Meet and Pass, Train, Conflict, Decision Support System

vi

vii

Resumo

Resumo

Com o interesse crescente no sector ferroviário, devido à crise energética, cresce também a

necessidade de rentabilizar ao máximo a utilização das suas linhas. Uma forma de o fazer, passa

pela optimização do controlo ferroviário. Este controlo, hoje em dia, continua a ser feito por

controladores humanos que, com algumas ferramentas elementares, tomam decisões de forma não

óptima.

Motivado por estes factores, este relatório apresenta um modelo capaz de detectar e resolver

conflitos, para linhas de baixo tráfego. Mais precisamente, este modelo propõe dois processos

diferentes de resolução, sendo um deles uma resolução heurística e o outro uma procura pela

solução óptima.

Para avaliar a qualidade do modelo desenvolvido, foram feitos vários testes de simulação, obtendo-se

resultados encorajadores, que demonstram ser possível resolver conflitos de forma óptima ou quase

óptima, em tempo aceitável.

Este programa vem acompanhado de uma interface gráfica, de modo a facilitar a interacção entre o

programa e o controlador.

As principais inovações deste trabalho estão relacionadas com a melhoria no processo de detecção

de conflitos, a introdução de capacidades nas estações, e na criação de vários parâmetros para

ajustar a procura pela solução óptima.

Palavras-chave

Comboio, Linha de baixo tráfego, Sistema de apoio à decisão, Conflito, Horário.

viii

ix

Table of Contents

Table of Contents

Acknowledgements .. iii

Abstract ... v

Resumo ... vii

Table of Contents ... ix

List of Figures ... xi

List of Tables .. xiii

List of Acronyms .. xv

1 Introduction ... 1

1.1 Context and Motivation .. 2

1.2 Objectives .. 2

1.3 Summary of original contributions .. 3

1.4 Structure of this Thesis .. 3

2 Models for Train Dispatching: Literature Review 5

2.1 Basic Concepts .. 6

2.1.1 Definition of terms used ... 6

2.1.2 Timetables.. 6

2.1.3 Safety technologies .. 7

2.1.4 Dispatching rules ... 8

2.1.5 Objective functions ... 8

2.2 The Most Relevant Re-scheduling Models .. 9

2.2.1 Introduction .. 9

2.2.2 Inter-train conflict management ... 9

2.2.3 On-line timetable re-scheduling ... 11

2.2.4 Greedy Travel-Advance Strategy .. 11

2.2.5 Re-scheduling with train speed coordination ... 12

3 Model Description ... 15

3.1 System Architecture ... 16

x

3.2 Problem Definition.. 16

3.3 Mathematical formulations ... 18

3.4 Solving Conflicts .. 25

3.5 Towards a feasible solution ... 29

4 Program Implementation .. 33

4.1 Programming Language Selection ... 34

4.2 Program Overview ... 34

4.3 Conflict Detection ... 36

4.4 Heuristic Solution ... 38

4.5 Optimal Solution .. 39

4.6 Input Data .. 41

4.6.1 Schedule Description ... 41

4.6.2 Trains Description .. 41

4.6.3 Railway Description ... 42

4.7 Output Data ... 43

4.7.1 Train Diagrams .. 43

4.7.2 Solution Schedules .. 44

4.7.3 Conflict Report ... 44

4.8 Application Description .. 45

5 Performance Evaluation ... 47

5.1 Initial Schedule .. 48

5.2 Time Horizon ... 49

5.3 Number of Solutions .. 50

5.4 Cost Function ... 51

5.5 Maximum Search Time .. 52

5.6 Upper Bound .. 54

6 Conclusions and Future Work... 57

6.1 Summary and Conclusions .. 58

6.2 Future Work ... 59

Annex 1 Input Files ... 61

Annex 2 Test Results .. 67

References .. 79

xi

List of Figures

List of Figures
Figure 2.1 Train diagram example (extracted from [Zhou2006]). .. 7

Figure 2.2 Process of railway traffic control based on inter-train conflict management (extracted
from [Sahin99]). .. 10

Figure 2.3 An example of the backtracking tree in the process of exploring the solution space
(extracted from [Adenzo-Díaz99]). ... 11

Figure 2.4 The alternative graph for the example with two trains (extracted from [Mascis02b]) 13

Figure 3.1 Train dispatching system architecture. ... 16

Figure 3.2 Model Railway Line Topology... 17

Figure 3.3 Resolution of a Meet conflict. ... 26

Figure 3.4 Resolution of a Pass conflict. ... 27

Figure 3.5 Resolution of a conflict at the time intervals at a station. ... 28

Figure 3.6 Resolution of a capacity conflict ... 29

Figure 3.7 Illustration of the search tree. ... 31

Figure 4.1 Programs’ Structure. ... 35

Figure 4.2 Flowchart of the Heuristic algorithm. .. 38

Figure 4.3 Flowchart of the Optimal algorithm. .. 40

Figure 4.4 Example of the output of a train diagram. .. 44

Figure 4.5 Example of a conflict report of a heuristic solution. .. 45

Figure 4.6 Application’s GUI. ... 46

Figure 5.1 Optimal algorithm performance. ... 53

Figure 5.2 Optimal algorithm performance for schedule 3 with enhanced upped bound. 54

Figure 5.3 Optimal algorithm performance for schedule 4 with enhanced upper bound. 55

Figure A2.1 Problem 1 Initial Schedule. ... 68

Figure A2.2 Problem 1 Heuristic Solution. .. 68

Figure A2.3 Problem 1 Optimal Solution. ... 69

Figure A2.4 Problem 2 Initial Schedule. ... 70

Figure A2.5 Problem 2 Heuristic Solution. .. 70

Figure A2.6 Problem 2 Optimal Solution. ... 71

Figure A2.7 Problem 3 Initial Schedule. ... 72

Figure A2.8 Problem 3 Heuristic Solution. .. 72

Figure A2.9 Problem 3 Optimal Solution. ... 73

Figure A2.10 Problem 4 Initial Schedule. ... 74

Figure A2.11 Problem 4 Heuristic Solution. .. 74

Figure A2.12 Problem 4 Best Solution Found. ... 75

Figure A2.13 Problem 5 Initial Schedule. ... 76

Figure A2.14 Problem 5 Heuristic Solution. .. 76

Figure A2.15 Problem 5 Best Solution Found. ... 77

xii

xiii

List of Tables

List of Tables
Table 3.1 Parameters and variables used in the mathematical formulations. 19

Table 4.1 Example of a timetable. ... 36

Table 4.2 Order of entrance at Segment Track 2. ... 37

Table 4.3 Sorting Meetpoint 1. ... 37

Table 4.4 Example of the Schedule sheet. .. 41

Table 4.5 Example of the first table in the Trains sheet. ... 42

Table 4.6 Example of the second table in the Trains sheet. .. 42

Table 4.7 Example of the first table in the Railway sheet. ... 42

Table 4.8 Example of the second table in the Railway sheet. ... 43

Table 5.1 Results for different initial schedules. .. 49

Table 5.2 Variations in the time horizon. ... 50

Table 5.3 Variations in the number of solutions. ... 51

Table 5.4 Sets of weights for the weighted tardiness function. ... 51

Table 5.5 Variations in the cost function. ... 52

Table 5.6 Variations in the maximum search time. .. 53

Table 5.7 Variations in the upper bound initial value. .. 54

xiv

xv

List of Acronyms

List of Acronyms

DSS Decision Support System

FIFO First In First Out

FOFI First Out First In

FCFS First Come First Served

FLFS First Leave First Served

GUI Graphical User Interface

xvi

1

Chapter 1

Introduction

1 Introduction

This chapter gives a brief overview of the work. Before establishing work targets and original

contributions, the scope and motivations are brought up. At the end of the chapter, the work structure

is provided.

2

1.1 Context and Motivation

The railway industry plays a vital role in many countries. All railway companies try to achieve more

regular and reliable train services, in order to satisfy their customers. One way to optimize these

services is to improve quality in the train control process itself. Therefore, railway operators plan train

services in detail (i.e. timetables), defining the train order and timing, at junctions and platforms. A

robust timetable should be able to deal with minor delays occurring in real-time. However, unexpected

events such as technical failures, track incidents, etc, may cause primary delays, which affect the

running times, dwelling and departing events. Due to the interaction between trains, these delays may

be propagated as secondary delays to other trains, and so, disturbing the entire network. This is why

train dispatching is very important. Not only do dispatching orders keep the railway safe from

collisions, but also have the objective of minimizing secondary delays throughout the network. Now, as

the first objective may be simpler to ensure, the second one is a lot more complicated and challenging.

Even so, train dispatching is still mostly done by human operators that use elementary Decision

Support Systems (DSS). These systems help them to quickly and effectively re-schedule train

movements, according to simple dispatching rules. Such rules solve conflicts by means of a simple

and local decision criterion, not taking a global look at the system and hence, not searching for an

optimal solution. In the last decade however, with the strong competition facing rail carriers, the

privatization of many national railroads, and the enormous advances in technology, like computers

and telecommunications, many researchers developed new optimization models. Despite the recent

advances, providing satisfactory solutions for such a complex problem is still drawing the attention of

researchers.

1.2 Objectives

The main goal of this work is to develop, implement and evaluate a model, capable of solving the meet

and pass problem and then provide feasible solutions to the human controller. The objectives of this

Thesis are:

• Detect conflicts between trains in a single railway line

• Create a first solution for the conflicts, in a short period of time

• Search for the optimal solution

• Propose several near optimal solutions to the dispatcher

3

1.3 Summary of original contributions

This Thesis includes several contributions to the field of train re-scheduling, with the particular

emphasis on the conflict detection and in the resolution process.

The first contribution of this Thesis is the optimization of the conflict detection process. The algorithm

detects conflicts without having to check all the train pairs in the schedule. This improvement results in

a conflict detection algorithm with a linear complexity, and consequently, saving time in the overall

process of searching for the optimal solution.

The introduction of capacity conflicts in the problem is also an original contribution. Taking capacity

into consideration makes the problem more complex and harder to solve, but on the other hand, it

adds more realism to the model.

Most models in the literature focus in achieving either a fast heuristic solution or an optimal solution

after a long exhaustive search. As for this model, it allows for the dispatcher to have a mixture of both

solutions. This is possible because of the search parameters introduced, like the time horizon and the

maximum search time, which make the optimal search more versatile.

1.4 Structure of this Thesis

This Thesis is organized in six chapters, including this first one introducing the Thesis, and the sixth

one referring to the conclusions and future work.

Chapter 2 presents a detailed review on the train re-scheduling problem as well as the main

technologies and systems already developed to address the problem. First, some basic notions about

this problem are provided.

Chapter 3 introduces the model developed in this Thesis, by presenting its architecture and a

functional description of each of its modules. Then, the mathematical formulation of the model is

provided.

Chapter 4 presents an in-depth description of all architecture’s modules, particularly the algorithms

implemented, in order to allow the reader to get a complete understanding of the entire process. This

chapter also intends to provide sufficient information for a proper and easy usage of the application by

any user.

Chapter 5 presents the results of the tests carried out to evaluate the program performance.

Finally, Chapter 6 is dedicated to the conclusions and eventual future work.

4

5

Chapter 2

Models for Train Dispatching:

Literature Review

2 Models for Train Dispatching: Literature

Review

This chapter has the objective to provide an overview on train re-scheduling models. With that

purpose in mind, first some basic notions about train dispatching are explained. Then in, Section 2.2, a

summarization of the problem is made followed by a brief review of the most relevant models.

6

2.1 Basic Concepts

Before describing the most relevant dispatching models, it is important to explain some aspects of

train dispatching.

