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Resumo

Esta tese apresenta um mecanismo de supervis~ao que �e capaz de estabilizar qualquer

rede de �las de espera, n~ao ac��clica, com m�ultiplas classes e com uma pol��tica de

sequenciamento distribu��da. �E necess�ario que a Condi�c~ao de Intensidade de Tr�afego

seja respeitada assim como algumas restri�c~oes menores nas distribui�c~oes de servi�co

e de chegada de clientes. Este mecanismo �e baseado no conceito de Inactividade

Activa. Este conceito representa a capacidade do sequenciador manter o servidor

inactivo mesmo na presen�ca de clientes �a espera de serem processados. Esta ca-

pacidade pode parecer um desperd��cio de recursos, mas o importante �e olhar para a

rede de �las de espera como um todo. O que parece ser uma perda de recursos para

um servidor, pode de facto ser extremamente ben�e�co para o desempenho de toda

a rede de �las de espera.

A tese apresenta uma poss��vel implementa�c~ao deste conceito denominada Con-

trolador de Janela Temporal e ilustra n~ao s�o a sua capacidade para estabilizar, mas

tamb�em para melhorar o desempenho de algumas redes de �las de espera, est�aveis,

n~ao ac��clicas e com m�ultiplas classes, independentemente da medida de desempenho

em considera�c~ao.

Palavras-chave: Redes de Filas de Espera, Sequenciamento Distribu��do, Estabili-

dade, Pol��ticas \Idling", Inactividade Activa.
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Abstract

This thesis presents a supervisory mechanism that is able to stabilize any non-

acyclic, stochastic, multiclass queuing network with a distributed scheduling policy.

The TraÆc Intensity Condition has to hold as well as some mild assumptions on

the service and arrival distributions.

This mechanism is based on the Active Idleness concept. ByActive Idleness it is

meant the scheduler's ability to force inactivity on the server, even in the presence of

work. Although this ability appears as leading to a waste of the available resources,

the important factor is to look at the queuing network as a whole. What might

appear as a loss of resources when looking to an individual server, could in fact be

highly bene�cial for the performance of the entire queuing network.

The thesis presents one possible implementation of the concept, termed Time

Window Controller, and illustrates its ability to, not only stabilise, but also improve

the performance of some stable non-acyclic, stochastic, multiclass queuing networks,

independently of the performance measure under consideration.

Key-words: Queuing Networks, Distributed Scheduling, Stability, Idling Policies,

Active Idleness.
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Chapter 1

Introduction

The objective of this thesis is to present a di�erent perspective on the stability

of multiclass queuing networks. The need of this new perspective comes from a

series of remarkable results, published in the last decade, regarding the stability of

multiclass, non-acyclic, queuing networks.

It was once thought that if a queuing network had enough resources to process the

rate of customers arriving to it, then the number of customers inside the network

would stay bounded, meaning that it would be stable. The order by which the

customers are processed in each server was considered irrelevant to the stability

of the network. The only requirement seemed to be that each server does not stop

processing as long as there are customers waiting. The question of the order by which

customers are processed was only considered when dealing with the performance of

the network.

This conjecture was questioned by the discovery of several examples of queuing

networks that although possessing enough resources to cope with the arriving rate of

customers, presented an unstable behaviour due to their scheduling policy. Meaning

that the order by which customers are served has an important role in the stability

of some queuing networks.

With these new results, the main path followed by the queuing networks research

community was to develop new methodologies that take into account the scheduling

1



2 CHAPTER 1. INTRODUCTION

policy at each server to determine the queuing network's stability.

This thesis sustains that the stability of a queuing network only depends on its

topology. The topology of a network includes the number of servers, how they are

connected, how do the customers 
ow through it, and the characteristics of the ar-

rival process and service times. The main point is that an unstable queuing network

that possesses the necessary resources can be made stable by slightly changing the

working of its scheduling policy. This approach is oriented with a Systems Theory

and Control view, since the objective is not to determine if a given queuing network

is stable, but if that queuing network can be stabilized, with an appropriate choice

of policy.

The main contribution of this thesis concerns the development of a mechanism

that performs that slight change in the scheduling policies, stabilizing in that form

the queuing network.

To achieve this objective, a new concept, denominated Active Idleness, is pre-

sented in this thesis. This concept represents the ability of forcing a server to stay

idle even in the presence of customers waiting to be served. Although this concept

may initially appear contradictory due to the link that is usually made between

idleness and waste of resources, this thesis will demonstrate that this concept is a

key to the stabilization of multiclass, non-acyclic, queuing networks.

To implement this concept in a real setting, a supervisory mechanism denom-

inated Time Window Controller or TW Controller is presented. This mechanism

represents an instance of the Active Idleness concept. This mechanism consist on

assigning to each class in the queuing network a fraction of the available resources. If

a given class uses more than its share of resources, it is blocked from being processed

by a certain amount of time.

With the TW Controller, it is possible to stabilized any non-acyclic, multiclass,

queuing network that is unstable due to its scheduling policy. This thesis presents
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a series of experimental results obtained with di�erent networks to corroborate this

statement. Those experiments include the demonstration of the stabilization of the

following systems:

� A two server system under FIFO, [Dai, 1995].

� A two server system under a bu�er priority scheduling policy, [Lu and Kumar,

1991].

� A four server system under FIFO, [Seidman, 1994].

It will also be demonstrated that the Active Idleness concept in the form of

the TW Controller is not only able to stabilized, but is also able to improve the

performance of a queuing network. Even when the queuing network is originally

stable.

The relevant contributions of this thesis are:

� Stability should be considered a property of the queuing network which does

not depend on its control policy.

� Active Idleness is a key to the stabilization of multiclass, non-acyclic, queuing

networks.

� A simple and e�ective implementation of the Active Idleness concept is pre-

sented in the form of the Time Window Controller

� A formal demonstration and several experimental results demonstrate the

ability of the Time Window Controller to stabilized any unstable pair net-

work/policy that respects some minor technical assumptions.

� The Time Window Controller is not only able to stabilized, but is also able to

improve the performance of some networks, even when the pair network/policy

is stable.
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1.1 Thesis Outline

This thesis is divided in �ve chapters and includes two appendices. This chapter

presents an introduction to the work presented in the thesis and highlights its main

contributions. It also presents a brief review of the contents of each chapter and

appendices.

The second chapter, entitled Literature Review, presents a review of the relevant

literature for this thesis and introduces some important concepts needed in the

following chapters. It starts by a brief review of some queuing network concepts,

followed by a review of the stability problem for queuing networks. The following

sections present some relevant work in the areas of manufacturing systems and data

networks, ending with a presentation of the purpose of this thesis taking into account

the work described previously.

The third chapter introduces the main concepts and theoretical results of the

thesis. The �rst section presents the concept of Active Idleness and the reasons why

this concept is a key to the stabilization of multiclass, non-acyclic, queuing networks.

The following section rigorously presents an instance of that concept named Time

Window Controller. The third section presents a series of results regarding the use

of the Time Window Controller, specially a demonstration of its ability to stabilize

multiclass, non-acyclic, queuing networks, under some minor technical assumptions.

The fourth chapter presents a series of experimental results that corroborate the

theory presented in Chapter 3. It starts by a brief overview of the software developed

to obtain the experimental results. It then follows with the presentation of the used

network topology to obtain the experimental results. The experimental results for

the TW Controller are divided in three parts. The �rst deals with the stabilization

properties, the second with the sensitivity to its parameters, and the last part deals

with the performance improvement properties.

The last chapter presents the main conclusions and contributions of this thesis



1.1. THESIS OUTLINE 5

and presents some paths for future work.

The thesis also includes two appendices presenting a series of experimental re-

sults. These results concern the application of the TW Controller to two di�erent

queuing networks. They serve as a complement to corroborate the analysis presented

in Chapter 4.
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Chapter 2

Literature Review

This chapter presents a review of the relevant literature for this thesis and introduces

some concepts and de�nitions necessary in the following chapters. Section 1 presents

a review of the main concepts and literature regarding queuing networks with em-

phasis on those relevant to this thesis. Section 2 discusses the queuing network

stability problem and the relevant literature associated to it. Section 3 addresses

the main results obtained by the application of the queuing network methodology to

manufacturing systems, specially to semiconductor manufacturing systems. Section

4 presents some relevant research developed by the data networks community, and

the last section uses the previous sections to place this thesis in context.

2.1 Queuing Networks

Queuing networks is one of the most used tools to model Discrete Event Dynamic

System (DEDS) [Cassandras and Lafortune, 1999]. Figure 2.1 presents an example

of a single server queuing network.

Customers arrive to the network entering into the queue where they wait their

turn to be processed. The server chooses customers from the queue to process. After

being processed, the customers leave the queuing network. This simple example

presents the three main entities in a queuing network:

7



8 CHAPTER 2. LITERATURE REVIEW

Figure 2.1: Examples of a single server queuing network.

� Customers, also known as parts (manufacturing systems) or packages (data

networks).

� Servers, also referred sometimes as service stations.

� Queues, also referred sometimes as bu�ers.

The number of customers waiting in a queue can alternatively be designated as

the queue's inventory.

A queuing network is constituted by two parts: the queuing network topology and

a control policy. The queuing network topology contains the layout of the network in

the form of the routing each customer must follow. The topology also includes the

description for the customer arrival and processing time distributions.

The control policy performs two functions: controlling the admission of new

customers into the queuing network, which is usually referred as the admission

policy and deciding how each server processes customers, which is known as the

scheduling policy. Although all queuing networks must have a scheduling policy, it

is not mandatory to possess an admission policy.

Queuing networks are divided in two major classes: open queuing networks and

closed queuing networks. The di�erence is that while in open queuing networks

customers arrive and leave the queuing network at a variable rate, in closed queuing

networks the number of customers is �xed, or the entry of new customers into the
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system is controlled by an admission policy.

The queuing network topology can be classi�ed in two groups. The �rst group

named acyclic queuing networks, is characterized by the non existence of cycles in

the 
ow of customers. The second group named non-acyclic queuing networks does

not have any restrictions on the routing of customers. Figure 2.2 presents examples

of these two groups.

Figure 2.2: Examples of queuing network topologies: acyclic (left) and non-acyclic
(right).

The models for the arrival and processing of customers can be classi�ed into

deterministic and stochastic models. A typical example of a stochastic model for

the arrival of customers to the queuing network is the Poisson process [Ross, 1996].

For the processing time of customers, a typical model is the exponential distribution

[Ross, 1987].

The scheduling policy of a queuing network is classi�ed by two main properties:

locality and idleness. The locality of a scheduling policy refers to the amount of

information that the scheduling policy needs to perform its scheduling decisions. A

scheduling policy can be classi�ed concerning its locality as a distributed (local) or

non-local scheduling policy.

� In a distributed (local) scheduling policy, each server performs its scheduling

decisions using information that is local to the server or its respective cus-

tomers.
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� In a non-local scheduling policy, each server uses some or all the information

contained in the entire queuing network to perform its scheduling decisions.

The idleness of a scheduling policy refers to the ability of a server to stay idle

even in the presence of customers waiting to be processed.

� In a idling scheduling policy, each server has the possibility of staying idle even

when there exist customers to be processed.

� In a non-idling scheduling policy, each server will keep processing customers

as long as there exist customers waiting to be served.

