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ABSTRACT 
This thesis addresses the problem of computing the optimal parameters 

for production control policies in the glass manufacturing industry and 

provides a framework of analysis related with the structure of the production 

policies. We consider a multi-product, multi-stage, and capacitated discrete-time 

production-inventory system with random yield. Random demand occurs in 

each period. The optimal parameters for a given production control policy are 

determined in order to minimize the expected costs or reach a given service 

level. Three different production strategies are discussed: Make-to-Order (MTO), 

Make-to-Stock (MTS), and Delayed-Differentiation (DD). 

We use real data (processing times, random yield factors, etc) from a glass 

manufacturing company, providing simultaneously the model validation and 

the evaluation of the relative performance of the different strategies.  

The approach used to analyze this problem will be simulation based 

optimization. Simulation will be used as a tool to obtain estimates of the 

objective function value and gradient with respect to the parameters that 

describe the control policy. The gradient estimates are obtained through 

Infinitesimal Perturbation Analysis (IPA).  

 
KEYWORDS 
 

- Capacitated Inventory Systems; 

- Alternative Production Strategies; 

- Random Yield; 

- Glass Manufacturing; 

- Infinitesimal Perturbation Analysis; 

 



 

 v

RESUMO 
 

Esta tese analisa o problema da definição de parâmetros óptimos para 

diferentes estratégias de produção no âmbito da indústria do cristal, 

proporcionando simultaneamente um enquadramento genérico de análise da 

estrutura de estratégias de produção. A análise considera um modelo discreto 

de controlo de inventário composto por múltiplas máquinas em série, de 

capacidade finita e taxa de produção aleatória. O sistema processa múltiplos 

produtos que, por sua vez, estão sujeitos a procura aleatória. Os parâmetros 

óptimos de determinada estratégia de produção são calculados por minimização 

da função custo ou por manutenção de um nível de serviço estabelecido. As 

estratégias de produção consideradas são: Produção-para-Stock, Produção-por-

Encomenda e Diferenciação-Retardada. 

São utilizados dados de produção (cadências, taxas de rejeição, etc) de uma 

unidade produtiva nacional permitindo, além da validação do modelo, a 

comparação do desempenho relativo de estratégias de produção alternativas. 

A abordagem utilizada para análise do problema consiste em optimização 

baseada em simulação. Esta técnica permite estimar o valor da função objectivo 

e respectivo gradiente em ordem às variáveis de decisão da política de controlo 

em causa. A estimação de gradientes é baseada na Análise de Perturbações 

Infinitesimais (IPA).  

PALAVRAS CHAVE 
 

- Controlo de Inventário; 

- Estratégias de Produção Alternativas; 

- Taxa de Produção Aleatória; 

- Indústria de Cristal; 

- Análise de Perturbações Infinitesimais; 
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CHAPTER  
  

 

 

   INTRODUCTION 
 

 

The purpose of this thesis is to define, under several different demand 

scenarios and based on a cost trade-off evaluation, which are the best 

production strategies for each business environment, on the specific area of 

glass manufacturing processes. Two extreme strategies may be exercised: Make-

To-Order (MTO) and Make-to-Stock (MTS). From these two strategies one can 

derive a composite one, which consists on the establishment of intermediate 

stocks containing semi-processed products: a Delayed Differentiation (DD) 

strategy. 

Presently, there is a significant lack of production decision support systems 

and even the most advanced information systems do not work with such kind 

of tools. Frequently, on the commercial management software, the tool 

1 
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available for inventory control is typically the Economic Order Quantity 

(EOQ). Out of the assumptions of this model, two of them can significantly 

restrict its application to more complex industrial processes. First, the demand 

is assumed to be constant and deterministic, and second, each item is treated 

independently of other items. That is, benefits from joint review or 

replenishment do not exist or are simply ignored, as well as the impact on the 

overall system. 

Managers are often confronted with decisions on whether or not to hold 

inventories. If the demand realization turns out to be smaller than the available 

finished products, then some processing cost have unnecessarily been incurred. 

But if the demand realization turns out to be larger than the available finished 

products, then some customers might balk and their demand (and probably the 

future ones) could be lost. 

The cost of producing to stock is usually less expensive than in a rush job, 

when customers are waiting for the conversion of raw materials into finished 

products. Moreover, under an MTO policy one may lose the advantages of 

economies of scale (working in batches) and the learning effects. These losses 

tend to increase the cost under an MTO policy. Of course, decisions of this 

type go beyond the area of production planning and inventory management. 

One needs to consider other relevant issues such as marketing, quality and 

environmental considerations. 