2.1.1 Definition of terms used

Along this Thesis, there will be used some technical terms which will now be formally defined:

Single railway track - One where traffic in both directions shares the same track

Track Segment - A track segment is a part of a railway line that is bounded by two distinct end points,

in this case the meetpoints

Block – Section of the railway line delimited by signals

Siding - A section of track which can be used for the crossing or passing of trains under single track

operations. The terms ‘crossing loop’ or ‘passing loop’ are also used in some countries to describe

such track sections. A train station on a single line track will usually contain a siding.

Meetpoint - Location where two trains may cross simultaneously. In this context, meetpoints include

not just stations, but also sidings.

Train Conflict - There are two situations, namely: when two trains approach each other on a single

line track travelling in opposite directions (Meet); and when a faster train catches a slower train

travelling in the same direction (Pass).

Minimum Headway - The minimum time length separating two trains on a single line track. This is

usually determined by signals in the case when the trains are travelling in the same direction. When

travelling in opposite directions, the minimum headway is determined by the time required for one train

to clear the track segment sufficiently before the opposing train can enter it.

2.1.2 Timetables

Train dispatchers have two main tools to supervise the network which are the timetable and the train

diagram. The timetable is a schedule of trains on a given railway infrastructure. It contains the arrival

and departure times of the trains, not only from stations, but also from intermediate stations and

sidings. The train diagram, or graphical timetable, is a representation of the timetable in a more

perceptive way. It is basically a time distance graph where all the trains’ routes are represented. The

advantage of this diagram is that it makes it much more simple and intuitive to read the timetable and

to detect conflicts. In Figure 2.1 is an example of a train diagram with 26 passenger trains and 17

stations.

7

Figure 2.1 Train diagram example (extracted from [Zhou2006]).

The X axis represents time of day, the Y axis the sequence of stations in distance scale. Lines indicate

the movement of trains, with the slope indicating direction and speed, horizontal meaning stand-still.

Usually, the outbound direction is defined upwards. In this example, the green horizontal lines

represent the meetpoints along the track. This means that all the intersections between black lines

(trains) must also intersect with one green line (meetpoint) to be free of conflicts.

2.1.3 Safety technologies

There are two different systems to ensure the safety of the railway networks: the fixed block

technology and the moving block technology. A block section is a track segment between two signals.

The signals control the train traffic and impose safe distance headways. There are signals along the

lines and also before every station, passing loops, junctions, etc. The most common type of signalling

is the three-aspect signalling. A signal aspect may be red, yellow or green. If the subsequent block is

occupied by another train, the signal is red. A yellow signal aspect means that the subsequent block

section is empty, but the following block is occupied by another train. Finally, a green signal aspect

indicates that the next two blocks are empty. Trains have to stop when facing a red signal and wait for

that signal to change to green or yellow. When facing a yellow sign the train may proceed its course

but has to decelerate so that it can stop in case the next signal is red. Each block may host at most

one train at a time.

8

As for the moving block technology, it does not need signals since the exact position and speed of

each train is known. Safety is ensured by the regulation of their respective speeds. The safety

standards define a maximum speed for each train, depending on the distance from the preceding

train, necessary to grant space to stop completely in case of emergency. With this technology, a track

segment can host more than one train at a time.

2.1.4 Dispatching rules

Dispatching rules solve conflicts by means of a local decision criterion. Two of the most common rules

are the first-in-first-out (FIFO) rule and the first-out-first-in (FOFI) rule. The FIFO rule solves conflict

situations by assigning the block section in discussion to the first train that required it. This means that

this rule actually does not require any special dispatching order and lets the traffic proceed with its

actual order. This rule is also known as first-come-first-served (FCFS).

The FOFI rule assigns the block to the first train that is able to leave it. For this evaluation, the time

that each train will take to enter the block and leave it available again has got to be calculated first.

The precedence is then given to the train that is able to leave the block first. The FOFI is also referred

to as first-leave-first-served (FLFS).

2.1.5 Objective functions

For evaluating the quality of the obtained solutions, dispatching models need to have an objective

function. There are several objective functions each one with its qualities. The choice of what function

to use depends on the dispatcher criteria. The following four optimization criteria, i.e., objective

functions have been selected as the most common:

• Minimization of the total tardiness � � �� �����	 ;

• Minimization of the total weighted tardiness
� ��� �������	 ;

• Minimization of the maximum tardiness����� � �����	� ��� � � ���. This criterion minimizes the

maximum delay but many trains may suffer small delays. This is a criterion that is more suited

when passenger trains prevail for scheduling;

• Minimization of the maximum weighted tardiness ��
��� � �����	�	� �	��� � � ����� . This

function is more suited for mixed traffic situations where the weights wi are usually the same

for trains with the same priority.

9

2.2 The Most Relevant Re-scheduling Models

2.2.1 Introduction

All of the models found in the literature present a common structure which is basically the structure of

a typical decision support system. A Decision Support System (DSS) can be defined as a computer-

based, interactive system that aids the process of decision making. For this particular case, it can also

be called as an automated dispatching support system, which is a real-time traffic management

system with a short time horizon that aids dispatchers to control the train traffic. These systems have

three main functions:

• Predict train movements

• Detect expected conflicts

• Propose a solution for the conflicts

However, these dispatching systems are not designed to replace dispatchers but to support them in

taking the best possible decisions.

Considering the main features of the typical models, they can be also described as follows:

• It serves a line between two major stations or terminals. There are normally several

meetpoints on that line.

• Every train has a schedule for that line and that schedule represents the initial optimum.

• It is continuously updating train positions received from the signal systems.

Several approaches for re-scheduling railway traffic have been suggested since the early seventies.

Still, it was only in the last decade, with the advances in technology, that the most relevant research

was conducted. An extensive survey of approaches for railway traffic scheduling and re-scheduling

can be found in [Cordeau98]. In this chapter, only some of the most relevant and recent models are

described. Because of the large diversity that characterises most models, a textual description was

adopted. Train dispatching systems can be broadly divided into two categories: fixed-speed, and

variable-speed models. Fixed-speed models assume that trains travel at their maximum speed

whenever possible, and later an acceptable speed profile is determined. Variable-speed models

consider velocity as a variable giving more realism to the model.

2.2.2 Inter-train conflict management

This first model described here was developed by Ismail Sahin [Sahin99], and can be classified as a

fixed-speed model. In this model a heuristic algorithm for rescheduling trains in a single-track railway

was developed. The objective was to obtain better conflict solutions than train dispatchers, and

optimal or near optimal solutions in a reasonable amount of time. The time horizon considered is a

10

single day. Assuming initially a conflict-free schedule, the algorithm compares the scheduled arrival

times with the actual arrival times in order to detect deviations from the initial schedule. Then, for this

set of disturbed trains, a discrete-event simulator verifies if there are any conflicts and which one will

be the first to occur. This will be the only conflict that the program will solve, not taking into account the

other following potential conflicts. Since there can be only two resolutions for the conflict, which is

stopping one train or the other, the program will simulate both alternatives. For each case, the

algorithm will calculate the expected time of arrival at scheduled points of every train in the problem,

taking into consideration their future conflict delays. Finally the decision is taken choosing the

alternative that causes the minimum total delay of the system. The algorithm proceeds by detecting

and resolving the immediate conflicts, consecutively, one at a time. In Figure 1 is a flowchart that

summarizes this algorithm.

Figure 2.2 Process of railway traffic control based on inter-train conflict management (extracted from

[Sahin99]).

11

Good results are reported for computational experiments on small instances with 20 trains and 19

meetpoints. The optimal solution was found for 13 times over 26 problem instances. Comparing the

heuristic algorithm with the dispatchers’ solution, the savings in the total waiting times is 2.5 min per

train.

2.2.3 On-line timetable re-scheduling

This second fixed-speed model was proposed in [Adenso-Díaz99] for solving real-time timetable

perturbations on a regional network. They did an interesting research on historical data about the

possible incidents and their average duration. This is very important so as to be able to foresee the

influence that an incident will have on timetables. The model used is a MIP (mixed integer program)

where the objective function, to be maximized, is the number of passengers transported. As expected,

this problem is very complex, with several constraints, hence a backtracking method is used to explore

the solution space. The quality of each solution is calculated considering the number of passengers

transported, the delays and the priority of each service. In Figure 2.3. is an example of the search tree

used for exploring the solution space.

Figure 2.3 An example of the backtracking tree in the process of exploring the solution space

(extracted from [Adenzo-Díaz99]).

A horizon of the next F services is considered in order to reduce the search tree. Also, a depth-first

search with a branch-and-bound procedure is chosen. Note that all possible solutions are at the level

F of the tree. Finally a specified number of the best possible solutions are presented to the train

dispatcher. The system was implemented in 1998 in Asturias, Spain, and was able to offer a set of

useful solutions in less than 5 min.

2.2.4 Greedy Travel-Advance Strategy

In [Medanic02] a discrete-event model was used to obtain time-efficient and energy-efficient

suboptimal schedules. This discrete-event model approach takes much less effort to develop than

12

formulating an integer programming problem as has been done in the past.

The discrete events considered are the times when a train reaches a meetpoint. Assuming that the

velocities of the trains for each section of the route are fixed, and that the times of origin of the trains

are given, the time for the next event can be easily calculated. This algorithm is called greedy because

it is locally optimal and depends on local information. This means, when a train reaches a meetpoint

the algorithm will only consider the trains in its vicinity. If this train can reach the next meetpoint safely,

then the model proceeds to the next event, if not, the algorithm decides which nearby train has to be

stopped at a meetpoint.

Since this model assumes that trains travel at their maximum velocities allowed in the sections of the

line, this greedy schedule is then converted into an efficient pacing schedule, where the optimal

pacing of trains is established in order to save energy. To obtain the optimal velocities, an average is

calculated over the velocities of the sections that the train will travel, and also ensuring that the times

of arrival previously calculated will remain the same.

The computational experiments showed that this algorithm is very moderate in computational effort

comparing with other programming formulations. It also showed that it can modify into a strategy of

optimal pacing velocities without affecting the time efficiency ratio.

2.2.5 Re-scheduling with train speed coordination

Andrea D’Ariano et al. [D’Ariano07a] introduced a variable-speed dispatching system that can control

railway traffic more realistically. Acceleration and deceleration times were modelled considering the

constraints of the signalling system and the rolling stock characteristics.

This system is composed of three parts: data loading, which collects data from the field; a conflict

detection and resolution procedure with fixed-speed profiles, which has to solve the train scheduling

problem; and a variable speed model that iteratively checks if the train speed profiles are acceptable.

More specifically, in the conflict detection and resolution procedure, the train scheduling problem was

formulated as a job-shop problem with blocking and no-wait constraints. This type of approach uses

the alternative graph [Mascis02] as the model structure. Each job (train) must pass through a

prescribed sequence of machines (block sections). The passing of a train trough a particular block

section (an operation) is a node of the alternative graph. A fixed arc represents the running time of a

train trough the block section (solid arrows in Figure 2.3). Whenever two jobs require the same

resource, there is a potential conflict. In this case, one of the pair of the alternative arcs (dashed

arrows in Figure2.3), representing the minimum time headway between the associated trains has to

be selected. By the inspection of the alternative graph, one can detect conflicts very rapidly. If the

selection of an alternative arc increases the starting time of the following operation, a conflict between

the two considered trains has been detected.

13

Figure 2.4 The alternative graph for the example with two trains (extracted from [Mascis02b])

 For the conflict resolution three different classes of algorithms were used: simple dispatching rules

(FIFO and FOFI), a greedy heuristic called AMCC (Avoid Most Critical Completion Time) based on the

alternative graph, and a branch-and-bound algorithm that finds an optimal solution for fixed-speed

profiles.