There exists a large number of scheduling policies for queuing networks. In a de-

terministic model, it is possible to compute the entire scheduling of customers, since

the future in perfectly known [French, 1982, Conway et al., 1967]. In stochastic mod-

els the future of the queuing network is unknown. Several scheduling policies have

been developed to deal with this problem. [Graves, 1981, Panwalkar and Iskander,

1977] present a review of several distributed scheduling policies for queuing networks.

Figure 2.3: Example of a single class queuing network.

A queuing network is classi�ed concerning the existence of multiple classes as

a single class or a multiclass queuing network. In a single class queuing network,

all customers arriving to a given server are indistinguishable. That is, indepen-

dently of the their past history, they are processed in the same manner. Figure 2.3
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presents an example of a single class queuing network. [Jackson, 1957] presented

a detailed description of the modeling and analysis of some types of single class

queuing networks, also known as Jackson networks.

In a multiclass queuing network, there exists the possibility of a server di�eren-

tiating customers by their past history and in consequence process those customers

in di�erent manners. Note, for example that a Jackson network is not a multiclass

queuing network because for each server all customers are indistinguishable. Figure

2.4 presents an example of a multiclass queuing network.

Figure 2.4: Example of a multiclass queuing network.

The �gure presents a queuing network topology constituted by three servers,

where each processes two classes of customers. Note that although in the �gure

each class has an associated queue, that is not actually required in a physical imple-

mentation, since usually there is a single queue for each server. The server recognizes

the customer class by a tag attached to it.

In the remainder of this thesis three distributed scheduling policies will be re-

ferred in several occasions. For the convenience of some readers, those policies are

presented in the following de�nitions.

De�nition 2.1 (First In First Out (FIFO)). In the First In First Out

scheduling policy, each server chooses for processing the customer that arrived

�rst to the server, independently of its class.
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De�nition 2.2 (First Bu�er First Served (FBFS)). In the First Bu�er

First Served scheduling policy, each server chooses to process the customer be-

longing to the lower class available at the server. Customers of the same class

are served by their order of arrival. Note that for this policy it is necessary that

each class number corresponds to the processing stage of the customer, that is,

class k corresponds to the kth processing operation that the customer received

since entering the network.

De�nition 2.3 (Last Bu�er First Served (LBFS)). The Last Bu�er First

Served scheduling policy is similar to the FBFS, with the exception that priority

is given by each server to the customers belonging to the higher class. That is,

serve �rst the class closer to exiting the system.

2.2 Stability of Queuing Networks

Determining the stability of a queuing network is of crucial importance since it

determines the ability of the queuing network to process all the customers arriving

to the system within reasonable bounds in terms of the 
ow time.

The classical method to determine the stability of a queuing network is to com-

pute the invariant probability distribution for the number of customers in the queuing

network [Kleinrock, 1975, Kelly, 1979, Walrand, 1988]. The stability of the queuing

network is then obtained by computing the average value of the invariant distribu-

tion, which if �nite implies the stability of the queuing network.

The problem with this method is that outside the narrow class of queuing net-

works possessing a product form solution, that is, single class queuing networks

using the FIFO scheduling policy, it is very rare to obtain an explicit solution for

the computation of the invariant distribution [Kelly, 1979, Baskett et al., 1975].

Independently of those diÆculties, the queuing networks community conjectured
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that the stability problem was linked to the question of whether each server in the

queuing network had enough resources to process all customers that arrive to the

queuing network. This idea was materialized in a stability condition known as

the TraÆc Intensity Condition, which is a necessary stability condition but was

also conjectured to be a suÆcient stability condition. Before presenting the TraÆc

Intensity Condition, it is �rst necessary to present the de�nition of TraÆc Intensity.

De�nition 2.4 (TraÆc Intensity). Consider a multiclass queuing network

composed of I single server stations. �ki is the mean processing time of class k

at server i and �ki the mean arrival rate of class k at server i. Ni is the number

of classes processed by server i.

The TraÆc Intensity at server i is computed by the following expression:

�i =

NiX
k=0

�ki :�
k
i (2.1)

Note that class k of server i is associated with a virtual bu�er in the service

station i that corresponds to a speci�c processing stage of the customer.

The TraÆc Intensity Condition requires for all servers i = 1; :::; I that �i < 1.

This condition is necessary but was also conjectured to be suÆcient to guarantee

the stability of a queuing network.

This conjecture only looked to one part of the queuing network, that is, it dis-

regarded the scheduling policy implemented at each server. Ignoring the scheduling

policy when looking to the stability of the queuing network appeared as an accept-

able decision, since as long as the scheduling policy does not imply a reduction of

capacity at each server in such a way that the TraÆc Intensity Condition is not

violated, then the network should be stable independently of the scheduling policy

in use. The only constraint on the scheduling policy the above argument requires,

is for it to be non-idling or work-conserving.
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This conjecture was questioned with the discovery of several examples of queuing

networks that, although respecting the TraÆc Intensity Condition, presented an un-

stable behaviour. [Lu and Kumar, 1991] presented an example of a queuing network

topology with two servers and four classes that in conjunction with a non-idling

bu�er priority scheduling policy resulted in an unstable queuing network. [Rybko

and Stolyar, 1992] also presented an example of an unstable queuing network under

a bu�er priority scheduling policy. [Seidman, 1994] presented a queuing network

topology with four servers and twelve classes that is unstable under the First In

First Out scheduling policy. This result showed that even this simple scheduling

policy presented stability problems. Bramson in [Bramson, 1994a, Bramson, 1994b]

presented a rigorous demonstration of the instability of the FIFO scheduling policy

for some queuing network topologies.

The problem was that although the traÆc intensity condition appeared to work

for several queuing networks (e.g. Jackson Networks), the above authors were able

to present examples of queuing networks where the scheduling policy gained a more

relevant role due to the inclusion of non-acyclic 
ows. These non-acyclic 
ows in

conjunction with the scheduling policy created a starvation phenomena between the

service stations, invalidating the TraÆc Intensity Condition conjecture.

After these results, the queuing networks research community started to develop

new methodologies to deal with the stability problem. The goal was to develop a

mathematical framework that when applied to a given queuing network, would be

able to provide suÆcient conditions for its stability. [Chen and Zhang, 2000] present

in their introduction a review of some of those methodologies.

The foremost methodology has been to transform the queuing network in an

equivalent 
uid model and to use the latter one for studying the stability of the

queuing network [Dai, 1995, Dai and Meyn, 1995, Chen, 1995].

This approach is based on a result �rst established in [Rybko and Stolyar, 1992]
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and then generalized in [Dai, 1995] that a queuing network is stable if its correspond-

ing 
uid network is stable. [Bramson, 1999] presents an example that demonstrates

that the reverse is not true, that is, an unstable 
uid model does not imply that the

original queuing network is unstable.

An e�ective method for studying the stability of 
uid network is to identify a

Lyapunov function of a 
uid network. [Chen, 1995] and [Kumar and Meyn, 1995]

used quadratic Lyapunov functions.

[Bertsimas et al., 1996] proposed a linear program that could also establish a

necessary and suÆcient condition for the global stability of a two station queuing

network. [Dai and Weiss, 1996] used linear piecewise Lyapunov functions to establish

the stability of several queing networks. Another important result was provided in

[Dai et al., 1999], where an example of a three station multiclass queuing network

is presented, for which the the stability region is not monotone in terms of the

processing time of each customer class.

The diÆculties with these methodologies, is their dependence on sophisticated

analytical tools that require several conditions to be met by the queuing network.

The results obtained are sometimes partial in the sense of only providing the stability

condition for a subset of the possible parameter space.

There are several scheduling policies which are known to be stable for any queu-

ing network topology. One of those is the Head-of-the-Line Proportional Processor

Sharing (HLPPS) scheduling policy. In this scheduling policy, the total capacity at

each service station is shared between the classes waiting to be served, proportion-

ally to their processing times. [Bramson, 1998] demonstrated that this scheduling

policy is stable for any queuing network topology as long as the TraÆc Intensity

Condition is true. This demonstration is only applicable to continuous systems,

where all classes are served simultaneously at a rate dependent of the capacity al-

located to it. The transposition of this scheduling policy to discrete time systems
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was performed by the data networks community in the form of the Packet-by-Packet

General Processor Sharing (PGPS) [Parekh and Gallager, 1993] and the Weighted

Fair Queuing (WFQ) [Demers et al., 1990] scheduling policies. The ability of this

scheduling policy to be stable for any queuing network topology comes from the fact

that it separates the queuing network in to a set of tandem queues for which the traf-

�c intensity condition is still a valid conjecture to be a suÆcient stability condition

(in the case of a Markovian system the conjecture has already been demonstrated

to be true).

Another point that is important to this discussion on the stability of queuing

networks regards the properties of idling scheduling policies. Currently, the methods

developed to deal with the stability of queuing networks require the scheduling policy

of the network to be non-idle. This requirement is due to the extra complexity that

idling policies bring in the form of an extra degree of freedom, since each server

not only has to choose the next customer to serve, but it also has the possibility

of staying idle. This degree of freedom destroys the analytical properties that non-

idling policies have and that are essential for those methods. The requirement of

only using non-idling scheduling policies might initially appear as a small drawback,

since idling policies appear at a �rst glance as a waste of capacity.

The notion of idling policies being looked as a waste of capacity is a very common

conception. The truth is that idling policies present very interesting properties

regarding the stability of queuing networks. [Perkins and Kumar, 1989] were able

to guarantee the stability of their scheduling policy for non-acyclic queuing network

by the inclusion of an idling behaviour to the scheduling policy. Another way where

the idling behaviour has been used to solve stability problems is through the use of

regulators. The notion of regulator presented in [Anantharam and Konstantopoulos,

1994] was used in [Humes Jr., 1994] and [Winograd and Kumar, 1996] to present

some solution to the stability question. Regulators have also been studied regarding
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their use for solving the problem of the quality of service in a data network [Turner,

1986].

2.3 Manufacturing Systems

The queuing networks methodology has for long been extensively applied to the

modeling and analysis of manufacturing systems. The more complex manufacturing

system to which the queuing network methodology has been applied is Semicon-

ductor Manufacturing systems. These systems are especially complex due to the

non-acyclic topology they possess and for that reason are especially relevant to this

thesis. Figure 2.5 presents an example of a model for a semiconductor manufacturing

line.

[Kumar, 1993] presents a review of results regarding re-entrant lines. A re-

entrant line is a non-acyclic queuing network with only one entry and exit point,

which is a very common type of topology in semiconductor manufacturing facilities.

[Wein, 1988] studied the impact of scheduling in semiconductor wafer fabrication

facilities, comparing a variety of admission and scheduling rules. He concluded that

a larger performance improvement could be obtained by an appropriate choice of the

admission policy than from the scheduling policy. This meant that the admission

policy should be looked as the important component of the system control.

[Lu et al., 1994] presented a new class of scheduling policies, called Fluctuation

Smoothing, and in the same line of the previous work by Wein, presented a detailed

statistical analysis of several admission and scheduling policies for a semiconductor

wafer fabrication facility. Contrary to the conclusions of Wein, this article presented

a new family of scheduling policies named Fluctuation Smoothing (FS), that is able

to obtain a signi�cant performance improvement, even using the best admission

policy of Wein. This results clearly showed that contrary to the results of Wein, the

scheduling policy is as important as the admission policy.
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The previous article also demonstrated that the Fluctuation Smoothing (FS)

policies are able to obtain a better performance than all other policies presented in

the article. The problem is that FS policies are non-local and of complex implemen-

tation, as discussed in [Nakata et al., 1999].