The main motivation of this thesis is related with the actual generalized 

glass industry managerial strategy of predominantly producing-to-order and, 

occasionally, if there is excess capacity, stock the products with the highest 

levels of demand. That is, operating close to 100% resource utilization. Those 

production decisions are not based on solid arguments, but rather based on the 

experience and intuition. Therefore, we intend to understand the reasons and 

driving force of such decision. To do this, we develop a model that supports the 

production decision process, in order to validate the production strategy just 



C H A P T E R  1  -  I N T R O D U C T I O N  

 
3

referred. Also, we intend to define alternative production strategies, eventually 

more appropriate to different business environments.  

 

1.1 SUMMARY OF CONTRIBUTIONS 

This section presents a brief summary of the main contributions of this 

thesis, the objective of which being to analyze the problem of glass 

manufacturing production system working under different production 

strategies. 

The numerical study presented illustrates not only the strength of 

Infinitesimal Perturbation Analysis (IPA) as an optimization tool, but also the 

impact of different production strategies on system’s response. This will be 

measured in terms of average total cost, in-house costs, and products’ lead-time. 

Instances of the main conclusions are listed below. 

i) An MTS strategy incurs the lowest average total cost and presents 

the best lead-times; 

ii) An MTO strategy accounts for the lowest in-house costs, while 

presenting the highest lead-times among all strategies; 

iii) A composite strategy could be a relevant option if we intend to 

significantly improve the lead-times relative to the MTO, with a 

slight increase of in-house costs;  

iv) It is not possible to define the right strategy without understanding 

the business context. 

At last, a set of operational contributions can be summarized as: 

i) Definition of a framework to deal with multi-product, multi-stage, 

capacitated, random yield production processes, facing random 

demand; 
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ii) The use of the Infinitesimal Perturbation Analysis methodology to 

find the optimal parameters of the pre-defined strategies, which 

showed to be a technique with great potential. 

iii) The development of a simulation optimization package to analyze 

production systems with the features listed in i). 

 

1.2 ORGANIZATION OF THE THESIS 

This thesis is composed of five chapters and appendices. The present 

chapter, Chapter 1 – Introduction, presents a brief description of the glass 

manufacturing business context and a reference to the problem of make-to-

stock or make-to-order. In the next chapter, Chapter 2 – Literature Review, is 

presented a review of relevant literature, focusing on the issues of multi-product 

and multi-stage production systems, random yield, and infinitesimal 

perturbation analysis.  

In Chapter 3 – Model Definition –, the basic model will be presented. 

First, the glass manufacturing process will be described. Then, the dynamic 

equations governing the system are established and the derivatives of the state 

variables with respect to the parameters defining the control policies are 

presented. This chapter continues with the definition of the performance 

measures, production strategies, and production policy. The IPA validation is 

discussed on the remaining section of this chapter. 

Chapter 4 – Experimental Study –, provides the set of experimental data 

obtained with the simulation package. Different production strategies are tested 

and the results compared in order to get some insights on the system’s 

response.  

The last chapter, Chapter 5 – Conclusions & Future Research, presents a 

summary of the thesis and discusses some topics for future research. 
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Three appendices are provided at the end of the thesis. The first two, 

Appendix A – Description of the Simulation & Optimization Software and 

Appendix B – The SimulGLASS User-Interface Windows, present a 

description of the developed simulation optimization package. Appendix C – 

The SimulGlass Package, provides a cd-rom with a ready to install version of 

the software package and an Acrobat file with the full version of the thesis.  
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CHAPTER  
  

 

 
 LITERATURE REVIEW 

 
 
 

2.1 INVENTORY MODELS 

Almost all mathematical inventory models are designed to address two 

fundamental problems: when should a replenishment order be placed, and 

how much should the order quantity be. Assumptions concerning demand 

distribution, cost structure, and physical characteristics of the system are the 

main settings defining the model complexity. Naturally, when uncertainty is 

present, the established approach consists on optimizing expected values of 

performance measures. 

Most of the real inventory control problems involve multiple products. 

However, single product models are able to simulate the main features of the 

larger problems. This is the reason why single product models dominate the 

2 
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literature and are often used to provide guidelines in solving real size 

problems. 

As referred in [Bispo, 1997], the inventory control problems are 

concerned with decisions regarding when and how much to produce or order 

so that it is possible to satisfy an external demand. The aspects that need to 

be considered for model design are the number of stages of production, the 

number of products, and the demand process, characterized in terms of its 

stochastic nature. The characterization of the production process in terms of 

operation times, availability, reliability, and number of decisions is also an 

important issue. 