As for the variable speed model, it completes the alternative graph model in terms of signalling, which

only considers red or green aspects. When a train faces a yellow signal, speed adjustments are made

in the alternative graph and a new feasible solution is searched. This model is then able to set up a

schedule without conflicts and ensure minimum distance headway between trains while keeping

acceptable speed profiles.

Computational tests based on a Dutch rail network showed the feasibility of this system, even for large

problems. It took the computer approximately 200 seconds to solve a problem with 54 trains and a

time horizon of one hour.

14

15

Chapter 3

Model Description

3 Model Description

Chapter 3 intends to present the reader with a first perspective of the developed model. To achieve

this goal, this chapter will present first the system architecture as well as its relation with the

dispatching system. Then, in section 3.2 all the model’s assumptions and necessary inputs are

defined. In section 3.3, the problem is formulated mathematically and all the constraints are presented.

Following is a detailed explanation of all the conflicts solutions, so that in the final section, the two

proposed solutions are explained.

16

3.1 System Architecture

The developed model can be classified, according to Chapter 2, as a variable-speed decision support

system in real time. It is not supposed to replace the dispatcher but to help him in taking the best

possible solutions. In other words, this model is a useful tool that allows train dispatchers to foresee

the consequences of their decisions and also provides them with other feasible and probably better

solutions.

The system architecture is presented in Figure 3.1. It shows how the DSS will be incorporated in the

dispatching process and also illustrates the type of information that will be interchanged with the

dispatcher. Inside the DSS block are represented its two main functions: the conflict detection and the

conflict resolution blocks.

Figure 3.1 Train dispatching system architecture.

3.2 Problem Definition

Being railway scheduling such a rich and complex problem, it is necessary to define all the model’s

limitations, assumptions and inputs.

This model considers a single railway line that serves trains travelling in both directions. The railway is

formed by track segments, which make the connection between all the meetpoints, as shown in Figure

3.2. In this context, meetpoints include not just stations, but also sidings or any location where two

17

trains may cross simultaneously. So, for this model, trains are only able to meet or pass at meetpoints.

As it is represented in Figure 3.2, train directions will be defined as inbound for trains going from right

to left and outbound otherwise. Meetpoints and track segments are numbered in the outbound

direction.

Figure 3.2 Model Railway Line Topology.

The safety technology considered is the fixed block signalling system. Therefore, trains can follow

each other on a track segment with minimum safety headway. Considering this, the model also

assumes that trains depart from stations as soon as possible, or in other words, as soon as the

following block clears. This policy concerning trains following each other will be very important in the

resolution of the pass conflicts that will be explained further ahead in Section 3.4.

Only three different types of trains are considered in the rest of this thesis but the model is valid

independently of how many train types there is. The considered train types are:

• Fast Passenger Train

• Slow Passenger Train

• Freight Train

This order of presentation is also the order of priorities between them. Fast Passenger Trains have

priority 1, which is the highest, and Slow Passenger Trains and Freight Trains have priorities 2 and 3,

respectively.

The first and last meet points, of the considered railway network, do not have to be terminal stations.

They can be the interface from single line segments to double track segments or even a denser rail

network, as it happens in most cases. Anyway, the safety time intervals between arrivals and

departures in these stations will not be checked.

In order to make this model more realistic, all meet points have limited capacity. This is a very

important aspect that makes a big difference in the quality of the final solution. Very few models take

capacity into consideration.

For simplicity, the rest of the thesis does not explicitly consider acceleration and deceleration time

losses.

18

In addition to these model definitions, the following model inputs are enumerated:

• It is assumed that the location and speed of all the trains in the network is known at all times.

This feature is essential in order to perform a proper supervision of the network and detect

conflicts as early as possible.

• Being this a re-scheduling model, it is necessary to have an initial conflict free schedule. This

schedule will also be considered as the initial optimum.

• Minimum dwell times of the trains at stations and their running times for each track segment

are needed in order to verify the restrictions described in the following section.

• Train priorities have to be given for each train. These priorities influence the decision criteria of

the produced solutions.

• Maximum capacities for all meet points are obviously also necessary.

In conclusion, a conflict is said to occur when two trains meet or pass at a segment track, when they

arrive and depart from stations without the minimum safety intervals and also when a train arrives at a

station that is full.

3.3 Mathematical formulations

The meet and pass problem, is essentially an optimization problem, subject to a several number of

constraints. Therefore, it can be described mathematically. According to the definitions made in the

previous section, the respective restrictions are now presented in a formal manner. The selected

optimization criterion was the minimization of the total weighted tardiness.

Objective function:

��� � � ������
�
�� ��!"#�$�� %&�'� ()�'�*+ (1)

subject to

Free running time constraints:

,�- . /�-� 0� 1 2� - � � 3� � �' (4 (2)

Consecutive departure and arrival constraints:

5�- . 6�- 7 /�-��� 0� 1 2��� - � � 3� � �' (4 (3)

19

Minimum dwell time constraints:

6�8 . 9�8�� 0� 1 2� 8 � � 3� � �'4 (4)

Headway constraints on arrival times at stations:

&�8 . &�:8 7 ;8 ���< ���&�:8 . &�8 7 ;8���������0�� �= 1 2� � > �=� 8� 1 ?4 (5)

Meet condition:

@�8A . &�=8A 7 ;8 ��< ��@�=8 . &�8 7 ;8����������08 1 ?�� � 1 2�� �B 1 2$ (6)

Pass Condition:

%@�8 C @�:8 7 D- ��E ��&�8A C &�:8A 7 D-�* ���<��� %@�:8 C @�8 7 D- ��E ��&�:8A C &�8A 7 D-*�������������08 1 ?�� �� �B 1 2F (7)

Constraint (7) has an analogous formulation for the inbound case that will be omitted for the sake of

simplicity.

Meetpoint capacity limits:

G8 C H8�����08 1 ?� (8)

The notation of parameters and variables is shown below in Table 3.1.

Table 3.1 Parameters and variables used in the mathematical formulations.

Symbol Definition I Train index J Meetpoint index �� Terminal meetpoint of train I K Segment index L Set of trains,�MLM � ��� L � L� N LO��� L� P LO � � �Q� LO Set of outbound trains, LO L� Set of inbound trains, L� RS Number of trains at meetpoint �J, R T L US Maximum capacity of meetpoint�J V Set of meetpoints,MVM � � W Set of segments, MWM � � (X Y�Z Running time for train I at segment K [�Z Minimum allowed running time for train I at segment K \�S Dwell time]�S Minimum dwell time ^�S Departure time of train I at meetpoint J ��S Arrival time of train I at meetpoint J _�S Scheduled arrival time of train I meetpoint J \�Z Start time of train I at segment K

�̀Z Finish time of train I at segment K �� Weighted priority of train I aZ
Minimum headway between arrival and departure times of two consecutive trains at

segment K bS
Minimum headway between arrival and departure times of two consecutive trains at

meetpoint J

20

Constraint (2) ensures that no train will travel along a segment track faster than its maximum allowed

running profile. Constraint (3) guarantees that an arrival at one station is always later than the

departure from the previous one. Constraint (4) imposes that trains cannot leave the station until their

minimum dwell time is completed. These dwell times are necessary to load or unload passengers and

freight at stations. Inequality (5) verifies if the safety time intervals between departures and arrivals at

a station are respected. For security reasons, such as slip prevention, there can be no simultaneous

departures or arrivals at a station, even if they are towards different segments. As for constraints (6)

and (7), they are the most important ones since they check if no meet or pass occurs on a segment

track. More specifically, in inequality (6), it states that two opposing trains can cross at a station after

the first train arrival and the due safety time interval elapses. Restriction (7) defines that one train can

follow another on a segment track, if the safety headway is respected throughout the entire segment,

until they arrive at the following station. Finally, constraint (8) assures that no station capacity is

exceeded.

In conclusion, if a schedule does not respect all of the above restrictions, it means that a conflict was

detected and this schedule is considered unfeasible.

However, verifying the meet and pass constraints between all of the trains is unnecessary. In order to

explain this statement, it is helpful to rewrite restrictions (6) and (7) in relation to the segment instead

of the stations.

Meet condition:

5�- c 6�=- ��<��6�- d 5�=- �������0- 1 e�� �� �B 1 2 (9)

Pass Condition:

6�Z c 6�:- ��f��5�- c 5�:- ��<��� 6�- d 6�=- ��f��5�- d 5�=- �������0- 1 e�� �� �B 1 2 (10)

The safety variables bS� and aZ are not considered for simplification matters.

Before the introduction of these main results, it is necessary to make the following assumptions:

- The trains are considered to be ordered by their entrance times (\�Z) at a given segment�K .

This can be represented by the following equation:

6�- c 6�A - c 6�A3- ��������0�� � �� � � (3� (11)

Condition (11) must always be verified for the theorems to be true.

- There is also one condition which is always valid since train cannot move instantaneously:

6�- c 5�- (12)

21

- In both proofs, train I is always considered an outbound train. The case when I is inbound, is
analogous with the outbound situation, and so it will not be demonstrated, without loss of
generality.

Theorem 3.1 – If train I does not collide with train�I 7 X, and train I 7 X does not collide with train�I 7g, then train I cannot collide with train�I 7 g.

Proof:

Case 1) I 7 X is an outbound train

So, if train I does not collide with train�I 7 X, then:

�̀Z c �̀A	Z (13)

And, if train I 7 X does not collide with train�I 7 g, then there can be two cases:

Case 1.1) I 7 g is an outbound train

If train I 7 X does not collide with train�I 7 g, then:

�̀A	Z c �̀A�Z (14)

And so, from (13) and (14):

�̀Z c �̀A�Z (15)

From conditions (11) and (15), it can be concluded that, in this case, train�I does not collide with

train�I 7 g.

Case 1.2) I 7 g is an inbound train

If train I 7 X does not collide with train�I 7 g, then:

�̀A	Z c \�A�Z (16)

And so, from (13) and (16):

�̀Z c \�A�Z (17)

From conditions (11) and (17), it can be concluded that, in this case, train�I does not collide with

train�I 7 g.

22

Case 2) I 7 X is an inbound train

So, if train I does not collide with train�I 7 X, then:

�̀Z c \�A	Z (18)

And, if train I 7 X does not collide with train�I 7 g, then there can be two cases:

Case 2.1) I 7 g is an outbound train

If train I 7 X does not collide with train�I 7 g, then:

�̀A	Z c \�A�Z (19)

And so, from conditions (18) and (19):

�̀Z c \�A	Z c �̀A	Z c \�A�Z �c�d � � �̀Z c \�A�Z (20)

With conditions (11) and (20), it can be concluded that, in this case, train�I does not collide with

train�I 7 g.

Case 2.2) I 7 g is an inbound train

If train I 7 X does not collide with train�I 7 g, then:

�̀A	Z c �̀A�Z (21)

And so, from equations (18) and (21):

�̀Z c �̀A�Z (22)

From conditions (11) and (22), it can be concluded that, in this case, train�I does not collide with

train�I 7 g.

h

Now that all cases are verified, one must conclude that the non-conflict condition has the transitivity

property. Hence, it can be generalized through all trains in the segment. If there are no conflicts

between consecutive train pairs then, one must conclude that there are no conflicts in the segment at

all.

Theorem 3.2 – If there is a conflict between train I and train�i�� i . �I 7 g�, then there is also a conflict

between trains I and�i (X , or between trains i (X and�i.