Figure 2.5: Model of a semiconductor manufacturing line (from [Lu et al., 1994]).
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2.4 Data Networks

The �eld of data networks [Tanenbaum, 1996, Keshav, 1997, Bertsekas and Gallager,

1987], has evolved at a stunning speed over the last decades. The \information age"

requires the development of increasingly complex data network systems [Comeford,

2000]. To deal with the increasing complexity of those systems, it is necessary to

employ complex modelling techniques for their study. Queuing networks is one of

the techniques that has been applied to the modelling of data networks [Bertsekas

and Gallager, 1987, Cassandras and Lafortune, 1999].

The question of queuing network stability is not a primary concern in this �eld,

since the existence of non-acyclic queuing networks like those presented in Figure

2.5 is very rare or even non-existent.

The research area on data networks that is of interest to this thesis is the area

that deals with the Quality of Service (QoS) guarantees for a data network. This

area deals with the problem of providing performance guarantees for the customers

of a data network. One example of this problem is the current e�ort to provide

multimedia applications (ex. audio and video conference, multimedia information

retrieval, etc.) over the Internet. This requires that the network provides guaran-

tees with respect to bandwidth, packet delay, delay jitter, and loss. To enable the

network to provide this type of guarantees, the customers must specify their traÆc

characteristic so that the network is able to provide a quality of service guarantee by

reserving and scheduling network resources in accordance with those speci�cations.

Although this problem does not appear directly linked to the question of the

stability of a queuing network, it is obvious that requiring that a queuing network

provides certain QoS guarantees is a much stronger requirement than requiring that

the queuing network is stable.

The objective is to look at the methodologies used to solve this problem for some

insight into possible solutions to the the question of stability. This idea is not new
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since in [Bramson, 1998] it was stated that the manufacturing systems community

should look into the work being developed by the data networks community.

Given the traÆc speci�cation of the customers, there are several scheduling poli-

cies that are able to provide QoS guarantees. [Zhang, 1995] provides a review of some

of those scheduling policies. They are divided into work-conserving (non-idling) and

non-work-conserving (idling) scheduling policies. Table 2.1 presents some of the

work-conserving scheduling policies and table 2.2 presents some of the non-work-

conserving scheduling policies.

Table 2.1: Work conserving scheduling policies for QoS guarantees.
Scheduling Policy References
Virtual Clock [Zhang, 1991]
PGPS (packet-by-packet GPS) [Parekh and Gallager, 1993]

[Parekh and Gallager, 1994]
WFQ (weighted fair queuing) [Demers et al., 1990]
SCFQ (self-clocked fair queuing) [Golestani, 1994]
WF 2Q (worst-case fair WFQ) [Bennet and Zhang, 1996]
Delay-EDD (delay-earliest-due-date) [Ferrari and Verma, 1990]
Frame-based fair queuing [Stiliadis and Varma, 1996]

Table 2.2: Non-work conserving scheduling policies for QoS guarantees.
Scheduling Policy References
JITTER EDD (jitter earliest-due-date) [Verma et al., 1991]
RCSP (rate-controlled static priority) [Zhang, 1995]
Hierarchical roud robin [Zhang and Ferrari, 1993]
Stop-and-go queuing [Golestani, 1991]

Some authors were able to develop a joint approach to this problem by inves-

tigating speci�c combinations of traÆc conditions and scheduling policies [Cruz,

1991a, Cruz, 1991b, Parekh and Gallager, 1993, Parekh and Gallager, 1994].

Of special interest are scheduling policies like the WFQ or PGPS. These policies

are based on the General Processor Sharing (GPS) scheduling policy, which con-
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sist on splitting the resources at the server between the several customers that are

sending traÆc to it. This ensures that none of the customers is allowed to use the

resources at the expense of denying a share of resources to the traÆc sent by the

other customers.

The scheduling policy is not able to guarantee the QoS of a queuing network if

some of the customers are unable to respect the agreed traÆc speci�cations. To solve

this problem the concept of regulator was developed. One possible implementation

is the Leaky Bucket Regulator presented in [Anantharam and Konstantopoulos, 1994]

and graphically described in Figure 2.6.

Figure 2.6: Example of the Leaky Bucket Regulator.

The Leaky Bucket Regulator works as follows. There exists a Token Bu�er with

a �nite size C that receives Tokens at a constant rate �. Packets arriving to the

regulator are sent to the server queue, consuming in the process a certain number of

Tokens proportional to the packet size. If there are not enough Tokens in the Token

Bu�er, then the packet will stay in the regulator bu�er until enough Tokens arrive

to allow the packet to be able to pass to the server queue.

Adding a regulator to the traÆc sources in a queuing network, guarantees that

they will comply with the agreed traÆc speci�cation since any deviation to that

speci�cation will be �ltered by the regulators in the form of an increase of the in-

ventory at the regulator queue. Figure 2.7 presents an example of a server with
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two regulators. When analyzing the behaviour of the system that results from the

reunion of the regulators plus the server, it is possible to conclude that it can in

some situations present an idling behaviour, since there is the possibility of exist-

ing inventory at the entrance of the regulators but none at the server entrance due

to token exhaustion. This implies that the server will stay idle even with packets

trapped behind the regulators waiting to be processed.

Figure 2.7: Graphic description of the use of regulators for a two class server.

A related area of interest is the question of Service Di�erentiation in a data

network. This problem regards the control of a queuing network were there is a

hierarchy of classes to which the customers belong. A possible example of this

problem is an Internet Service Provider with di�erent services. It is in the interest

of the service provider to always serve at a faster rate the services that require short

response time (ex. IP telephony) than those that allow longer response times (ex.

FTP session).

This problem can be addressed by several methodologies. But in [Dovrolis and

Ramanathan, 1999] it was shown that by using an appropriate scheduling algorithm

which shares the resources proportionally to the class level provides better results

than other methods based on class priority or on price schemes.
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2.5 A Di�erent Perspective

Taking into account the discussion presented in the previous sections, there exists a

dichotomy regarding queuing networks stability.

� It is always possible to de�ne a scheduling policy that renders any queuing

network unstable { for instance, adding too much idle time.

� If a network topology respects the TraÆc Intensity Condition, then there are

several scheduling policies that render the queuing network stable { for in-

stance, Least Slack rule, [Lu et al., 1994].

This dichotomy leads to conclusions like either the same queuing network is

stable or unstable depending on its control policy. Any of the conclusions depends

on the scheduling policy being used. This thesis looks at stability in a di�erent

perspective.

When analyzing a queuing network, the �rst and foremost question, is if the net-

work is stable. Due to the above dichotomy, a negative answer does not imply that

a change in the control policy might make the network stable. It seems then more

appropriate to regard stability as a question of whether a given queuing network

might be stabilized or not. With this change of perspective, the stability question

is only linked to the network topology and not to a speci�c scheduling policy, be-

coming an intrinsic property of the queuing network. This way, a negative answer

implies that there exists no control policy that renders the queuing network stable.

Another question this thesis addresses, which results from the discussion in the

previous sections, regards the separation between admission policies and scheduling

policies. It will be shown in the next chapters that the proposed solution to the

stability question also brings the uni�cation of the admission policy and scheduling

policy into a single framework.
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Chapter 3

The Time Window Controller

This chapter presents the concept of Active Idleness and an implementation of that

concept named Time Window Controller. The �rst section introduces the reasons

behind the concept of Active Idleness and the implementation of the Time Window

Controller. The second section presents a rigorous description of the Time Window

Controller. The last section presents the properties of the Time Window Controller,

specially a demonstration of its ability to stabilize unstable queuing networks.

3.1 Introduction

From the discussion in Chapter 2 there are two important conclusions. The �rst

is that it appears that the TraÆc Intensity Condition is not a suÆcient stability

condition for non-acyclic queuing networks. The second conclusion is that idling

policies present some interesting features in what concerns their potential to stabilize

queuing networks, which requires further study.

The diÆculty concerning stability in non-acyclic, multiclass, queuing networks

resides on the strong coupling between di�erent classes served by any given server

and the impact this coupling may have on subsequent servers and classes. The

majority of the authors tries to look at the stability problem as that of the pair

topology/scheduling policy. This thesis claims that stability is an intrinsic property

25
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of the topology. The perspective of this thesis is that a queuing network is stable

if there is one scheduling policy that renders the system stable. One can think

of many policies that make one system unstable. One instance is a policy that

shuts down the server whenever there is work above some bound. Clearly, if the

probability of reaching that bound is non zero, then the queue will grow inde�nitely

with probability one after some time. On the other hand, there are scheduling

policies, like the Least Slack Rule, that guarantee that a queuing network is stable

as long as it respects the TraÆc Intensity Condition. With this perspective, the

TraÆc Intensity Condition can again be considered a suÆcient condition.

The objective of this thesis is not to simple say that if a queuing network under

a given scheduling policy is unstable, although respecting the TraÆc Intensity Con-

dition, the solution is to simply change the scheduling policy to one that guarantees

the stability of the queuing network, like the Least Slack Rule. The objective is to

eliminate the phenomena that brings unstable behaviour to multiclass, non-acyclic,

queuing networks.

The discussion will concentrate on non-idling distributed scheduling policies,

which correspond to all the examples presented in the previous chapter. The reason

why networks can in some instances present an unstable behaviour (considering

stability for the pair topology/scheduling policy) is that each server does not perceive

the in
uence of its actions on the performance of the entire network.

In a non-idling scheduling policy, each server will keep processing customers as

long as there are customers waiting to be served. This behaviour seems appropriate,

since staying idle when there exist customers waiting to be served seems a waste of

resources, contributing to a degradation of the performance. But this is a line of

thought that only looks to the performance of each server individually. It does not

take into account how these decisions can a�ect the performance of the network as

a whole, specially in non-acyclic queuing networks.
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Another question regards the fairness of treatment between classes in multiclass

queuing networks. Scheduling policies like FIFO do not take into account how the

resources of each server are being divided between classes, and given they are local

scheduling policies, they are not able to foresee how their choice of class to process

a�ects the performance of the entire network.

It is the combination of these two e�ects, non-idleness and myopic behaviour

regarding classes, that may lead a multiclass, non-acyclic, queuing network to insta-

bility. Examples of this have been published and Chapter 4 will present experimental

evidence of this assertion.

The solution proposed in this thesis is to provide the scheduling policy with the

minimum amount of non-local and static information that guarantees the stability

of the queuing network. The reason of keeping the information to a minimum and

static is to keep the scheduling policy distributed and simple to compute. This way

each server continues to take its decisions locally, with a small set of parameters that

are static in time and contain some kind of information about the entire network.

The advantage of this framework is that there is no need to construct a central

controller that gathers information from the entire network.

The question resides on how should this non-local information be introduced into

the workings of the scheduling policy. This thesis presents for that end the concept of

Active Idleness. The Active Idleness concept represents the ability to force a server

to stop processing a given class and in some occasions even stay idle in the presence

of customers to be processed. Note that what is meant with this concept is that

each server in multiclass queuing networks, with a non-idling scheduling policy, will

in certain occasions be prohibited of processing certain classes of customers, or even

processing any customer, thus transforming the original policy into an idling policy.

The implementation of this concept resides on using the non-local information to

insert in each server the appropriate amount of active idle time.
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Why should this approach succeed in stabilizing a queuing network that is un-

stable, due to its non-idling and distributed scheduling policy? The reason resides

in the fact that an appropriate use of Active Idleness can in fact insert the change

in the myopic behaviour of the scheduling policy at each server, so that it takes into

account the needs of the entire queuing network.

The main question resides in the development of an application of this concept

that is able to ful�ll the expectations described above. This thesis presents a super-

visory mechanism named Time Window Controller, or TW Controller, that is added

to the scheduling policy at each server. The main objective of the TW Controller

is to decouple the queuing network through Active Idleness into a series of tandem

queues by splitting the resources at each server among its respective classes. It is

this splitting that guarantees no server in the network to become starved of a certain

class due to the behaviour of another server.

For the TW Controller to be able to decouple the queuing network through

splitting the resources at each server among its classes, it must �rst measure the

amount of resources used by each class. For that, the TW Controller will use the

processing history of each class to compute the amount of server resources used by

that class. The objective is not to compute the long term server resource usage by

each class, but to use a short/medium term measure, so that it corresponds to the

current status of the network. With this measure, the TW Controller can restrict

the amount of resources used by each class to a maximum value. With this scheme

it is easy to decouple the queuing network. For that, it is only necessary to divide

the resources available at the server between the classes it serves. This split requires

that the sum of the maximum amount of resources that are used by each class is

less or equal to the total available at the server. Figure 3.1 presents an example

of this idea. The TW Controller is set to ensure that class 1 only gets 30% of the

available resources, while class 2 gets 20%, and class 3 gets 50%. As long as the
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short term occupation of the server by each class obeys those fractions, the single

server behaves as if there would be three servers, each serving a single class.

Figure 3.1: Example of the resource splitting approach of the TW Controller.

Note that the TW Controller decouples the queuing network through the schedul-

ing policy, that is, if a class exceeds its maximum resource level, the TW Controller

will not allow the server to process customers of that class. At �rst, this seems

similar to the Generalized Processor Sharing approach. The next section will show

it is not so.

3.2 The Time Window Controller

Consider an open, multiclass, queuing network composed of I single server stations.

Customers inside the queuing network are members of classes (or bu�ers) which

correspond to virtual bu�ers linked to a speci�c operation in a given server. The

network is populated by K classes, where customers of class k arrive to the net-

work via an exogenous arbitrary arrival process with independent and identically

distributed interarrival times f�k(n); n � 1g. It is allowed for some k that �k(n) =1

for all n, in which case the external arrival process to class k is null. A customer

of class k, after being served at a unique server j, written j = s(k), or conversely,
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k 2 c(j), becomes a customer of class R(k), where R is a bijective function that

represents the routing map for the queuing network.

Given an arbitrary probability distribution for the processing time of each cus-

tomer, denote by �k the mean processing time for customers of class k. Customers of

di�erent classes are not allowed to merge into a single class or to split into di�erent

classes. For each class k de�ne F (k) as:

F (k) =

8>><
>>:

k if class k has an non-null exogenous arrival rate.
j if k has a null exogenous arrival rate, where j is

the class with a non-null exogenous arrival rate that
feeds customers to class k.

(3.1)

Note that, since there are no splitting or merging of classes, F (k) is an injective

function. For each class k let �k =
1

E[�f(k)(1)]
. One interprets �k as the e�ective mean

arrival rate of class k.

The class of queuing networks described above requires the use of a deterministic

routing for the customers and does not allow assembly or disassembly operations

in the form of merging or splitting customers of di�erent classes. In the remainder

of this thesis, when referring to a multiclass queuing network, it corresponds to a

queuing network which respects the previous conditions.

The TW Controller will be presented in a constructive way, where �rst a series

of de�nitions corresponding to its building blocks are introduced. Then, this section

culminates with the de�nition of the Time Window Controller. The �rst of those is

the de�nition of the Time Window associated to a class.

De�nition 3.1 (Time Window). Consider a class k of a multiclass, non-

acyclic, queuing network. The Time Window associated to that class is de�ned

as the �nite time interval that starts at the current system time tc and extends

Tk time units into the past.
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The Time Window of a class represents the amount of the class history that

will be needed by the TW Controller. The use of a �nite size window is not only

due to memory and computational requirements, but is also essential to achieve the

short/medium term objectives set to the TW Controller, as will be shown in the

next section.

Figure 3.2: Example of the Time Window for a class k.

Figure 3.2 represents a time diagram of the processing times for several customers

of a given class. Each �lled rectangle represents a customer. The Time Window for

this class is represented in the �gure by the large rectangle that starts at the current

system time tc and includes all the customers processed in the previous Tk time

units. As time progresses, the Time Window slides to keep up with the system's

evolution. The next de�nition is that of the Processing History associated to a class.

De�nition 3.2 (Processing History). For each customer i of class k, de�ne

tstartk;i and tendk;i as the start and �nish time instants for the processing of that

customer. The Processing History of class k is de�ned as a function Hk(t) given

by:

Hk(t)
0�t�tc

=

�
1 if tstart(k;i) � t � tend(k;i) 8i

0 otherwise
(3.2)

The Processing History associated to a class represents a function that describes

the amount of time used by the server to process customers of that class. The
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objective is to obtain a chronological description of the processing time used by

each class from the corresponding server.

Figure 3.3: Example of Hk(t).

Figure 3.3 presents an example of a possible Processing History for class k. The

next de�nition presents the concept of the Time Fraction of a class k at a given time

t:

De�nition 3.3 (Time Fraction). The Time Fraction of class k with a Time

Window of size Tk at time t is de�ned as fk(t) and is computed by the following

expression:

fk(t) = �k:
1

Tk

Z t

t�Tk

e�k :(��t):Hk(�)d� (3.3)

where �k 2 [0;1[, is the Smoothing Parameter and �k is a normalization pa-

rameter, given by:

�k =
�k

1� e��k:Tk
(3.4)

The Time Fraction of a class represents the fraction of the total time contained in

its Time Window during which the server was processing customers of that class. It

clearly represents a measure of the amount of server resources assigned to customers

of that class. If �k = 0, it measures the exact time fraction allocated to class k over

the Time Window span.

The need to use an exponential function to smooth the class Processing History

is to eliminate sudden changes on the Time Fraction value of a class. The objective
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is that when computing the Time Fraction, the more recent processing history has

a larger weight to the computation than the processing history near the end of the

Time Window. Figure 3.4 presents an example of the type of behaviour that could

arise without a smoothing function.

Figure 3.4: Example of the behaviour of the class Time Fraction without a smooth-
ing function.

The �gure represents the evolution of class k Time Fraction between time in-

stants t1 and t2. At time instant t1 the server starts processing a customer of class

k. At time instant t2, one previous processed customer leaves the scope of the Time

Window. The problem is the in
uence of that previous processed customer on the

class Time Fraction. Since that customer was processed in a distant past relative

to the Time Window, it should not present such a large in
uence in comparison

to customers that were processed more recently. This behaviour would be reduced

with the use of an appropriate exponential smoothing function.

Since the Time Window width is �nite, it was necessary to include the normal-

ization factor �k. This guarantees that, if during the entire Time Window the server

is always processing customers of a given class, the computed value for the Time
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Fraction of that class will be 1.

Figure 3.5 presents an example of the computation of the Time Fraction for a

class. The graphic contains the exponential smoothing function and the starting and

ending instants of several customers of this class that were served during the present

Time Window. The Time Fraction is the sum of the total area of the graphic. To

compute the Time Fraction of a given class at time t it is only necessary to have

the Processing History contained in the class Time Window.

Figure 3.5: Computation of the Time Fraction.

The last concept necessary for the presentation of the TW Controller is the

concept of Blocked class, which has the following de�nition:

De�nition 3.4 (Blocked class). A class k is said to be Blocked at time t with

parameter fmaxk if fk(t) > fmaxk , where fmaxk is the Maximum Time Fraction

allowed for class k.

A Blocked class is simply a class that has exceeded the Maximum Time Fraction

fmaxk that was awarded to it. Since the Time Fraction fk(t) is a measure of the

server resources used by class k in its Time Window, the Maximum Time Fraction

fmaxk represents the maximum level of resources that class k can use in its Time

Window without becoming Blocked.
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Finally, by using the previous de�nitions it is now possible to present a de�nition

of the Time Window Controller.

De�nition 3.5 (Time Window Controller). Let ! be a multiclass, non-

acyclic, queuing network, where each service station is controlled by the non-

idling scheduling policy �. The Time Window Controller for this queuing net-

work consists on assigning to each class k a Maximum Time Fraction fmaxk and

a Time Window with parameter Tk for which it is possible to compute the Pro-

cessing History Hk(t) with a Smoothing Parameter �k. Each service station

performs its scheduling decisions using policy � with the exception that, when

performing a scheduling decision at time t, all classes that are Blocked should

be considered empty of customers.

The de�nition states that the TW Controller is described by a set of parameters

(�k; Tk; f
max
k ) with k = 1:::K. The functioning of the TW Controller is very simple.

Each time a server has to make a scheduling decision, the TW Controller calculates

the Time Fraction of all classes in that server. If any class has a Time Fraction

higher that its Maximum Time Fraction, then the TW Controller blocks that class

from the set of classes from which the server can remove customers to process. This

procedure restricts the server's scheduling options, since it can only use a subset of

the entire set of available customers.

The only interference of the TW controller in the original scheduling policy re-

sumes to the possibility of not allowing the scheduling policy to use a given class

because it is Blocked. Thus, there is the possibility that at a certain time the schedul-

ing policy is not able to choose a customer to be processed because all customers

are in classes that are blocked. In this case the server becomes idle, not because the

server is empty of customers, but because the TW Controller forbids the scheduling

policy of using the available customers. For this reason this type of idleness is termed

as Active Idleness since it is imposed by the TW Controller on the scheduling policy
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and not a consequence of actual absence of customers. Naturally, idleness incurred

for actual lack of customers, would be considered as Passive Idleness. Figure 3.6

presents a graphic example of this concept.

Figure 3.6: Example of Active Idleness.

The �gure illustrates a server that processes customers of three di�erent classes.

There exist 10 customers of class 1, 8 customers of class 2 and no customers of

class 3. In the situation presented, class 1 and 2 have their Time Fractions larger

than their respective Maximum Time Fractions, which means that those classes

are Blocked. Class 3 has a Time Fraction lower than its Maximum Time Fraction

but, since there are no customers of that class, the server is unable to process any

customers, although there are customers of class 1 and 2. This situation clearly

represents an instance where the server becomes idle due to an active imposition by

the TW Controller which corresponds to the concept of Active Idleness.

During the queuing network evolution, when a class becomes blocked the server

will no longer be able to process any of its customers, which implies that its corre-

sponding Time Fraction will decrease with time, guaranteeing that in some point in

the future it will cease to be Blocked. Note that adding the TW Controller to the

queuing network does not imply that the scheduling policy is no longer distributed.

Each server, in essence, has a TW Controller with the (�k; Tk; f
max
k ) parameters
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corresponding to the classes it processes.

3.3 Properties of the Time Window Controller

Given the description of the TW Controller presented in the previous section, the

�rst property that is possible to deduce is presented in the following theorem.

Theorem 3.1. There is a choice of (�k; Tk; f
max
k ) such that the performance of

a multiclass, non-acyclic, stochastic queuing network with the TW Controller

can be at least as good as that of the original queuing network, independently

of the performance measure under consideration.