Proof:

Case 1) i is an outbound train

If there is a conflict, then:

23

�̀Z d j̀Z (23)

Case 1.1) i (X is an outbound train

For train i (X not to collide with train�I, then:

�̀Z c j̀k	Z (24)

For train i (X not to collide with train�i, then:

j̀k	Z c j̀Z (25)

Which means that,

l �̀Z c j̀k	Z c j̀Z
�̀Z d j̀Z m ��� c�d I�i4 (26)

Thus in this case, train i (X�will either collide with train I or train i.

Case 1.2) i (X is an inbound train

For train i (X not to collide with train�I, then:

\jk	Z d �̀Z �c�d � j̀k	Z d \jk	Z d �̀Z �c�d � j̀k	Z d �̀Z� (27)

For train i (X�not to collide with train�i, then:

j̀k	Z c \jZ �c�d � j̀k	Z c \jZ c j̀Z c�d � j̀k	Z c j̀Z � (28)

Which means that with conditions (23), (27) and (28):

nm �̀Z d j̀Z
j̀k	Z d �̀Zj̀k	Z c j̀Z

mm ��� c�d I�i4 (29)

Thus in this case, train i (X�will either collide with train I or train i.

Case 2) i is an inbound train

If there is a conflict, then:

�̀Z d \jZ (30)

Case 2.1) i (X is an outbound train

For train i (X�not to collide with train�I, then:

j̀k	Z d �̀Z (31)

24

For train i (X�not to collide with train�i, then:

j̀k	Z c \jZ� (32)

But these conditions together with condition (30):

nm �̀Z d \jZ
�̀Z c j̀k	Z
j̀k	Z c \jZ mm ��� c�d I�i4 (33)

Thus in this case, train i (X�will either collide with train I or train i.

Case 2.2) i (X is an inbound train

For train i (X not to collide with train�I, then:

\jk	Z d �̀Z (34)

But in this case, with condition (30):

\jk	Z d �̀Z d � \jZ ��c�d �� \jk	Z d � \jZ �� (35)

This equation is impossible because it violates the initial condition referred in (10). Hence, in this

case, train i (X�will either collide with train I or train i.and so, validating the theorem.

h

What Theorem 3.2 states is that any conflict between two trains, which are apart in terms of their

entering order, implies a conflict between two consecutive trains, or a conflict between closer

trains. Propagating the result, the consequence is that the conflict will compulsory end up

between two consecutive trains.

Corollary 3.3 - In order to conclude about the existence, or non-existence of conflicts, in a given track

segment, it is only necessary to check for conflicts between consecutive trains, in terms of their

entering order.

Proof:

From the conclusion of Theorem 3.1, one may say that, if there are no conflicts between consecutive

trains on a given track segment, then necessarily there are no conflicts between any of those trains.

Therefore this condition assures the non-existence of conflicts.

From Theorem 3.2, it is concluded that, any conflict between non-consecutive trains, means that there

is also a conflict between consecutive trains. Hence, this conclusion guaranties that all the existing

conflicts will be detected.

□

25

The importance of these results is the complexity reduction in the problem of conflict detection, which

was a combinatorial problem and now becomes a linear one. More specifically, for a schedule with �

trains, instead of making all the (U��) comparisons, it only needs (� (X) comparisons. Furthermore,

this algorithm is used recursively in the search for the optimal solution, which makes the reduction

impact even bigger.

3.4 Solving Conflicts

Now that all the model’s restrictions are properly defined, the next step is to explain how to solve the

detected conflicts. Conflicts are grouped into four different types:

• Meet conflict

• Pass conflict

• Safety intervals at the station

• Capacity conflict

For each type of conflict, the range of possible solutions is presented next. Evidently, there are infinite

possible solutions, but the optimal ones are the only ones that are worth considering. Also, the

decision criteria of which train to stop and which train to pass will be explained only in the next section.

- Meet Conflict

This first type of conflict involves two trains and so, there are only two valid solutions to consider.

These solutions are either to stop the inbound train or the outbound train. In Figure 3.3(a) is an

example of a meet conflict, between trains i and j at segment track 1, followed by its two solutions in

Figure 3.3(b) and (c).

In Figures 3.3(b) and (c) is also represented the introduced delay and the safety time interval

gu . The time interval introduced can be gu or h
k
, the chosen interval is the one which has the bigger

value. This is also valid for the pass conflict.

26

(a) Meet conflict

(b) Train i first (c) Train j first

Figure 3.3 Resolution of a Meet conflict.

Apparently, the solution shown in 3.3(b) seems better than the one in 3.3(c) because the resulting

delay is smaller. However, train priorities would also have to be considered so as to make a proper

weighted decision. In meet conflicts, delays are always introduced in the dwell times of trains at the

stations but the same does not happen in the type of conflict explained next.

- Pass conflict

The pass conflict is not as simple as the first one because, in this case, running times also have to be

taken into account. As it was referred in Section 3.2, it is assumed that trains leave their stations as

soon as possible, in order to achieve the minimum possible delay. Therefore, if a faster train follows a

slower one, its running time will have to be decelerated in order to avoid red signals. The following

Figure 3.4 illustrates the Pass conflict between fast train j and slow train i.

27

(a) Pass conflict

(b) Train i first (c) Train j first

Figure 3.4 Resolution of a Pass conflict.

In Figure 3.4.(b) is a good example of an affected running time. Train j had to be slowed down so as to

arrive at station 2 without having to stop in the middle of the segment track, and wait for train i to clear

the following block.

- Safety intervals at stations

As for the arrivals and departures at stations there are three different situations of conflict: two arrivals,

two departures, one arrival and one departure. Because they are very similar situations, only the case

with one arrival and one departure will be shown in Figure 3.5.

In this case, there is not much to add considering that this schedule changes are the same as the

changes in the meet and pass conflicts, i.e. dwell time extensions and slower running times.

28

(a) Station conflict

(b) Train i first (c) Train j first

Figure 3.5 Resolution of a conflict at the time intervals at a station.

In this case, there is not much to add considering that this schedule changes are the same as the

changes in the meet and pass conflicts, i.e. dwell time extensions and slower running times.

- Capacity conflict

The Capacity conflict is by far the most complex of them all. The train chosen to wait for the full station

to be available again, is not necessarily the last one in the schedule to arrive. In fact, all of the trains at

the station, when the conflict is detected, are candidates to be re-scheduled. Hence, one can say that

a conflict in a station with capacity N, will have N + 1 possible solutions. The policy in this situation is

to hold one of the trains at the previous station until the first train at the full station departs. To help

understand this resolution better, the following example in Figure 3.6 shows a capacity conflict in

station 2 with capacity for two trains.

The solution in Figure 3.6 (d) exemplifies another important aspect of this model. Despite station 2

become available immediately after train j departs, train i waits an extra time for train j to arrive at

station 3 and hence avoiding a meet conflict. As for Figure 3.6 (b), this is a solution that solves the

capacity conflict but generates another future pass conflict between trains j and k. Even so, this

solution is still completely valid.

29

(a) Capacity conflict (b) Train k waits

(c) Train j waits (d) Train i waits

Figure 3.6 Resolution of a capacity conflict

3.5 Towards a feasible solution

Now that the resolutions for each conflict type are defined, it is necessary to select them properly in

order to generate the best possible solutions. In the previous section, conflicts were studied as

isolated cases, but reality is not that simple. In a complex railway schedule, if one conflict arises, its

solution will probably originate more conflicts and the resolution process has to be repeated until the

schedule is feasible again.

Now, the objective of this Thesis is not only to provide the dispatcher, with feasible solutions, in a

small amount of time, but also to try to obtain the optimal solution if possible. Therefore, two solutions

were developed in order to satisfy these requirements: the heuristic approach and the optimum

solution. An explanation of each one of the approaches will be presented next.

- Heuristic Approach

Taking into account that this program will work in real-time, there is the need to generate solutions as

fast as possible to help the dispatcher. In Chapter 2, the dispatchers’ behaviour was explained and

classified as myopic and sub-optimal. Nevertheless, these decisions have proven to be effective and

keep the railroad safe. Therefore, the objective of this algorithm is to find a feasible solution for the

30

conflict in a short amount of time, and also to reproduce the dispatchers’ behaviour in the resolution

process. It can be useful to imitate train dispatchers so as to compare the quality of their solutions with

the optimal ones.

The proposed decision criterion is based mainly on train priorities and in the FOFI rule. For every

conflict that involves only two trains, which means all conflict types except for the capacity conflict, the

decision criterion works as follows:

-If one train has higher priority than the other, that’s the train that will always go first and the other will

be delayed.

-If both trains have the same priority, then the FOFI rule is applied. This rule will check which one of

the trains is able to solve the conflict in a faster way. In other words, this rule verifies which decision

generates de smallest delay on the stopped train.

As for the capacity conflicts, there are N + 1 trains to consider and the procedure is as follows:

-Between all the trains involved in the conflict, choose the train with lowest priority in order to be

delayed.

-In case there is more than one train with low priority, choose the last one to arrive at the station.

This algorithm will be explained with more detail in the next chapter.

- Optimal Solution

This optimal solution was developed to provide the dispatchers with optimal or near optimal solutions,

better than the ones they usually take. To do so, a search tree is considered. The nodes of the search

tree are the conflicts and the branches are the respective solutions. This means that from the first

node to the leaf node is represented a feasible solution of the re-scheduling problem. Because the

time available is a key element, the search mode adopted was the depth first search (DFS). The DFS

allows reaching the solutions without having to search the entire tree as it would happen in a breath

first search.

To better illustrate how this procedure works, the following Figure 3.7 is presented.

31

Figure 3.7 Illustration of the search tree.

The numbers inside each node represent the order of the search. For the sake of clarity, only four

solutions are indicated, but of course in this example, there are six feasible solutions. In node 5 there

are three possible options which mean this is a capacity conflict at a station with capacity for only two

trains.

As it was referred before in the introduction chapter, this problem is NP-complete, meaning it

increases exponentially with the number of conflicts. Therefore, there is the need to adopt some

techniques that allow saving some time. The branch-and-bound was one of the chosen techniques. In

addition to this technique, there is also the introduction of a time horizon and a limited time for the

search.

More details concerning the implementation of this solution will be discussed on the next chapter.

First conflict

Solution

1

Solution

4

Solution

2

1

 2

3 4

5

 6 7 10

 8 9

32

33

Chapter 4

Program Implementation

4 Program Implementation

This chapter intends to make a full description of the developed program. Before that, the first section

aims to motivate the choice of MATLAB as the programming language. Then, section 4.2 proceeds

with the overall structure and in the following sections the explanation of its main modules. The input

and output data are described in sections 4.5 and 4.6. Finally, the application and its features are

presented in the last section.

34

4.1 Programming Language Selection

This application was developed in MATLAB. The main motivation for this choice was the developer’s

experience on this programming language in contrast with a lack of experience in other languages

such as C++ or Java.

As the name indicates MATLAB (MATrix LABoratory) is a language specially oriented to the

manipulation of matrices, and can perform numerical calculations faster than for example in C. In view

of the fact that the timetables are matrices and their manipulation would be a main part of this

program, this represented an important advantage.

Because the graphic creation was a decisive issue in order to represent the train diagrams, MATLAB

also contains many libraries that allow an easy and versatile graphic manipulation.

And last, being the intent of this program to interact with the dispatcher, the Guide User Interface

presented in MATLAB, allows a wide range of possibilities to create a more user friendly application.

4.2 Program Overview

In this program, there are two distinct parts: the Conflict Detection block and the Conflict Resolution

block. These parts are indicated below in Figure 4.1 within the dashed rectangles.

- The Conflict Detection block is responsible for the surveillance of the railway network. It is also in

charge of updating all the necessary data, so that the conflict detector can work with valid information.

This loop is supposed to keep running until a conflict is detected.