Proof: The proof is straightforward. If the Maximum Time Fraction of each class,

fmaxk , is assigned to a unitary value, then for any value of Tk and �k none of the

classes will ever be Blocked, which implies that the original scheduling policy will

never be interrupted by the TW Controller. �

Remark 3.1. Given that the choice of (�k; Tk; f
max
k ) in Theorem 3.1 is a feasi-

ble instance of the TW controller, it constitutes an upper bound on the queuing

network's performance.

Theorem 3.1 guarantees that there is an instance of the TW Controller that

in essence makes it non existent by not allowing it to interfere with the original

scheduling policy. Remark 3.1 takes that property of the TW Controller into ac-

count to stress that there may exist other instances where the performance of the

queuing network is improved in regard to the one obtained with the original policy.

Note that this is only a possibility. If the original scheduling policy is the optimal

for the network, then there is no instance of the TW Controller that improves its

performance.
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The second property of the TW Controller represents the main contribution of

this thesis. It concerns the stabilization properties of the TW Controller and will

demonstrate its ability to stabilize a large class of queuing networks. It requires only

that the queuing network respects the TraÆc Intensity Condition and some mild

assumptions on the service and arrival distributions. First it is necessary to present

the following de�nition:

De�nition 3.6. Let 
T be the set of all multiclass queuing networks with a

single class per service station, a single entry point for new customers, and only

one exit point. The set 
TS is de�ned as the subset of 
T for which the TraÆc

Intensity Condition is a suÆcient stability condition.

The objective of this de�nition is to present the set of tandem queuing networks

for which the TraÆc Intensity Condition is a suÆcient stability condition. This

de�nition is needed because there are queuing networks that belong to the set 
T

but are not members of the set 
TS. For example, by the Pollaczek-Khinchin formula

[Cassandras and Lafortune, 1999], a GI/GI/1 queue may have an unbounded queue

length when the arrival and processing times are modeled by heavy tail distributions

[Adler, 1998]. Note that 
TS contains a large number of queuing networks including,

for example, all Markovian tandem queuing networks.

Finally, the following theorem presents the stabilization property of the TW

Controller.

Theorem 3.2. Consider a queuing network ! with I service stations and K

classes. Each service station is controlled by the non-idling scheduling policy

� and the queuing network respects the TraÆc Intensity Condition. Each cus-

tomer of class k has a maximum processing time  k. There is a set of parameters

(�k; T k; f
max

k ) such that the TW Controller with those parameters is able to:
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a) Decouple the queuing network ! into M networks, !m, with m = 1; :::M ,

for some M � K. Each !m 2 
T .

Let 
dec be the set of all !m.

b) If 
dec is contained in 
TS, then the TW Controller with parameters

(�k; T k; f
max

k ) is a stable policy for the original queuing network.

Proof: The proof will be presented in two parts. First, a method to compute an

instance (�k; T k; f
max

k ) of the TW Controller is presented. Next, it will be demon-

strated that with these parameters, the TW Controller is able to accomplish the

two properties described in the theorem.

Consider a multiclass queuing network !. Since the queuing network respects

the TraÆc Intensity Condition, the following expression is true for each server i of

the queuing network !.

KX
k=1

�k:�k:�(i; k) + "i = 1 for i = 1; :::; I and "i > 0; (3.5)

with �(i; k) =

�
1 if k 2 c(i);
0 otherwise:

Equation 3.5 presents a di�erent version of the TraÆc Intensity Condition as

originally presented in Chapter 2. This di�erence is due to the manner in which the

classes in the queuing network are named. In de�nition 2.1 each class was associated

to the respective server while in equation 3.5 each class has a unique value. The

value "i represents the slack available at server i. This slack guarantees that the

resources at the server are above those required by the customer arrival rate.

Choose for �k and f
max

k the following values:
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�k = 0 for k = 1; :::; K

f
max

k = �k:�k +
"i

2�Ni

;

where Ni is the number of classes at server i. Note that the slack, "i at each server is

divided in two, where half is included in each class' Maximum Time Fraction, fmaxk .

The other half will be used later in the demonstration.

Before choosing the value for T k , it is �rst necessary to present the following

situation that represents the worst possibility of a class exceeding its Maximum

Time Fraction.

Figure 3.7: Worst situation for exceeding fmaxk .

Consider the situation illustrated in �gure 3.7. It represents the Time Window

of a class k in two time instants t1 and t2. At time instant t1 the server ends

processing a customer of class k and the Time Fraction, fk(t), of that class equals

its Maximum Time Fraction, fmaxk . Since class k is still not Blocked, the server may

decide to process another customer of class k. If that service happens to be the

maximum processing time for class  k. The question is the following: what should
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be the size of the Time Window, Tk, such that the excess in the Time Fraction of

class k is lower than "k
2�Ni

?

By observing �gure 3.7, the value of Tk should be:

� =
 k

Tk
 k

Tk
<

"k

2�Ni

, Tk =
 k
"k

2�Ni

This result guarantees that if for each class k, T k is assigned the value  k
"k

2�Ni

,

then at any given time instant, all classes will at most exceed their Maximum Time

Fractions by "k
2�Ni

.

With this choice of parameters, the system is now decoupled in the form that in

any given time instant, each class k is guaranteed to have an allocated time fraction

of value fmaxk + "k
Ni
. This value is guaranteed independently of the behaviour of the

other classes.

The second assertion should now be obvious, since the instance provided ensures

that each tandem queue respects the TraÆc Intensity Condition.

�

An immediate consequence of Theorem 3.2 is the following result.

Corollary 3.1. Under the assumptions of Theorem 3.2, the TraÆc Intensity

Condition is a suÆcient stability condition.

This corollary emphasizes the perspective on stability sustained by this disser-

tation. The stability of a queuing network is only dependent on the existence of a

scheduling policy that renders the queuing network stable. The TW Controller is a

mechanism that guarantees that a queuing network satisfying the TraÆc Intensity

Condition will be stabilized, even under a non-idling control policy that leads that

network to instability.
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This theorem, although demonstrating the stabilization properties of the TW

Controller, requires the existence of an upper bound on the processing time of the

customers. This requirement is needed to guarantee the decoupling of the queuing

network. It is the �rm believe of the author that this theorem is also valid without

the existence of that upper bound. However, it was not possible to provide a techni-

cally sound proof of that stronger result. Therefore, the above theorem without the

assumption of an upper bound on the processing time of each class should simply be

stated as a conjecture. Naturally, if the conjecture turns out to be true, Corollary

3.1 will have a wider scope of applicability.

The belief that this conjecture is true is based on the extensive experimental

studies conducted, where no such bound was ever imposed nor needed to stabilize

all systems considered. Chapter 4 and Appendices A and B present some of those

studies.



Chapter 4

Experimental Results

This chapter illustrates, by means of several computer simulations, the properties

of the Time Window Controller. The �rst section describes the simulation software

developed to obtain the experimental results presented in this chapter. The second

section presents the queuing network topology that will serve as a test bed for the

study. The third section shows how the TW Controller is able to stabilize a queuing

network that is unstable under the First In First Out scheduling policy. The fourth

section presents the results regarding the in
uence of the parameters (�k; Tk) of

the TW Controller on the queuing network's performance. The last section of this

chapter demonstrates how the TW Controller not only is able to stabilize an unstable

network but it is also able to improve the performance of a stable queuing network.

Although all the results presented in this chapter were obtained using a speci�c

queuing network, appendix A and B present similar experimental studies to di�erent

network topologies and scheduling policies.

4.1 The Queuing Network Simulator

For the experimental study presented in this thesis it was necessary to develop a

generic queuing network simulator. The reason for developing a new simulator in-

stead of using an available software package was due to the necessity of implementing

43
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idling scheduling policies in multiclass queuing networks. This task can become very

complex to implement in a standard software package. Another reason was the com-

putation of several statistics that were speci�c to this thesis. Due to the previous

reasons, a queuing network simulator was developed in C++ [Stroustrup, 1997] for

a Linux workstation.

The simulation of stochastic systems is a well established �eld [Law and Kelton,

1991, Rubinstein and Melamed, 1998]. In the present case, the queuing network

simulator was designed using an object oriented methodology [Meyer, 1997].

The queuing network simulator is composed of four objects: simulator, schedul-

ing policy, system dynamics and data processing. The system dynamics object is

designed by the user and contains the queuing network topology including the distri-

butions for the customer arrival process and for the processing times. The scheduling

policy object is also designed by the user and contains the scheduling policy that is

used by each server in the queuing network. The data processing object is responsi-

ble for collecting all the relevant data of the simulation. Finally the simulator object

is responsible for controlling the evolution of the simulation by interacting with the

other objects. Figure 4.1 presents a diagram of the interactions between the objects

that constitute the queuing network simulator.

The use of this methodology allows a large degree of 
exibility on implementing

complex queuing networks and scheduling policies. The program receives an input

�le containing the simulation parameters and creates several output �les containing

the simulation results. The output �les can then be processed by theMatlab program

to generate a graphic representation of the simulation results.

4.2 A Non-Acyclic Queuing Network Topology

To present an experimental study of the Time Window Controller properties, it

is �rst necessary to choose a queuing network to serve as a test bed. The choice
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Figure 4.1: Object interaction diagram.

was a queuing network presented in [Dai, 1995] which is constituted by two service

stations with six classes. Variants of this topology were studied in [Kumar, 1993]

and [Whitt, 1993]. Figure 4.2 presents a diagram of the queuing network topology.

Figure 4.2: Dai's queuing network topology.

[Dai, 1995] presents a simulation of this queuing network using a deterministic

setting for the processing times and for the time interval between customer arrivals

to the system. He also used the First In First Out (FIFO) scheduling policy at each

server. The parameters used in his simulation are presented in table 4.1.

The following expression demonstrates that with those parameters the TraÆc

Intensity Condition is veri�ed for this queuing network.
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Table 4.1: Queuing network parameters.
Parameter Value
customer mean arrival rate to the system (�) 1.000
class 1 mean processing time (�1) 0.001
class 2 mean processing time (�2) 0.897
class 3 mean processing time (�3) 0.001
class 4 mean processing time (�4) 0.001
class 5 mean processing time (�5) 0.001
class 6 mean processing time (�6) 0.899

TraÆc Intensity Condition

server 1: �� �1 + �� �6 = 1:0� 0:001 + 1:0 � 0:899 = 0:9 < 1

server 2: �� �2 + �� �3 + �� �4 + �� �5 =

= 1:0� 0:897 + 1:0 � 0:0001 + 1:0 � 0:001 + 1:0� 0:001 = 0:9 < 1

The simulation results obtained by Dai demonstrated that this queuing network

topology under the FIFO scheduling policy presents an unstable behaviour even in

a deterministic setting. These results clearly show that for this queuing network the

TraÆc Intensity Condition is not a suÆcient stability condition, understanding here

that the queuing network is composed by the topology and the scheduling policy.

To replicate that result, the queuing network was simulated in a stochastic setting

where the arrival of customers to the system is modeled by a Poisson process and the

processing times at the service stations are modeled by an exponential distribution.

Figures 4.3 and 4.4 present the simulation results in the form of the server and

class inventory or queue length evolution for the application of the FIFO scheduling

policy to this queuing network topology with the parameters presented in table 4.1.

The unstable behaviour of this queuing network can be observed by the evolution

of the server's inventory. It is characterized by an oscillatory behaviour with the

oscillation amplitude growing linearly with time. Note that the oscillations in the

servers are out of phase, which means that when the inventory on one of the servers
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Figure 4.3: Server inventory evolution for the FIFO scheduling policy.

is high, the inventory on the other server is very low or even non existent.

This behaviour coincides with the one observed by Dai with the exception that

the format of the inventory evolution curves is slightly di�erent, since his simulation

corresponds to a deterministic queuing network while the results presented here

correspond to a stochastic queuing network.

Another way to view the inherent unstable behaviour of this queuing network

that is not mentioned by Dai is to compute the long term Time Fraction used by

each class during the simulation run.

Table 4.2 presents those results. The long term Time Fraction for class k, f1k ,

is computed by dividing the time the server was processing customers of class k by

the total simulation time. The Min. processing rate for class k corresponds to the

minimum processing rate of customers of class i necessary to guarantee the TraÆc

Intensity Condition.

It is clear by the results, that all classes except the �rst one are not using enough

of the available resources to be able to process enough customers to keep the system

stable. Clearly the problem is with the FIFO scheduling policy that is not able to

properly use the available resources, creating starvation cycles between the service
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Figure 4.4: Class inventory evolution for the FIFO scheduling policy.
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Table 4.2: Long term time fraction, f1k , used by each class/server.
Class f1k Min. processing rate
1 0.0010 0.001
2 0.7849 0.897
3 0.0007 0.001
4 0.0006 0.001
5 0.0006 0.001
6 0.5352 0.899
Server
1 (class 1+6) 0.5362 0.9
2 (class 2+3+4+5) 0.7868 0.9

stations that e�ectively reduce the resource availability for each class. Seidman had

already demonstrated in [Seidman, 1994] how the FIFO scheduling policy creates

starvation cycles in a non-acyclic queuing network.

Another important property of this queuing network is that it is stable for the

First Bu�er First Served (FBFS) and Last Bu�er First Served (LBFS) scheduling

policies. This property was demonstrated in [Lu and Kumar, 1991] for all non-

acyclic, stochastic, multiclass, queuing networks that possess a single entry point and

only one exit point. This result will be necessary to demonstrate the performance

enhancement properties of the TW Controller in Section 4.4.

Finally, it is necessary to de�ne a cost function for this queuing network to be

used in the following sections. From all the possible cost functions for this system,

equation 4.1 presents one possible instance that correspond to a linear combination

of the average inventory of customers of a given class. ICi designates the average

inventory of class i customers. The objective is to penalize more the inventory that

accumulates in the �rst classes which correspond to the initial processing stages. In

this way, the system that has most customers in last stages of production will have

a lower cost which is logical since we are dealing with a push system. Since there

is no control on the arrival rate of customers, the only way to reduce the queuing
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network's inventory is to push the customers towards the exit point.

J(IC1 ; :::; IC6) = 6� IC1 + 5� IC2 + 4� IC3 + 3� IC4 + 2� IC5 + IC6 (4.1)

4.3 Stabilization Properties of the TW Controller

This section presents a demonstration of the stabilisation properties of the Time

Window Controller. The objective is to use the TW Controller to stabilise the

queuing network presented in the previous section.

The choice of parameters for the TW Controller will be made using the procedure

presented in the proof of Theorem 3.2. The Maximum Time Fraction, fmaxk , of

each class will be equal to the product of the mean e�ective arrival rate with the

mean processing time plus a portion of the slack processing rate available at the

corresponding server.

The values of �k and Tk were chosen in a way that guarantees that the Time

Window possesses enough memory, but their choice does not follow the procedure

used in the proof of Theorem 3.2. The objective of this choice is to present the

robustness of the TW Controller when the parameters �k and Tk are chosen using

a heuristic approach.

Table 4.3 presents the choice of parameters for the TW Controller using the

queuing network parameters presented in table 4.1.

Figures 4.5 and 4.6 present a comparison of the server and class inventory evo-

lution for the network with and without the TW Controller.

The simulation results clearly show that the TW controller was able to e�ectively

stabilize the queuing network. Table 4.4 presents a comparison of some statistics

obtained from the simulations.

The results in table 4.4 show that with the TW Controller, the servers in the

queuing network are able to process enough customers of each class to keep the
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Table 4.3: TW Controller parameters.

Parameter Value
Tk 100
�k 0.1
fmax1 0.001 + 0.050 = 0.051
fmax2 0.897 + 0.025 = 0.922
fmax3 0.001 + 0.025 = 0.026
fmax4 0.001 + 0.025 = 0.026
fmax5 0.001 + 0.025 = 0.026
fmax6 0.899 + 0.050 = 0.949
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Figure 4.5: Comparison of the server inventory evolution for the Dai queuing network
topology with the FIFO (red) and FIFO+ TW Controller (blue) scheduling policies.

system stable. Note that the statistics presented in the table do not have any

meaning for an unstable system. Since in that case there is no steady state value

which implies that those statistics are only valid in the �nite time interval of the

simulation.

Another important statistic to notice is the Active Idle time at each server pre-

sented in table 4.5. This value clearly demonstrates that adding Active Idle time to

the system is not a waste of resources but an e�ective way to stabilize the queuing
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Figure 4.6: Comparison of the class inventory evolution for the FIFO (red) and
FIFO + TW Controller (blue) scheduling policies.
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Table 4.4: Simulation statistics for the Dai queuing network topology.
Statistic Original TW Controller

IS1 2102 48
IS2 4824 355
f11 0.001 0.001
f12 0.7879 0.8964
f13 0.0007 0.001
f14 0.0006 0.001
f15 0.0006 0.001
f16 0.5352 0.8945
Cost | 1841

Table 4.5: Comparison of the Active Idle Time in each server.
Statistic Original TW Controller
Active Idle time at server 1 0 0.0638
Active Idle time at server 2 0 0.0994

network. De�ning e�ective load of a server as the original load plus the active idle

time, note that server 2 has an e�ective load of 99.94%, whereas server 1 has an

e�ective load of 96.38 %. This explains why server 2 has a higher average inventory,

since it is closer to the stability bound.

The question that arises regarding the stabilization properties of the TW Con-

troller is the following: is it necessary to perform a complete decoupling of the queu-

ing network to stabilize an unstable queuing network?

This question is very important, since although theorem 3.2 guarantees the sta-

bilization property of the TW Controller through the complete decoupling of the

queuing network, this decoupling implies a loss of 
exibility by the queuing network.

If the TW Controller is able to stabilize the queuing network without requiring a

complete decoupling of the queuing network, it is likely that the sharing of resources

resulting from allowing some degree of coupling would imply an improvement of per-

formance.
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To answer this question, a trial and error procedure was performed to discover a

region of the TW Controller parameters were this property could be observed. The

parameters presented in table 4.6 were chosen for the TW Controller. Note that

with the exception of parameter fmax5 which is not set, all other parameters are set

to a unitary value, meaning that the TW Controller will not have any in
uence on

customers of those classes.

Table 4.6: TW Controller parameters.
Parameter Value

Tk 100
�k 0.01
fmax1 1.0
fmax2 1.0
fmax3 1.0
fmax4 1.0
fmax5 |
fmax6 1.0

The objective is to change the fmax5 parameter from a unitary value that corre-

spond to the original unstable queuing network, to a value value lower than one that

correspond to a queuing network where the TW Controller in
uences the processing

of customers of class 5.

To demonstrate that an instance of the TW Controller is able to stabilize the

queuing network, two simulations of di�erent time lengths are performed for the

same instance of the TW Controller. If the cost is approximately the same for both

simulations, then that instance of the TW Controller is able to stabilize the queuing

network. If there is an increase on the cost, that instance is not able to stabilize the

queuing network.

Figure 4.7 presents the evolution of the cost for several simulations of the network

with di�erent instances of the TW Controller. Each instance was simulated twice

with a simulation length of 20000 and 40000 time units.
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Figure 4.7: Comparison of the evolution of the queuing network cost for two simu-
lation runs of 20000 and 40000 time units.

The results show that, although the queuing network is never completely de-

coupled, there is a region where the TW Controller is able to stabilize the queuing

network. It is also possible to verify that in the stable region there are instances of

the TW Controller with a better performance than others.

This result shows that a possible course of action to stabilize a queuing network

is to �rst guarantee its stability through its complete decoupling. After obtaining an

instance of the TW Controller that stabilizes the queuing network it is then possible

to search the parameter's space to obtain other instances which are able to improve

its performance.

4.4 The TW Controller Parameters

The objective of this section is to use the queuing network presented in Section 4.2

for an experimental study of the TW Controller's sensitivity relatively to parameters
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�k and Tk.

Table 4.7 presents a set of parameters for the TW Controller that correspond to

an instance where it is able to stabilize Dai's network.

Table 4.7: TW Controller parameters.
Parameter Value

Tk |
�k |
fmax1 0.0011
fmax2 0.9967
fmax3 0.0011
fmax4 0.0011
fmax5 0.0011
fmax6 0.9989

The �rst experiment consists on observing the in
uence of Tk on the performance

of the queuing network. For this end, a set of simulations was performed using the

parameters in table 4.7 with di�erent values for Tk and �k. Figure 4.8 presents the

results of those simulations in the form of the evolution of the cost with parameter

Tk.

It is possible to observe that the performance of the system as a function of Tk

depends signi�cantly on the choice of �k. For a given �k, performance improves as

Tk grows. This behaviour should not be too surprising, given that small values of

Tk imply a shorter memory. One should expect degradation or even instability as

Tk approaches zero.

The smaller the value of Tk, more heavily does performance depend on �k. Curi-

ously, performance is worse for �k close to zero, for any value of Tk. This behaviour

is in line with the discussion made in Section 3.2 (Figure 3.4).

Finally, for a �xed �k, as Tk grows there is a point after which the added memory

through the increase in Tk does not translate into any performance gain. This is due

the fact that a non-zero �k reduces the impact of customers processed in a relatively
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Figure 4.8: Evolution of the cost with Tk.

distant past.

The second experiment consists on performing the same procedure for �k, where

�gure 4.9 presents the corresponding cost evolution

The simulation results show that the in
uence of �k is not as obvious as could be

expected. For Tk = 10, a small size window, although performance degrades as �k

approaches zero, the apparently odd behaviour is the fact that it improves so much

as �k approaches 1. Whereas the �rst situation is again in line with the discussion

of Section 3.2, it could be surprising to observe that when �k = 1, a window of size

10 leads to a performance so close to the one achieved with a window of size 100 or

1000. Note that, for �k = 1, e�10�k is already a very small number, which means

that for wider windows, like 100 or 1000, the extra memory is almost insigni�cant.

This explains why performance is so close for the three sizes tested when �k is 1.

As to the other two values of Tk, the optimal choice of �k lies somewhere between

0.1 and 0.3, meaning that there is a need for some signi�cant memory in order to
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Figure 4.9: Evolution of the cost with �k.

achieve the best results.

This shows that an appropriate choice of �k and Tk is not mutually independent

or simple. Their value is crucial for the performance of the controller. However

when stability is the issue, it is not complicated to �nd an appropriate set of values.

4.5 Performance Properties of the TW Controller

Having presented the stabilization properties of the TW Controller in Section 4.3,

the question that this section addresses is if the TW Controller presents any ad-

vantages when dealing with stable queuing networks. Remark 3.1 clearly opens the

possibility of improving the performance of a queuing network through the TW

Controller.