- The Conflict Resolution is evidently the part responsible for solving the detected conflicts. This part

is much more complex than the previous one. It is divided into two main blocks which are the heuristic

solution and the optimal solution. These two algorithms that were already introduced in Chapter 3 will

be explained in detail further on. The Conflict Resolution part is also in charge of reporting the

achieved solutions to the dispatcher.

35

Figure 4.1 Programs’ Structure.

36

Entrance times at Segment2

4.3 Conflict Detection

The detection of conflicts is executed by the inspection of the network timetable. Two scans at the

timetable are performed, the first one tests out for meet and pass conflicts, as for the second scan, it

checks for the safety intervals at stations and for capacity conflicts.

Here in Table 4.1 is an example of a timetable with all the arrival and departure times of all the trains

from every meetpoint in the railway.

Table 4.1 Example of a timetable.

Meetpoint1 Meetpoint2 Meetpoint3

ARRIVAL DEPARTURE ARRIVAL DEPARTURE ARRIVAL DEPARTURE

Train1 0 10 45 54 62 300

Train2 10 15 30 50 65 73

Train3 5 30 36 62 68 120

Train4 146 149 140 141 104 136

Train5 85 300 72 78 0 66

Train6 100 190 110 160 100 105

The double line between Train 3 and Train 4 is separating the outbound trains (Train 1 to Train 3) from

the inbound trains (Train 4 to Train 6). As explained in Chapter 3, remember that the meetpoints and

segment tracks are numbered in the outbound direction. The times presented in the table are in

minutes. More details concerning the input data will be discussed in Section 4.5.

Now, the first scan sorts the train order for each track segment, and then for each pair of trains,

according with the conditions from Corollary 3.3, it verifies the meet and pass constraints. In other

words, the algorithm compares the safety constraints between two consecutive trains entering a given

track segment. This is the application of the two theorems explained in the previous chapter.

Considering the example of Table 4.1, the order of trains entering track segment 2 corresponds to the

sort of the highlighted values within the red circles. In this case it would be as indicated in Table 2:

37

Table 4.2 Order of entrance at Segment Track 2.

Segment Track 2

 Entering times Order

Train 1 54 2

Train 2 50 1

Train 3 62 3

Train 4 136 6

Train 5 66 4

Train 6 105 5

The scan would begin the checking between Train 2 and Train 1, then Train 1 and Train 3 and so on

until the last pair, Train 6 and Train 4. This type of approach allows saving precious time checking for

meet and pass constraints between all the trains in the timetable, and so reducing the complexity of

the algorithm.

When a conflict is found, the scan does not stop because it might not be the earliest one to occur. It is

intended in this program to solve conflicts as chronologically as possible. Although this may be not

very accurate, the time of conflict is assumed as the instant when the first involved train leaves the

meetpoint before the conflict. It is logical to think this way considering that this is the deadline to take a

dispatching measure. After that instant, the options considered in Chapter 3 for conflict resolution are

not feasible any more.

The second scan is very similar to the first one except that in this case, it is not about entering times in

segment tracks, but entering and leaving times from meetpoints. The algorithm sorts out the arrival

and departure times for one station and compares all the consecutive times checking if the safety time

intervals are respected. Simultaneously, a train count for that same station is performed in order to

detect capacity conflicts. The blue shaded columns in Table 4.1 will be the example for this scan.

Table 4.3 Sorting Meetpoint 1.

Meetpoint 1

Arrival

Order

Departure

Order

Train 1 1 1

Train 2 3 2

Train 3 2 3

Train 4 6 4

Train 5 4 6

Train 6 5 5

38

4.4 Heuristic Solution

This algorithm is intended to be fast and effective as explained in Section 3.5. Therefore, the detected

conflict is evaluated concerning only train priorities and the FOFI rule which is a sub-optimal and

myopic rule. A flowchart explaining the solution procedure is presented below in Figure 2.

Figure 4.2 Flowchart of the Heuristic algorithm.

It was seen before, in Figure 4.1, that when this module is activated, it means that a conflict was

already detected. So, the algorithm begins by comparing the priorities of the trains involved in the

39

conflict, to check if one has a lower priority. If all of the involved trains have the same priority, the

program performs the FOFI rule to see which option can cause de smallest delay. Having decided

which train to delay, its schedule is re-arranged accordingly and always respecting future dwelling

times. Next, it is necessary to check for more conflicts in the schedule. If another conflict is detected,

the process is repeated again from the beginning. This cycle continues indeterminately until the

schedule becomes free of conflicts, which means a solution was found.

4.5 Optimal Solution

The Optimal algorithm was developed with the objective of reaching an optimal solution. To do so, it

should supposedly verify all the possible solutions and then choose the best one among them. Due to

the enormous size that the search tree may reach in dense traffic railways, it is unnecessary and also

impossible to store the entire tree in the computer memory and to search it in feasible time. The Depth

First Search was then chosen because it does not require a lot of memory, and because it provides

solutions faster even if they are not optimal. In this program, a stack was used to store the search tree,

meaning only one route from the first node to the leaf node is in the computer’s memory at a given

instant.

Because time is a key factor in this search, there is the need to adopt some techniques to reduce the

size of the search tree. One of them is the introduction of an Upper Bound search limit. The Upper

Bound stops the depth search, whenever the considered solution is worse than the best one found

until that moment. The quality of each solution is calculated by the cost function presented in Chapter

3. Another technique used to reduce the search tree is the time horizon. The conflict detector only

reports conflicts earlier than the time horizon, therefore ignoring all the following future conflicts. This

horizon enables the algorithm to prune a big part of the search tree and consequently saving precious

time.

Even with these features, there are still schedules that require too much time to be optimally solved.

Hence, the dispatcher has another possibility which is the Maximum search time. If this time is

exceeded, the algorithm will stop the search and report the best solution found until that moment.

Therefore, there can be two possible types of final solutions presented. When the search tree is

completely explored before the time limit, then the best solution found is the optimal solution. Of

course, this solution is optimal but disregarding all the conflicts that occur after the considered time

horizon. The other type of solution happens when the maximum search time is exceeded and the

search is not complete. In this case the solution is not optimal but can be classified as the best

solution found.

In the next figure, the flowchart of this algorithm is presented.

40

Figure 4.3 Flowchart of the Optimal algorithm.

The algorithm begins by searching the tree in depth that is highlighted in the blue dashed rectangle.

This cycle continues until a solution is found which means that a leaf node was reached. If the solution

is better than the current upper bound, the upper bound is updated and that solution is saved as the

best one found yet. The next step is the breath search cycle represented inside the purple dashed

rectangle. First it checks if there are any more branches to visit in the last node. In case there is a

branch to visit, the respective solution is executed and the depth search starts again. If not, the

algorithm backtracks one node and repeats the previous check.

41

4.6 Input Data

The necessary information for this program to execute is now presented. The Excel file containing

information about the schedules, trains and lines is in the .xlsx format.

All the data is located in one single Excel file in the .xlsx format. This file contains three sheets where

the first sheet contains the schedule, the second sheet describes the trains, and the third sheet

describes the railway track.

4.6.1 Schedule Description

The schedule sheet must be named as “Schedule” and is presented as a timetable containing all

arrival and departure times for every train at every meetpoint. Below, in Table 4.4 is an example of a

timetable.

Table 4.4 Example of the Schedule sheet.

Meetpoint1 Meetpoint2 Meetpoint3

ARRIVALS DEPARTURES ARRIVALS DEPARTURES ARRIVALS DEPARTURES

101 0 10 15 15 22 1000

102 0 15 30 50 65 1000

103 0 30 36 42 48 1000

204 42 1000 36 37 0 32

205 65 1000 52 58 0 46

206 70 1000 10 50 0 5

The first column has to contain a list of all trains exactly in the same order as they appear in the train

sheet, starting with the outbound trains and then the inbound trains. The table must also include the

stations’ names in the first line and below the words ARRIVALS and DEPARTURES.

The times presented in the timetable are in minutes. The zero value means the train is at the station

since the beginning of the simulation. If a train is going to stay at a given station until the end of the

simulation period, a significantly large value is inserted (in the example this value was 1000).

4.6.2 Trains Description

In this second sheet, named “Trains”, is supposed to be all the necessary information about the trains

in the schedule. This sheet is composed by two tables that are now described. As in Table 4.5, the

number of inbound trains must be indicated first followed by the number of outbound trains. Then, in

the Table 4.6, the most important characteristics are the train identification and the train priority. The

train identification, like the one used by the real train dispatchers, is numeric and cannot contain

characters. The train type is an integer number ranging from 1 to 3.

42

Table 4.5 Example of the first table in the Trains sheet.

Number of Inbound Trains 3

Number of Outbound Trains 3

Table 4.6 Example of the second table in the Trains sheet.

TRAINS DESCRIPTION

ID TYPE LENGTH

101 1 1000

102 2 520

103 1 868

204 1 458

205 1 1000

206 3 940

The train length is also included in the file. Although it is not used in the program right now, it can be

useful in future improvements.

4.6.3 Railway Description

The railway sheet must be named as “Railway”, and includes information concerning stations and

segments. Like in the Trains sheet, this sheet also has two tables, one for the stations description and

another for the segments description.

Table 4.7 Example of the first table in the Railway sheet.

STATIONS DESCRIPTION

NAME CAP LENGTH DISTANCE

E1 12 1000 0

E2 3 1000 6

E3 8 1000 20

43

Table 4.8 Example of the second table in the Railway sheet.

SEGMENT

DESCRIPTION

NAME

T1

T2

Just like in Table 4.7, the name of each station is provided in the first column followed by their

capacities in the second column. The length of each station in the third column is not used in this

program but like the trains length, it can be useful for future improvements. As for the distance in the

last column, it indicates how far each station is from the first station of the railway line. This

measurement is always made in the outbound direction.

The second table, Table 4.8, is about the segments data and has only one column indicating their

identifications. This information is useful for the conflict report so as to help the dispatcher in tracing

the conflicts in the graphic.

4.7 Output Data

The output information is made in three different ways. The most important one is the representation

of each solution found in the form of train diagrams. The second is the creation of a new Excel file with

the final schedules free of conflicts, and the third is the respective creation of a conflict report for the

solutions found. These three formats are now presented in detail.

4.7.1 Train Diagrams

An example of a train diagram of this program is represented in Figure 4.4. These train diagrams

follow the standard type just like it was explained in Chapter 2. However, there are some additional

features now presented. The colours were introduced to represent train priorities being:

1. Green – Fast Passenger Train

2. Blue –Slow Passenger Train

3. Red –Freight Train

There are two lines for each train, a dashed line representing the initial route, and then the solid line

with the final train schedule. With these two lines, it is easier to detect what changes were made in the

initial schedule. The time horizon is also represented in the graphic as a vertical, light blue, dashed

line.

44

Figure 4.4 Example of the output of a train diagram.

4.7.2 Solution Schedules

For the recording of the final schedules, it is created a new Excel file with the same name of the input

file but appended with the string “Solution_” before the file name. For example, if the input file has the

name “Problem1.xlsx”, then the created output file will be “Solution_Problem1.xlsx”.

Within this file, there will be two sheets: one named “Heuristic” which contains the final schedule

obtained by the heuristic algorithm, and the second sheet named either “Optimal” or “Best”, depending

on the situation, that will also contain the respective final schedule.

The format of these timetables is exactly the same as the one described in Section 4.6.1.

4.7.3 Conflict Report

The conflict report is another description of the same solution represented in the final schedule, but in

a different format. The conflict report is in the .txt format and the name is also the concatenation of the

input file name with the string “_Conflict_Log_Heuri.txt” if it is the report of the heuristic solution. If the

solution reported is optimal, then the concatenated string will be “_Conflict_Log_Opti.txt”. Finally if the

solution is the best solution found, the added string will be “_Conflict_Log_Best.txt”.

The conflict report first indicates the cost of that solution. Then the conflict log begins with the report of

all the conflicts found and solved until the final schedule is achieved. This conflict log is another type of

45

information available for the dispatcher, helping him to trace the conflicts and so, making the reading

of the graphical timetable a lot easier. In Figure 4.5 is a small example of a conflict report of a heuristic

solution.

Figure 4.5 Example of a conflict report of a heuristic solution.

4.8 Application Description

This section aims to provide a detailed description of the application’s GUI.

The application is composed by a single window, divided into 7 areas, as shown in Figure 4.6

represents the state of the application after the rescheduling process is completed.

46

Figure 4.6 Application’s GUI.

The 7 areas will be described next:

1. Browser – This button opens a browser so that the user may select the input file.

2. Specifications – Panel where the dispatcher specifies the parameters for the search. The

maximum Time Search, the Time Horizon and the desired number of final solutions.

3. Cost Function – Area reserved for the selection of the intended cost function and the

respective weights for each priority.

4. Preview – This graphic is just a preview of the initial schedule to verify if the input data is

correct.

5. Start – As the name indicates, this is where the program begins the re-scheduling process.

6. Top Solutions – This chart indicates the ranking of the best solutions found, ordered by their

cost. The number of solutions displayed is the number of solutions inserted in the

specifications panel.

7. Train diagram – Panel where the dispatcher chooses which solution he wants to see in a

graphical timetable format. To visualise a solution from the Top Solutions chart, just insert the

ranking number in the text box and press show.

1

2

3

4

6

7

5

47

Chapter 5

Performance Evaluation

5 Performance Evaluation

This chapter aims to test the application developed. In each section, a set of tests is made regarding a

specific parameter of the program and then the respective result analysis is performed.

48

The development of any application of this kind is not finished without a serious and meaningful

evaluation of its performance. Therefore, this chapter aims to present and analyze the results of the

tests carried out to check this model’s efficiency. More specifically, the main objective of these tests is

to understand how the program is influenced by its input parameters. The parameters in study are:

1. Initial schedule

2. Time horizon

3. Number of Solutions

4. Cost function

5. Maximum search time

6. Upper Bound

Next, each one of these features will then be analyzed individually.

As it was said in Chapter 4, this program was implemented in MATLAB R2007b on the Windows XP

operating system, and all the experiments were conducted on a laptop with an Intel Pentium M 1.20

GHz processor and 1.23 GB of RAM.

In order to make these tests more credible, it would have been better to use some real-world

timetables. However, such data was not provided and so all the schedules used, were created by the

author of this Thesis. There are five schedules, each one with different number of trains and

meetpoints in order to evaluate the behavior of the algorithms in different complexity environments.

The schedules are presented in detail in Annex 1.

5.1 Initial Schedule

In this first test, it is intended to demonstrate how the increase in the complexity of the input schedule

affects the search for a solution. As for the other features, their input was as follows: the time horizon

considered for all these experiments was one day (24h); the maximum search time was established at

thirty minutes (1800 s); Also the number of requested solutions was one (1); finally, the cost function

used was the total weighted tardiness whose weights are the following:

• Priority 1 = 0.75

• Priority 2 = 0.20

• Priority 3 = 0.05

In Table 5.1 are presented the simulation results. In the first column is the identification number of the

input schedules which are ordered by their complexity. The number of initial conflicts indicates how

49

disturbed the initial schedule is at the beginning of the simulation. In the last two schedules, 4 and 5,

the optimal solution is not found before the maximum search time meaning the solutions presented

are not optimal but the best ones found in 1800 s. The limits columns presents values of the number

of times that each limit was used to stop the search. The train diagrams from all the solutions in Table

5.1 are presented in Annex 2

Table 5.1 Results for different initial schedules.

Input

Schedules
Trains Meetpoints

Initial

Conflicts

CPU Time (s) Weighted Tardiness Limits

Heuristic

Solution

Optimal

Solution

Heuristic

Solution

Optimal

Solution

Time

Horizon

Upper

Bound

1 6 3 8 2,63 2,58 37,35 23,80 79 429

2 12 6 11 2,52 3,97 101,55 44,30 10 353

3 12 24 22 3,01 944,89 46,54 43,72 62 141694

4 20 24 38 2,73 1800* 52,91 52,14 330 250591

5 40 24 240 6,09 1800* 321,9 382,27 669 205350

* Optimal Solution not found

Through the analysis of Table 5.1, the first and most important conclusion is that the more complex

and disturbed the schedule is, the longer it takes for the program to find the optimal solution. Quite

surprisingly, the algorithm that finds the heuristic solution is barely affected by this complexity

increase. Another good result is the quality of the proposed heuristic solution that revealed a near

optimal solution in most cases. In Schedule 5, the quality of the heuristic solution could even

overcome the thirty minute search of the optimal algorithm. This aspect will be analyzed later on

section 5.6. As for Schedule 2, this is a case where the optimal solution, with half the cost of the

heuristic solution, is found in just four seconds. This variety from schedule to schedule reinforces the

fact that independently of their complexity, schedules may change a lot from one another making

greedy algorithms less reliable. As for the limits used in the search for the optimal solution, the upper

bound limit revealed more effective than the time horizon limit. Nonetheless, the time horizon was at

its maximum value and for shorter time horizons it is obviously more useful.

5.2 Time Horizon

With this second test, it is expected to show if the variation in the time horizon can accelerate the

search for the optimal solution. Once again, it is important to clarify that the indicated solutions are

optimal but only within the time horizon limit. They are not the optimal solutions for the whole

schedule.

For this second set of simulations, the maximum search time, number of solutions and cost function

are the same of the previous tests.

50

Table 5.2 Variations in the time horizon.

Input

Schedules

Time Horizon

(h)

CPU Time (s) Weighted Tardiness

Heuristic

Solution

Optimal

Solution

Heuristic

Solution

Optimal

Solution

3

2 2,62 2,44 1,754 1,754

5 2,81 2,74 9,822 9,822

10 3,72 27,88 25,30 24,61

24 3,01 944,89 46,54 43,72

4

2 2,90 2,42 1,762 1,762

5 2,63 2,73 11,734 11,734

10 3,09 29,67 29,53 26,72

24 2,73 1800* 52,91 52,14

5

2 3,17 2,9 0,438 0,438

5 2,93 1800* 70,42 64,31

10 3,53 1800* 152,64 186,80

24 6,09 1800* 321,90 382,27

* Optimal Solution not found

By the inspection of Table 5.2, one can conclude that the decrease in the time horizon reduces

drastically the search time need to obtain an optimal solution. This result is of course expected since

that a short time horizon will ignore the majority of the future conflicts and so reducing the search

space. For Schedules 3 and 4, with a time horizon of ten hours, which is more than acceptable, the

algorithm is able to solve the conflicts optimally in less than thirty seconds. As for Schedule 5, the

densest schedule, the heuristic algorithm completely outperforms the optimal one for long time

horizons. Once more, this heuristic values lower than the optimal ones will be explained in Section 5.6.

5.3 Number of Solutions

This test aims to check if the increase in the number of requested solutions has a big influence on the

program performance. This hypothesis comes from the fact that, the higher the number of requested

solutions is, the higher the upper bound will be, and thus, less restrictive.

Once again the input parameters remain the same except for the time horizon that will be reduced to

ten hours.

51

Table 5.3 Variations in the number of solutions.

Input

Schedules

Number

of

Solutions

CPU Time (s)

Optimal

Solution

3

1 27,88

5 30,78

10 32,79

4

1 29,67

5 33,39

10 35,16

The tests reveal that the number of solutions is not relevant in the behavior of the program.

Differences like six seconds are not significant when talking about train dispatching. Besides, there is

probably more interest in having a set of feasible solutions available so that the dispatcher can have

more choice options.

5.4 Cost Function

The purpose of this test is to show how the heuristic solution may have different quality performances

with different cost functions. To do so, four different sets of weights were considered:

Table 5.4 Sets of weights for the weighted tardiness function.

 Priority 1 Priority 2 Priority 3

Set 1 0.7 0.2 0.1

Set 2 0.6 0.3 0.1

Set 3 0.5 0.4 0.1

Set 4 0.5 0.3 0.2

In order to be more realistic, there were two conditions that the above sets had to verify:

1) oYIpYIqr	 d oYIpYIqr� d oYIpYIqrs ;

2) oYIpYIqr	 7 oYIpYIqr��7�oYIpYIqrs � X ;

52

The case where all the weights are the same is also considered with the total tardiness cost function.

The time horizon is set to 10 h and the maximum search time was set to 300 s. Bellow in Table 5.6 are

the results of this experiment.

Table 5.5 Variations in the cost function.

Input

Schedules

Cost Function

Sets of Weights

Solution Cost

Optimal Heuristic

4

Weighted

Tardiness

Set 1 23,97 24,66

Set 2 29,97 31,27

Set 3 31,76 37,88

Set 4 27,23 30,00

Total tardiness _ 69,47 94,52

5

Weighted

Tardiness

Set 1 182,07 169,92

Set 2 170,94 174,50

Set 3 158,93 179,14

Set 4 161,52 209,23

Total tardiness _ 433,75 771,02

Analyzing the results, it may be concluded, as expected, that the gap between the heuristic solution

and the proposed optimal solution increases when the weights are more evenly distributed. The

heuristic algorithms performs as if all the weight is in the train with higher priority and hence these

results. It is now up to the dispatcher to analyze the different produced solutions and work with

different cost functions in order to decide which set of weights fits better to reality.

5.5 Maximum Search Time

The interest in studying the maximum search time is mainly to observe how fast does the algorithm

converge into an optimal solution. The input parameters are the same as in the first test.

To better illustrate how this algorithm behaves in time, the graphic in Figure 5.1 was made. The

solutions quality, or cost, is not presented in its absolute value but instead it is normalized to make

their comparison easier. Considering tOju the quality of the optimal solution and t� the quality of the

53

current solution, then the normalized quality t is defined as being t�vtOju . In Schedules 4 and 5, the

optimal solution considered was the one obtained at 1800 s.

In Table 5.6 are indicated the absolute cost values obtained in this experiment.

Table 5.6 Variations in the maximum search time.

Input

Schedules

Maximum Search Time (s)

15 30 60 300 600 1800

3 49,73 49,22 48,12 46,29 46,29 43,72*

4 59,79 56,22 55,72 54,12 54,12 52,14

5 386,22 386,12 385,84 385,62 382,27 382,27

*Optimal Solution found in 944s

Figure 5.1 Optimal algorithm performance.

As it was concluded in the first test, the more complex the schedule is, the longer it takes for the

program to obtain the optimal solution. This conclusion is once more evidenced in this graphic where

the lines are logarithmic tendency lines. These tendency lines are slightly overestimated because in

the normalization, the best solutions found at 1800 seconds, were considered as being the optimal

ones.

54

5.6 Upper Bound

With this set of tests, it is intended to study the effect of the initial upper bound value, in the

performance of the optimal algorithm. By default, the optimal algorithm does not take into

consideration the cost value of the heuristic solution. The initial value of the upper bound is set to

infinite. This decision was made so that the program could also consider solutions worse than the

heuristic solution and let the dispatcher analyze them in the end. The set back of this option is that, by

giving a high initial upper bound, the algorithm’s performance is affected and so, it might not be as

effective as it could.

Again, the input parameters are the same as in the first test.

Table 5.7 Variations in the upper bound initial value.