It was mentioned in Section 4.2 that Dai's network is stable under the Last Bu�er

First Served (LBFS) scheduling policy. It is also shown in [Lu et al., 1994] that the

LBFS scheduling policy is able to achieve a good performance in comparison with
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other distributed scheduling policies. Taking into account these results, a possible

demonstration of the performance enhancement properties of the TW Controller

would be to use Dai's network with the LBFS scheduling policy as a test bed to

demonstrate the performance improvement capabilities of the TW Controller.

The problem resides on how to choose the TW Controller parameters. Given a

choice of values for �k and Tk, there are still for this network six fmaxk parameters

that need to be set.

Instead of starting to explore the parameter space in a blind manner, a better

approach would be to observe the dynamics of this queuing network. In the topology

presented in �gure 4.2, customers of class 6 due to the LBFS scheduling policy will

always have priority over customers of class 1. The parameters in table 4.1 imply

that customers of class 6 have a larger mean processing time than customers of class

1. It is then obvious that server 1 will spend most of its time processing customers

of class 6.

Using this line of thought, it is also possible to speculate that, in some occasions

server 2 will be starved of customers, due to server 1 being processing customers of

class 6 instead of customers of class 1, which are needed to feed server 2.

Taking these factors into account, a possible way to use the TW Controller to

improve the performance of this network is to restrict the myopic behaviour of the

LBFS scheduling policy at server 1 by reducing theMaximum Time Fraction of class

6, fmax6 , to a value lower that one.

To test this hypothesis, the TW Controller was set with the parameters presented

in table 4.8, where the value of the fmax6 parameter will be changed from the unitary

value corresponding to the LBFS scheduling policy to values lower than one.

Figure 4.10 presents the results of several simulations performed with di�erent

values of fmax6 in the form of the evolution of the cost and average Active Idle time

at server 1 with the fmax6 parameter.
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Table 4.8: TW Controller parameters.
Parameter Value

Tk 100
�k 0.01
fmax1 1.0
fmax2 1.0
fmax3 1.0
fmax4 1.0
fmax5 1.0
fmax6 |
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Figure 4.10: Evolution of the queuing network cost (left) and average Active Idle
time of server 1 (right) for the LBFS + TW Controller scheduling policy with the
fmax6 parameter.

The results clearly show that the TW Controller is able to improve the perfor-

mance of the queuing network. The improvement in some instances is close to 50%.

Connected with this improvement is the inclusion of Active Idleness to the behaviour

of server 1, since all classes in server 2 have a unitary value for their Maximum Time

Fraction. Figure 4.11 presents the evolution of the average inventory in the system.

It is also possible to observe a signi�cant improvement for some instances, which

implies a reduction in the customers lead time due to Little's Law. Note that for
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this alternative cost function, the optimal value of fmax6 is between 0.95 and 0.97,

and the cost reduction relatively to fmax6 = 1 is a little over 25%. The average

inventory for fmax6 = 1 is 80 and the average inventory for fmax6 = 0:955 is 57.
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Figure 4.11: Evolution of the average system inventory with the fmax6 parameter.

To further show the performance improvement, Figure 4.12 presents a compari-

son of the server inventory evolution of the original queuing network with the LBFS

scheduling policy and the same queuing network with the TW Controller, where the

fmax6 parameter is set to 0.94.

By observing Figure 4.12 it is easy to note that, during the simulation, the TW

Controller is able to maintain a lower inventory value for server 2. It is also possible

to notice that the inventory evolution in server 1 with the TW Controller has a lower

chattering than the inventory evolution with the original LBFS scheduling policy.

Another way to present the performance improvement obtained by the TW Con-

troller, is to compare the cumulative probability distribution obtained from the two

simulations discussed above. Figure 4.13 and 4.14 present the cumulative probability
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Figure 4.12: Comparison of the server inventory evolution for the LBFS (blue) and
LBFS + TW Controller (red) scheduling policies.

distribution for the server and class inventory.
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Figure 4.13: Comparison of the server cumulative probability distribution for the
LBFS (blue) and LBFS + TW Controller (red) scheduling policies.

Figure 4.13 shows that the probability of having a larger inventory value in server

2 is much lower with the TW Controller. This result is obtained at the cost of a

slight increase on the probability of having a larger inventory in server 1 with the

TW Controller, but it is this slight increase in server 1 that allows the substantial
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Figure 4.14: Comparison of the class cumulative probability distribution for the
LBFS (blue) and LBFS + TW Controller (red) scheduling policies.
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decrease in the average inventory at server 2. This behaviour clearly shows that,

although the TW Controller only a�ects the behaviour of class 6 in server 1, the

consequences are felt by the entire queuing network in the form of an improvement

of performance.

As a �nal note, it should be stressed that the Time Window size is much smaller

than the size implied by the proof of Theorem 3.2. Also, no upper bound was

assumed for the processing time of each class. This fact reinforces the belief that

there is no need to impose upper bounds on the processing times for Theorem 3.2

to hold.



Chapter 5

Conclusions

The main conclusions from this thesis can be resumed in the following three items:

� Active Idleness is not a waste of resources but an e�ective tool to stabilize

non-acyclic, multiclass, queuing networks.

� The Time Window Controller is an e�ective and simple implementation of the

Active Idleness concept.

� Even when stability is not in question, Active Idleness can be used as a per-

formance improvement tool.

The �rst item represents the main contribution of this thesis. Although other

authors came across the advantages of using idling policies to solve the stability

problem, the author does not know of any other work that looks at idle behaviour as

the key to the stabilization of multiclass, non-acyclic, queuing networks. Moreover,

not only idleness is presented as a stabilization key, but also a systematic procedure

based on idleness is proposed to stabilize a given network. This statement is clearly

substantiated by the results presented in Chapter 4 and appendices. It is expected

that this concept of Active Idleness is received with skepticism by most readers.

The reason for that is the link that is made between idleness and waste of resources.

This is a notion that has its roots in traditional queuing network theory which deals

mainly with Jackson-type networks.

65
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It must be emphasized that the concept of Active Idleness has its scope of use in

the class on non-acyclic, multiclass, queuing networks. For this type of networks it is

not correct to use the same line of thought applied to simpler systems like Jackson's

networks. The results presented in this thesis �rmly corroborate this.

The second conclusion summarizes the results obtained for the Time Window

Controller. The TW Controller is a possible implementation of the Active Idleness

concept. It is able to ful�ll all of its requirements. The TW Controller is of very sim-

ple implementation and most importantly, keeps the scheduling policy distributed,

although using some non-local static information. The experimental results pre-

sented in Chapter 4 and appendices, in conjunction with Theorem 3.2, show that

the TW Controller is able to stabilize queuing networks with di�erent topologies

and scheduling policies.

The last conclusion refers to the remarkable experimental results presented. Ac-

tive Idleness is not only a concept for stabilizing unstable queuing networks, but

also an e�ective way to improve the performance of stable networks. This thesis

presents several instances of such improvements, where the cost could be reduced

by 50% in comparison to relatively good scheduling policies, as is the case of the

Last Bu�er First Served.

The main contribution of this thesis is the demonstration that Active Idleness

is a key to stabilizing multiclass, non-acyclic, queuing networks. It is important

to stress that Active Idleness is not a new scheduling policy, but a mechanism to

insert the necessary amount of non-local information into the queuing network to

render it stable. The in
uence on the scheduling policy resumes to blocking some

customers of a given class of being processed during a given time interval. It does

not change the way in which the original scheduling policy chooses the customers

to be processed. In essence it implements a global feedback procedure that is static

in time but feeds each server with enough information to guarantee the stability of
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the entire system. It also brings together into the same framework the scheduling

policy and the admission policy of a queuing network.

This is due to the double role that the TW Controller performs when it blocks

a customer of a given class from being processed. In one hand, the controller blocks

that class to ensure that other classes have access to the server resources. This

ensures the queuing network stability. On the other hand, if the class corresponds

to customers arriving to the queuing network, the TW Controller is in fact imple-

menting an admission policy, since it restricts in some form, the admission of those

customers to the �rst server in the queuing network.

It should also be stressed that as long as the Maximum Time Fractions of classes

visiting a given server add up to more than 1, the controller is e�ectively allowing


exible sharing of resources. This feature allows for some input burstiness to get

transferred inside and through the network. However, the individual value of fmaxk

determines the maximum amount of burstiness permitted. The TW Controller acts

as a burstiness �lter. It is the �ltering property that is responsible for a variance

reduction in the overall network, thus leading to performance improvements.

Establishing that the TraÆc Intensity Condition as a suÆcient stability condi-

tion requires that one obtains a set of decoupled tandem networks, for which that

condition is suÆcient.

According to recent research, [Cassandras and Lafortune, 1999, Adler, 1998], it

appears that for some tandem networks, namely the GI/GI/1 queue, the TraÆc

Intensity Condition may not be a suÆcient stability condition. Typically, such

networks exhibit an arrival process or service times following heavy tail distributions.

The TW Controller is not able to stabilize such tandem networks as long as there

is no non-idling policy which stabilizes them. Therefore, given a general queuing

network, if through decoupling, at least one of the tandem networks generated is in

such a class, the TW Controller will not be able to stabilize the entire network also.
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However, given its �ltering properties, the potential unstable behaviour will be

restricted to its source and will not be propagated through the whole network. For

instance, if the instability source is only due to the arrival process of some class, the

only bu�er that may go out of bounds is its own input bu�er, leaving the rest of the

network una�ected

Although this does not solve the stability problem for those systems, it is the

author's belief that it is preferable to contain instability to close quarters, rather

than allow it to spread through the entire network.

5.1 Future Work

There are still some open issues that require future work. The foremost is a rigorous

demonstration of the stabilization property of the TW Controller, without a limit

on the customer's processing time. Probably, the only restriction necessary is that

all moments of the customer's processing time distributions are �nite.

Another important issue is the development of an optimization procedure to use

the TW Controller as a performance improving tool. This is important, since in

more complex network topologies, it is not possible to use the same heuristic trial

and error procedure used in Chapter 4. It would be very interesting to compare the

performance of the LBFS policy supervised by the TW Controller with the non-local

Fluctuation Smoothing (FS) policy presented in [Lu et al., 1994]. It would also be

interesting to test if adding the TW Controller to the FS policies would originate

signi�cant performance improvements.

Since the TW Controller is a possible implementation of the Active Idleness

concept, it might be interesting to explore other alternatives. One possibility is

the use of regulators in conjunction with the General Processor Sharing scheduling

policy. Although this might seem similar to the work presented in [Parekh and

Gallager, 1993, Parekh and Gallager, 1994], these papers did not use the concept of
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Active Idleness or dealt with the stability issue.

Finally, stability of a queuing network is asserted by investigating the stability

of tandem networks, when using Theorem 3.2. Also, for tandem networks it is

a known fact that idling policies are not necessary to address issues like stability

and performance optimization. In a single input, single output tandem network,

each server should work at maximum speed, otherwise it only adds waiting time to

customers.

Therefore, under the framework of the TW Controller, future research on queuing

networks stability should concentrate on determining suÆcient stability conditions

for single input, single output tandem networks, given that the presence of heavy

tail distributions may be a problem.
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Appendix A

Lu and Kumar Example

[Lu and Kumar, 1991] presented a queuing network that is unstable under a bu�er

priority discipline. Figure A.1 presents a diagram of the queuing network topology

which is composed by two servers with four classes.