Input

Schedules
Initial Upper Bound

Maximum Search Time (s)

15 30 60 300 600 1800

3

Infinite 49,73 49,22 48,12 46,29 46,29 43,72 (944s)

Heuristic Solution = 46,54 46,54 46,54 46,54 46,54 46,54 43,72 (903s)

4

Infinite 59,79 56,22 55,72 54,12 54,12 52,14

Heuristic Solution = 52,91 52,91 52,91 52,91 52,91 52,91 51,95

To better illustrate the difference between the two situations, the graphics below were created. Like in

the previous section, these values are normalized to the optimal solution or in the case of schedule 4

to the best solution found in 1800s.

Figure 5.2 Optimal algorithm performance for schedule 3 with enhanced upped bound.

55

Figure 5.3 Optimal algorithm performance for schedule 4 with enhanced upper bound.

For these two schedules, the improvement of the upper bound was not very obvious. In schedule 3,

the algorithm took about 40 seconds less to obtain the optimal solution in a 15 min time search which

is not very relevant. As for Schedule 4, after the 1800 s time limit, the solution produced by the

enhanced upper bound was slightly better than the other.

Maybe, for longer time searches and with some more experiments, the results could have been more

conclusive.

56

57

Chapter 6

Conclusions and Future Work

6 Conclusions and Future Work

This chapter finalizes this report by presenting to the reader a brief summary of the solutions

developed as well as some conclusions followed by prospects for future work.

58

6.1 Summary and Conclusions

Chapter 1, introduced the problem addressed in this Thesis, highlighting that the growing interest in

railway lines, and the need to make them more profitable, justifies the development of a system that

optimizes train control operations. Chapter 2 structured the problem at hand, by dividing the models

into two main types: fixed speed models, and variable speed models. As it was intended for the

developed program to be as real as possible, a variable speed model was chosen.

Chapter 3 first presented the architecture of the developed solution and its relation with the dispatcher.

After the models assumptions and inputs are defined, a mathematical formulation of this optimization

problem was formally introduced. In order to validate the model created for conflict detection, two

theorems and the consequent corollary were defined and demonstrated. It was therefore concluded,

that this conflict detection method is valid, and reduces the complexity of the detection algorithm.

Still in Chapter 3, all types of conflict resolutions were explained in detail. In particular, the capacity

conflicts revealed the most complex ones to solve, but with the advantage of giving more realism to

the model.

Finally, two resolution methods for re-scheduling were proposed. One was the heuristic solution,

which is a greedy algorithm that provides a solution for the problem in a short amount of time by

means of a local decision criterion. The second method was the optimal solution, an algorithm that

checks for all the possibilities, by using a search tree and a branch-and-bound technique. In order to

make the optimal search less exhaustive and more useful in real-time, the time-horizon and the

maximum search time were adopted. With a proper management of this search parameters, the

dispatcher may solve a conflict in a short amount of time, pushing the conflicts further on, and gaining

precious time for another search, looking for better results.

Chapter 4 described in detail the algorithms of the main modules of the program: the conflict detection,

the heuristic solution and the optimal solution. In order to offer all the information needed by the user,

to make a proper use of the application, the input and output data was shown as well as the

applications’ GUI.

In Chapter 5, tests were executed to evaluate the performance of the program and then the results

were analyzed. The heuristic algorithm performed fast in all situations, independently of the complexity

of the initial schedule. The quality of its solutions was mainly near optimal but, as expected for a

greedy algorithm, there were cases were the proposed solution was far from optimal.

The optimal algorithm depends very much on the complexity of the initial schedule. Nonetheless, the

time horizon parameter revealed very effective, with the tradeoff of shortening the validity of the

solution. The number of requested solutions has almost no effect on the performance and provides the

dispatcher with a set of useful different solutions.

In summary, it can be said that the tests revealed good results and that with the correct choice of

parameters, this application represents a powerful tool to help the dispatcher.

59

Despite the positive results, some improvements can be made in the developed application. These

improvements were left for future work and are discussed in the next section.

6.2 Future Work

Despite the encouraging results obtained, the solution developed still leaves room for improvements:

Introduction of a good lower bound estimator – This improvement may accelerate the optimal

search and so, enabling the program to achieve better results in a shorter amount of time

Length restriction – To make this model even more realistic, there could be additional restrictions

related with the train length. For example, in trains longer than the meetpoints’ length, there can be no

meet or pass.

More tests – So as to give more credibility to this model, it would be necessary to run tests with real

cases and compare them with the dispatcher’s decisions.

Cost functions – There are many cost functions that may suit better to reality, depending on the

situation. Therefore, some more cost functions should be introduced, to give the dispatcher a wider

range of options.

Heuristic Algorithm – The heuristic solution has also a lot of room for improvements. It could weight

its decisions based on the selected cost function to improve its quality.

In conclusion, there is still a lot of research to do in the field of re-scheduling, and the objective of

finding optimal solutions in feasible time will continue to be a difficult task.

60

61

Annex 1

Input Files

Annex 1 Input Files

This appendix includes some of the input files used in the tests

62

Schedule 1

Schedule Sheet:

Meetpoint1 Meetpoint2 Meetpoint3

ARRIVALS DEPARTURES ARRIVALS DEPARTURES ARRIVALS DEPARTURES

101 0 10 15 15 22 1000

102 0 15 30 50 65 1000

103 0 30 36 42 48 1000

204 42 1000 36 37 0 32

205 65 1000 52 58 0 46

206 70 1000 10 50 0 5

Trains sheet:

Number of Inbound Trains 3

Number of Outbound Trains 3

 TRAINS DESCRIPTION

 ID TYPE LENGTH

 101 1 1000

 102 2 520

 103 1 868

 204 1 458

 205 1 1000

 206 3 940

Railway Sheet:

STATIONS DESCRIPTION

SEGMENT DESCRIPTION

NAME CAP LENGTH DISTANCE

NAME

 E1 12 1000 0

T1

 E2 3 1000 6

T2

 E3 8 1000 20

63

Schedule 2

Schedule Sheet:

E1 E2 E3 E4 E5 E6
ARRIV DEPART ARRIV DEPART ARRIV DEPART ARRIV DEPART ARRIV DEPART ARRIV DEPART

0 5 25 30 61 65 80 82 105 115 170 180

240 245 265 270 301 305 320 322 345 355 410 420

410 415 435 440 471 475 490 492 515 525 580 590

640 645 665 670 701 705 720 722 745 755 810 820

810 815 835 840 871 875 890 892 915 925 980 990

960 965 985 990 1021 1025 1040 1042 1065 1075 1130 1140

160 500 140 147 105 110 90 90 61 65 8 8

320 660 300 307 265 270 250 250 221 225 168 168

435 775 415 430 385 390 365 370 336 340 283 283

575 915 555 570 525 535 505 510 476 480 423 423

665 1005 645 660 615 625 595 600 566 570 513 513

785 1125 765 780 740 740 715 720 686 690 633 633

Trains sheet:

Number of Inbound Trains 6

Number of Outbound Trains 6

 TRAINS DESCRIPTION

 ID TYPE LENGTH

 101 3 1000

 102 2 520

 103 2 868

 104 1 541

 105 1 1002

 106 3 1546

 201 2 124

 202 1 652

 203 2 658

 204 1 458

 205 1 1000

 206 3 940

Railway Sheet:

STATIONS DESCRIPTION

SEGMENT DESCRIPTION

NAME CAP LENGTH DISTANCE

NAME

 E1 12 1000 0

T1

 E2 3 1000 25

T2

 E3 8 1000 85

T3

 E4 7 1000 134

T4

 E5 4 1000 160

T5

 E6 12 1000 230

6
4

S
c
h
e
d
u
le
 3

S
c
h
e
d
u
le
 S
h
e
e
t:

E

1

E
2

E
3

E
4

E
5

E
6

E
7

E
8

E
9

E
1
0

E
1
1

E
1
2

A

R
R

IV
 D

E
P

A
R

T
 A

R
R

IV
 D

E
P

A
R

T

A

R
R

IV
 D

E
P

A
R

T
 A

R
R

IV
 D

E
P

A
R

T

A

R
R

IV
 D

E
P

A
R

T
 A

R
R

IV
 D

E
P

A
R

T

A

R
R

IV
 D

E
P

A
R

T
 A

R
R

IV
 D

E
P

A
R

T

A

R
R

IV
 D

E
P

A
R

T
 A

R
R

IV
 D

E
P

A
R

T

A

R
R

IV
 D

E
P

A
R

T
 A

R
R

IV
 D

E
P

A
R

T

1
0
1

0

5

8

8

1
0

1
8

2
8

3
0

4
0

4
3

5
5

5
5

5
8

5
8

6
5

6
8

7
5

7
5

8
3

8
3

9
2

9
7

1
0
2

1
0
7

1
0
2

2
0
0

2
0
5

2
0
8

2
0
8

2
1
0

2
1
8

2
2
8

2
3
0

2
4
0

2
4
3

2
5
5

2
5
5

2
5
8

2
5
8

2
6
5

2
6
8

2
7
5

2
7
5

2
8
3

2
8
3

2
9
2

2
9
7

3
0
2

3
0
7

1
0
3

3
7
5

3
8
0

3
8
3

3
8
3

3
8
5

3
9
3

4
0
3

4
0
5

4
1
5

4
1
8

4
3
0

4
3
0

4
3
3

4
3
3

4
4
0

4
4
3

4
5
0

4
5
0

4
5
8

4
5
8

4
6
7

4
7
2

4
7
7

4
8
2

1
0
4

5
7
5

5
8
0

5
8
3

5
8
3

5
8
5

5
9
3

6
0
3

6
0
5

6
1
5

6
1
8

6
3
0

6
3
0

6
3
3

6
3
3

6
4
0

6
4
3

6
5
0

6
5
0

6
5
8

6
5
8

6
6
7

6
7
2

6
7
7

6
8
2

1
0
5

7
7
5

7
8
0

7
8
3

7
8
3

7
8
5

7
9
3

8
0
3

8
0
5

8
1
5

8
1
8

8
3
0

8
3
0

8
3
3

8
3
3

8
4
0

8
4
3

8
5
0

8
5
0

8
5
8

8
5
8

8
6
7

8
7
2

8
7
7

8
8
2

1
0
6
 1

0
5
0

1
0
5
5

1
0
5
8

1
0
5
8

1
0
6
0

1
0
6
8

1
0
7
8

1
0
8
0

1
0
9
0

1
0
9
3

1
1
0
5

1
1
0
5

1
1
0
8

1
1
0
8

1
1
1
5

1
1
1
8

1
1
2
5

1
1
2
5

1
1
3
3

1
1
3
3

1
1
4
2

1
1
4
7

1
1
5
2

1
1
5
7

2
0
1

2
6
0

5
0
0

2
4
8

2
5
5

2
3
0

2
4
3

2
2
0

2
2
5

2
1
3

2
1
3

2
0
8

2
0
8

2
0
0

2
0
3

1
9
3

1
9
3

1
8
5

1
8
5

1
8
3

1
8
3

1
7
0

1
7
5

1
5
3

1
5
3

2
0
2

4
3
5

6
7
5

4
2
3

4
3
0

4
0
5

4
1
8

3
9
5

4
0
0

3
8
8

3
8
8

3
8
3

3
8
3

3
7
5

3
7
8

3
6
8

3
6
8

3
6
0

3
6
0

3
5
8

3
5
8

3
4
5

3
5
0

3
2
8

3
2
8

2
0
3

6
1
0

8
5
0

5
9
8

6
0
5

5
8
0

5
9
3

5
7
0

5
7
5

5
6
3

5
6
3

5
5
8

5
5
8

5
5
0

5
5
3

5
4
3

5
4
3

5
3
5

5
3
5

5
3
3

5
3
3

5
2
0

5
2
5

5
0
3

5
0
3

2
0
4

8
8
5

1
1
2
5

8
7
3

8
8
0

8
5
5

8
6
8

8
4
5

8
5
0

8
3
8

8
3
8

8
3
3

8
3
3

8
2
5

8
2
8

8
1
8

8
1
8

8
1
0

8
1
0

8
0
8

8
0
8

7
9
5

8
0
0

7
7
8

7
7
8

2
0
5
 1

0
6
0

1
3
0
0

1
0
4
8

1
0
5
5

1
0
3
0

1
0
4
3

1
0
2
0

1
0
2
5

1
0
1
3

1
0
1
3

1
0
0
8

1
0
0
8

1
0
0
0

1
0
0
3

9
9
3

9
9
3

9
8
5

9
8
5

9
8
3

9
8
3

9
7
0

9
7
5

9
5
3

9
5
3

2
0
6
 1

2
3
5

1
4
7
5

1
2
2
3

1
2
3
0

1
2
0
5

1
2
1
8

1
1
9
5

1
2
0
0

1
1
8
8

1
1
8
8

1
1
8
3

1
1
8
3

1
1
7
5

1
1
7
8

1
1
6
8

1
1
6
8

1
1
6
0

1
1
6
0

1
1
5
8

1
1
5
8

1
1
4
5

1
1
5
0

1
1
2
8

1
1
2
8

E
1
3

E
1
4

E
1
5

E
1
6

E
1
7

E
1
8

E
1
9

E
2
0

E
2
1

E
2
2

E
2
3

E
2
4

A
R

R
IV

 D
E

P
A

R
T

 A
R

R
IV

 D
E

P
A

R
T

A

R
R

IV
 D

E
P

A
R

T
 A

R
R

IV
 D

E
P

A
R

T

A

R
R

IV
 D

E
P

A
R

T
 A

R
R

IV
 D

E
P

A
R

T

A

R
R

IV
 D

E
P

A
R

T
 A

R
R

IV
 D

E
P

A
R

T

A

R
R

IV
 D

E
P

A
R

T
 A

R
R

IV
 D

E
P

A
R

T

A

R
R

IV
 D

E
P

A
R

T
 A

R
R

IV
 D

E
P

A
R

T

1
1
1

1
1
6

1
2
1

1
2
5

1
3
0

1
3
5

1
4
0

1
4
4

1
4
9

1
5
4

1
5
9

1
6
3

1
6
8

1
7
3

1
7
7

1
8
2

1
8
7

1
9
2

1
9
6

2
0
1

2
0
6

2
1
0

2
1
5

2
2
0

3
1
1

3
1
6

3
2
1

3
2
5

3
3
0

3
3
5

3
4
0

3
4
4

3
4
9

3
5
4

3
5
9

3
6
3

3
6
8

3
7
3

3
7
7

3
8
2

3
8
7

3
9
2

3
9
6

4
0
1

4
0
6

4
1
0

4
1
5

4
2
0

4
8
6

4
9
1

4
9
6

5
0
0

5
0
5

5
1
0

5
1
5

5
1
9

5
2
4

5
2
9

5
3
4

5
3
8

5
4
3

5
4
8

5
5
2

5
5
7

5
6
2

5
6
7

5
7
1

5
7
6

5
8
1

5
8
5

5
9
0

5
9
5

6
8
6

6
9
1

6
9
6

7
0
0

7
0
5

7
1
0

7
1
5

7
1
9

7
2
4

7
2
9

7
3
4

7
3
8

7
4
3

7
4
8

7
5
2

7
5
7

7
6
2

7
6
7

7
7
1

7
7
6

7
8
1

7
8
5

7
9
0

7
9
5

8
8
6

8
9
1

8
9
6

9
0
0

9
0
5

9
1
0

9
1
5

9
1
9

9
2
4

9
2
9

9
3
4

9
3
8

9
4
3

9
4
8

9
5
2

9
5
7

9
6
2

9
6
7

9
7
1

9
7
6

9
8
1

9
8
5

9
9
0

9
9
5

1
1
6
1

1
1
6
6

1
1
7
1

1
1
7
5

1
1
8
0

1
1
8
5

1
1
9
0

1
1
9
4

1
1
9
9

1
2
0
4

1
2
0
9

1
2
1
3

1
2
1
8

1
2
2
3

1
2
2
7

1
2
3
2

1
2
3
7

1
2
4
2

1
2
4
6

1
2
5
1

1
2
5
6

1
2
6
0

1
2
6
5

1
2
7
0

1
2
3

1
2
5

1
1
3

1
1
5

9
0

9
0

7
0

7
2

5
8

6
0

5
4

5
4

4
8

5
0

4
5

4
5

3
8

3
8

3
3

3
5

2
8

2
8

0

2
5

2
9
8

3
0
0

2
8
8

2
9
0

2
6
5

2
6
5

2
4
5

2
4
7

2
3
3

2
3
5

2
2
9

2
2
9

2
2
3

2
2
5

2
2
0

2
2
0

2
1
3

2
1
3

2
0
8

2
1
0

2
0
3

2
0
3

1
7
5

2
0
0

4
7
3

4
7
5

4
6
3

4
6
5

4
4
0

4
4
0

4
2
0

4
2
2

4
0
8

4
1
0

4
0
4

4
0
4

3
9
8

4
0
0

3
9
5

3
9
5

3
8
8

3
8
8

3
8
3

3
8
5

3
7
8

3
7
8

3
5
0

3
7
5

7
4
8

7
5
0

7
3
8

7
4
0

7
1
5

7
1
5

6
9
5

6
9
7

6
8
3

6
8
5

6
7
9

6
7
9

6
7
3

6
7
5

6
7
0

6
7
0

6
6
3

6
6
3

6
5
8

6
6
0

6
5
3

6
5
3

6
2
5

6
5
0

9
2
3

9
2
5

9
1
3

9
1
5

8
9
0

8
9
0

8
7
0

8
7
2

8
5
8

8
6
0

8
5
4

8
5
4

8
4
8

8
5
0

8
4
5

8
4
5

8
3
8

8
3
8

8
3
3

8
3
5

8
2
8

8
2
8

8
0
0

8
2
5

1
0
9
8

1
1
0
0
 1

0
8
8

1
0
9
0
 1

0
6
5

1
0
6
5
 1

0
4
5

1
0
4
7
 1

0
3
3

1
0
3
5
 1

0
2
9

1
0
2
9
 1

0
2
3

1
0
2
5
 1

0
2
0

1
0
2
0
 1

0
1
3

1
0
1
3
 1

0
0
8

1
0
1
0
 1

0
0
3

1
0
0
3

9
7
5

1
0
0
0

65

Trains sheet:

Number of Inbound Trains 6

Number of Outbound Trains 6

 TRAINS DESCRIPTION

 ID TYPE LENGTH

 101 1 1000

 102 2 520

 103 1 868

 104 1 541

 105 1 1002

 106 3 1546

 201 2 124

 202 1 652

 203 2 658

 204 1 458

 205 1 1000

 206 3 940

Railway Sheet:

STATIONS DESCRIPTION

SEGMENT DESCRIPTION

NAME CAP LENGTH DISTANCE

NAME

 E1 12 1000 0 T1

 E2 3 1000 6 T2

 E3 8 1000 20 T3

 E4 7 1000 50 T4

 E5 4 1000 52 T5

 E6 4 1000 70 T6

 E7 7 1000 85 T7

 E8 4 1000 100 T8

 E9 8 1000 114 T9

 E10 7 1000 129 T10

 E11 5 1000 144 T11

 E12 4 1000 159 T12

 E13 8 1000 174 T13

 E14 7 1000 188 T14

 E15 3 1000 203 T15

 E16 5 1000 218 T16

 E17 4 1000 233 T17

 E18 8 1000 248 T18

 E19 5 1000 262 T19

 E20 8 1000 277 T20

 E21 8 1000 292 T21

 E22 4 1000 307 T22

 E23 6 1000 322 T23

 E24 15 1000 336

67

Annex 2

Test Results

Annex 2 Test Results

In this annex are the train diagrams of the tests from Section 5.1.

68

Schedule 1

Figure A2.1 Problem 1 Initial Schedule.

Figure A2.2 Problem 1 Heuristic Solution.

69

Figure A2.3 Problem 1 Optimal Solution.

70

Schedule 2

Figure A2.4 Problem 2 Initial Schedule.

Figure A2.5 Problem 2 Heuristic Solution.

71

Figure A2.6 Problem 2 Optimal Solution.

72

Schedule 3

Figure A2.7 Problem 3 Initial Schedule.

Figure A2.8 Problem 3 Heuristic Solution.

73

Figure A2.9 Problem 3 Optimal Solution.

74

Schedule 4

Figure A2.10 Problem 4 Initial Schedule.

Figure A2.11 Problem 4 Heuristic Solution.

75

Figure A2.12 Problem 4 Best Solution Found.

76

Schedule 5

Figure A2.13 Problem 5 Initial Schedule.

Figure A2.14 Problem 5 Heuristic Solution.

77

Figure A2.15 Problem 5 Best Solution Found.

79

References

References

[Adenso-Díaz99] Adenso-Díaz B., González M.O., González-Torre P., “On-line timetable re-

scheduling in regional train services”, Transp. Res.- Part B, vol. 33, no.6, pp. 387-398,

Aug.1999.

[Cordeau98] Cordeau J.F., Toth P., Vigo D., “A survey of optimization models for train routing and

scheduling”, Transp. Sci., vol.32, no. 4, pp. 380-404, 1998.

[D’Ariano07a] D’Ariano A., Pranzo M., Hansen I.A., “Conflict resolution and train speed coordination

for solving real-time timetable perturbations”, IEEE Transaction on intelligent transportation

systems, vol.8, NO.2, june 2007.

[D’Ariano07b] Andrea D’Ariano, Dario Pacciarelli, Marco Pranzo, “A branch and cound algorithm for

scheduling trains in a railway network”, European Journal of Operational Research 183 (2007)

643-657.

[Hellström99] Hellström P., Sandblad B., Frej I., Anders Gideon, “An evaluation of algorithms and

systems for Computer-Aided Train Dispatching”, School of Engineering, S-78188 Borlänge,

Sweden.

[Higgins95] Higgins A.,, Ferreira. L., Kozan E., “Modelling single line train operations”, Transportation

Research Record 1498, Journal of the Transportation Research Board, Railroad

Transportation Research, pp 9-16.

[Higgins96] Higgins A.,, Ferreira. L., Kozan E., “Optimal scheduling of trains on a single line track”,

Transportation Research – Part B, 30B (2), 147-161.

[Mascis02a] Alessandre Mascis, Dario Pacciarelli, Marco Pranzo, “Models and Algorithms for Traffic

Management of Rail Networks”, RT-DIA-74-2002.

[Mascis02b] Alessandro Mascis, Dario Pacciarelli, “Job-shop scheduling with blocking and no-wait

constraints”, European Journal of Operational Research 143 (2002) 498-517.

[Medanic02] Medanic J., Dorfman M.J., “Efficient Scheduling of Traffic on a Railway Line”, Journal of

Optimization Theory and Applications: Vol.115, No. 3, pp. 587-602, December 2002.

[Sahin99] Sahin I., “Railway traffic control and train scheduling based on inter-train conflict

management”, Transp. Res.- Part B, vol. 33, no.7, pp. 511-534, Sep. 1999.

[Zhou2006] Zhou X., Zhong M.“Single-track train timetabling with guaranteed optimality”,

Transportation Research – Part B, 41 (2007), 320-341.