Figure A.1: Lu and Kumar's queuing network topology.

The scheduling policy for which this queuing network presents an unstable be-

haviour is a mixture of the First Bu�er First Served (FBFS) with the Last Bu�er

First Served (LBFS) scheduling policies, that is, the �rst server uses the LBFS policy

and the second server uses the FBFS policy.

[Dai and Weiss, 1996] further re�ned the results obtained by Lu and Kumar,

demonstrating that a suÆcient condition for this queuing network to be stable with

this scheduling policy is that along with the TraÆc Intensity Condition it is neces-

71
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sary that �� (�2 + �4) < 1.

Table A.1: Queuing network parameters.
Parameter Value

� 1.00
�1 0.01
�2 0.90
�3 0.01
�4 0.90

Table A.1 presents a set of parameters for this queuing network that in con-

junction with the FBFS (server 1) + LBFS (server 2) scheduling policy results in

an unstable queuing network, although the parameters respect the TraÆc Intensity

Condition.

TraÆc Intensity Condition

server 1: �� �1 + �� �4 = 1:0 � 0:01 + 1:0 � 0:9 = 0:91

server 2: �� �2 + �� �3 = 1:0 � 0:9 + 1:0� 0:01 = 0:91

Note that, although the parameters respect the TraÆc Intensity Condition, they

do not respect Dai and Meyn's necessary stability condition, given that

�� (�2 + �4) = 1:0� (0:9 + 0:9) = 1:8 � 1 (A.1)

Figure A.2 presents the results obtained from the simulation of the queuing

network in the form of the server's inventory evolution. Clearly the results show

that the queuing network is unstable.

Following the procedure presented in section 4.3, it will be demonstrated through

simulation, that the TW Controller is able to stabilize this queuing network. The

choice of parameters for the TW Controller was performed by allocating to each
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Figure A.2: Inventory evolution for the FBFS (server 1) + LBFS (server 2) schedul-
ing policy.

class a Maximum Time Fraction, fmaxk , proportional to �:�k. The surplus capacity

was shared between all classes. Table A.2 presents the choice of parameters for the

TW Controller.

Table A.2: TW Controller parameters.
Parameter Value

Tk 0.010
�k 100.0
fmax1 0.02
fmax2 0.98
fmax3 0.02
fmax4 0.98

Figure A.3 presents a comparison of the server's inventory evolution for the

unstable bu�er priority scheduling policy used by Lu and Kumar with the same

scheduling policy supervised by the TW Controller.

Table A.3 presents a comparison of some relevant statistics obtained from the

simulations. The cost function used is presented in equation A.2.
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Figure A.3: Comparison of the inventory evolution for the FBFS (server 1) + LBFS
(server 2) (red) and FBFS (server 1) + LBFS (server 2) + TW Controller (blue)
scheduling policies.

Table A.3: Comparison of the relevant statistics obtained from the simulation.
Statistic Original TW Controller Statistic Original TW Controller

IS1 2109 85 f11 0.00993 0.00988
IS2 4135 90 f12 0.65885 0.90928
IC1 1018 23 f13 0.00369 0.00979
IC2 1959 66 f14 0.34125 0.89133
IC3 2176 24 J(IC1 ; :::; IC4) | 399
IC4 1090 62

Table A.4: Comparison of the Active Idle Time used by each server.
Statistic Original TW Controller

Active idle time at server 1 0 0.0252
Active idle time at server 2 0 0.0224

J(IC1 ; :::; IC4) = 4� IC1 + 3� IC2 + 2� IC3 + IC4 (A.2)

The results show that with Lu and Kumar's scheduling policy, the capacity used

by some of the classes is not enough to cope with the arriving rate of customers.
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This clearly shows that there is a starvation phenomena generating a loss of capacity

which makes the system unstable. In contrast, the TW Controller is able to stabilize

the queuing network, inserting in the process periods of Active Idleness in each server

as shown in Table A.4.

It is also possible to show that, similar to what was presented in section 4.5, the

TW Controller is able to improve the performance of a stable queuing network. To

demonstrate this result for the Lu and Kumar example, the Last Bu�er First Served

scheduling policy was chosen since it is a stable scheduling policy for this queuing

network topology [Lu and Kumar, 1991]. The choice of the TW Controller parame-

ters was performed using the same procedure used for Dai's network in section 4.5.

That is, since in server 1 customers of class 4 have always priority over customers

of class 1, and since the average processing time of customers belonging to class 4

is very large in comparison with customers of class 1, it is obvious that server 1

will spend most of the time serving customers of class 4. This means that in some

occasions this behaviour could starve server 2. For this reason, the Maximum Time

Fraction of class 4 was set to a value slightly lower than 1. Table A.5 presents the

parameters chosen for the TW Controller.

Table A.5: TW Controller parameters.
Parameter Value

Tk 0.010
�k 100.0
fmax1 1.0
fmax2 1.0
fmax3 1.0
fmax4 0.95

Figure A.4 presents a comparison of the servers' inventory evolution for the LBFS

scheduling policy with the LBFS supervised by the TW Controller.

Figure A.4 shows a substantial reduction of the inventory for server 2. This result
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Figure A.4: Comparison of the server inventory evolution for the LBFS (blue) and
LBFS + TW Controller (red) scheduling policies.

is con�rmed by the statistics obtained for both simulations presented in Tables A.6

and A.7. Note the reduction of more than 50% for the cost and of 37% for the

network's average inventory.

Table A.6: Comparison of the relevant statistics obtained from the simulations.
Statistic Original TW Controller Statistic Original TW Controller

IS1 34 28 f11 0.00992 0.00992
IS2 54 26 f12 0.90453 0.90493
IC1 28 10 f13 0.00987 0.00987
IC2 54 26 f14 0.89351 0.89381
IC3 0.3 0.3 J(IC1 ; :::; IC4) 281 136
IC4 6 18

Table A.7: Comparison of the Active Idle time enforced in each server.
Statistic Original TW Controller

Active Idle time at server 1 0 0.0312
Active Idle time at server 2 0 0

To further stress the performance improvement, Figure A.5 presents a compari-
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son of the servers' inventory cumulative probability distributions.
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Figure A.5: Comparison of the server inventory cumulative probability distributions
for the LBFS (blue) and LBFS + TW Controller (red) scheduling policies.

The results show that the TW Controller was able to improve the performance

of server 1 and 2 by reducing the probability of those servers having large values

of inventory. It should be noted again that this improvement was made by only

adding a small amount of Active Idleness to the behaviour of server 1. Note that,

since only class 4 is in
uenced by the TW Controller, all Active Idle behaviour

refers to customers of that class. This implies, as can be observed in table A.6, an

increase in the average number of class 4 customers. This reduction of the processing

resources available for class 4 customers was enough for the dramatic improvement

of the network's performance.
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Appendix B

Seidman Example

[Seidman, 1994] presented a queuing network topology that in connection with the

First In First Out (FIFO) scheduling policy resulted in an unstable queuing network.

Figure B.1 presents a diagram of the queuing network topology, which is constituted

by four servers with twelve classes.

Figure B.1: Seidman's queuing network topology.

Table B.1 presents a set of parameters for this queuing network that in con-

junction with the FIFO scheduling policy results in an unstable queuing network,

although the parameters respect the TraÆc Intensity Condition.

79
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Table B.1: Queuing network parameters.
Parameter Value Parameter Value

�2 1.000 �5 0.001
�3 1.000 �6 0.900
�10 1.000 �7 0.900
�11 1.000 �8 0.001
�1 0.900 �9 0.001
�2 0.001 �10 0.001
�3 0.001 �11 0.001
�4 0.001 �12 0.900

TraÆc Intensity Condition

server 1: �� �1 + �� �2 + �� �3 = 1:0 � 0:9 + 1:0� 0:01 + 1:0� 0:01 = 0:902

server 2: �� �4 + �� �5 + �� �6 = 1:0 � 0:01 + 1:0 � 0:01 + 1:0 � 0:9 = 0:902

server 3: �� �7 + �� �8 + �� �9 = 1:0 � 0:9 + 1:0� 0:01 + 1:0� 0:01 = 0:902

server 4: �� �10 + �� �11 + �� �12 = 1:0 � 0:01 + 1:0 � 0:01 + 1:0 � 0:9 = 0:902

Figure B.2 presents the results obtained for a simulation of the queuing network

with the FIFO scheduling policy using the queuing network parameters presented

in Table B.1. Clearly, the results show that the queuing network is unstable.

Following the procedure presented in section 4.3, it will be demonstrated through

a simulation that the TW Controller is able to stabilize this queuing network. The

choice of parameters for the TW Controller was made by allocating to each class

a Maximum Time Fraction, fmaxk , proportional to �k:�k. The surplus capacity was

shared between all classes. Table B.2 presents the choice of parameters for the TW

Controller.

Figure B.3 presents a comparison of the server inventory evolution of the FIFO

scheduling policy with the same scheduling policy supervised by the TW Controller.

Tables B.3 and B.4 present a comparison of some relevant statistics obtained

from the simulations. The cost function used is presented in equation B.1.
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Figure B.2: Server inventory evolution for the FIFO scheduling policy.

Table B.2: TW Controller parameters.
Parameter Value Parameter Value

Tk 0.010 fmax6 0.996
�k 100.0 fmax7 0.996
fmax1 0.996 fmax8 0.002
fmax2 0.002 fmax9 0.002
fmax3 0.002 fmax10 0.002
fmax4 0.002 fmax11 0.002
fmax5 0.002 fmax12 0.996
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Figure B.3: Comparison of the server inventory evolution for the FIFO (red) and
FIFO + TW Controller (blue) scheduling policies.

J(IC1 ; :::; IC12) = 3� IC2 + 2� IC4 + IC1 + 3� IC3 + 2� IC5 + IC7 + 3� IC10 +

2� IC8 + IC6 + 3� IC11 + 2� IC9 + IC12 (B.1)

The results show once again that the unstable behaviour observed for the FIFO

scheduling policy is due to the inability of the servers to use enough resources to

process the customers, since the scheduling policy creates a starvation phenomena

between the servers. The TW Controller is able to stabilize the system, adding in

the process some Active Idleness, as presented in table B.4.
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Table B.3: Comparison of the relevant statistics obtained from the simulations.

Statistic Original TW Controller Statistic Original TW Controller

IS1 2227 107 f11 0.71312 0.89108
IS2 3628 118 f12 0.00099 0.00100
IS3 2779 119 f13 0.00097 0.00099
IS4 2593 106 f14 0.00089 0.00099
IC1 841 62 f15 0.00088 0.00996
IC2 691 23 f16 0.78214 0.90212
IC3 695 23 f17 0.71697 0.89793
IC4 1325 26 f18 0.00088 0.00099
IC5 1333 26 f19 0.00088 0.00099
IC6 970 66 f110 0.00097 0.00099
IC7 847 67 f111 0.00098 0.00100
IC8 967 26 f112 0.77581 0.88957
IC9 964 26 J(IC1 ; ::::; IC12) | 734
IC10 823 22
IC11 822 22
IC12 947 61

Table B.4: Comparison of the Active Idle Time used in each server.
Statistic Original TW Controller

Active idle time at server 1 0 0.0128
Active idle time at server 2 0 0.0218
Active idle time at server 3 0 0.0234
Active idle time at server 4 0 0.0123
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