 

2.2 SINGLE PRODUCT, SINGLE AND MULTIPLE-STAGES MODELS 

In [Graves et al., 1993], the authors describe the different types of 

inventory models for a single product and a single location. The classification 

is made in terms of three key variables that determine the structure and 

complexity of the model: demand, costs, and other physical aspects.  

The demand variable is classified into the following types: Deterministic 

and Stationary – the simplest model to assume is constant and known 

demand, like the Economic Order Quantity (EOQ) model; Deterministic and 

time varying – those changes that can be forecasted in advance are called 

systematic otherwise they are unsystematic; Uncertain – the demand 

distribution is known but its realization cannot be predicted in advance, e.g., 

there is historical data from which it is possible to estimate the demand 

distribution. With new products the demand uncertainty could be assumed 

but it is necessary an estimation of the probability distribution; Unknown – the 

demand distribution is unknown. In this situation it is normal to assume one 

distribution for the demand and optimize the parameters using Bayes theorem, 

at each new observation.  
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The cost variable can be divided as follows: averaging versus discounting – 

when the time value of money is an important issue, a discount rate must be 

considered; Structure of the order cost – the simplest assumption is considering a 

cost proportional to the number of items necessary. However, assuming a cost 

with both fixed and variable components is much more realistic; Inventory costs 

– both holding and shortage costs should be considered. 

The other physical aspects that may be considered are: the lead-time, 

backordering assumptions, the review process, and changes that occur in the inventory 

during storage.  

The lead-time is defined as the amount of time from the instant of a 

replenishment order takes place until it arrives. It is also a measure of the 

system’s response time. The simplest assumption is to consider zero lead-time. 

However, this only makes sense in situations where the replenishment order 

time is short compared with the time between reorder instants.  

Backordering assumptions are also important to make assumptions about 

system reactions under shortage inventory situations, e.g., when demand 

exceeds supply. In these situations the most common assumption is to 

backorder all the excess demand, which is represented by a negative inventory 

level. On the other hand, depending on system characteristics, it is also 

common to assume that all excess demand is lost. A compromise situation 

where both backorder and lost sales are present is also possible.  

The review process can be continuous or periodic. Continuous review 

means that the level of inventory is known at all times and reorder decisions 

can be made at any time, while periodic review means that the stock level is 

known only at discrete points and reorders are only possible at pre-determined 

points corresponding to the beginning of periods. 
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Changes that occur in the inventory during storage – Usually inventory items 

do not change their characteristics during the stock period but radioactive 

materials or volatile liquids may experience some losses. Fixed life inventories, 

such as food, are assumed to have constant utility until the expiration date is 

reached. Obsolescence may also affect inventories since their useful lifetime 

may not be predictable in advance. Such is the case of fashion products.   

Despite the fact that models with deterministic and stationary demands 

seem quite restrictive, they are very important since results are robust with 

respect to the model parameters, for instance demand rate and cost. The 

Economic Order Quantity (EOQ) is a tremendous example of such property. 

The results provided for these models are also a fine starting point for more 

complex models. The literature provides a broad spectrum of variations of 

the above model, which includes quantity discounts, demand with trends, or 

perishability, among other issues. 

Under the single-product, single stage scenario, the stochastic demand 

models are probably the most analyzed by current research. The newsboy 

problem is the basis for most discrete time stochastic inventory models. This 

single product, single stage, and single period model considers random 

demand, and charges a unit holding cost for holding stock at the end of the 

period, a unit shortage penalty cost for lost sales, and a unit ordering cost for 

the items purchased at the beginning of the period. The optimal policy is of 

the base stock type. If the initial inventory is under the called order up to level, 

the decision should be to order the difference between that level and the 

initial inventory. The literature presents some very interesting extensions of 

this model, namely those considering positive order lead time, lead time 

uncertainty, or batch ordering.  

As referred in [Graves et. al, 1993], on the next level of complexity one 

can find the dynamic models with positive set-up costs. The optimal policy is 
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an (s, S) policy. The level S is defined as the value that minimizes the cost 

function G, while s satisfies s<S, that is, G(s)=G(S)+K. If the initial inventory x 

is above level s then G(x)<G(S)+K and it is optimal not to order. On the 

contrary, if initial inventory x is under the level s, the optimal decision is 

order up to S.   

On a continuous time basis, all transactions are monitored systematically 

and thus inventory ordering decisions can be made as soon as these 

transactions occur. Therefore, such a system will be more responsive than the 

periodic review system, where inventory ordering actions can only happen at 

specific review times. However, one needs to trade-off the costs between the 

profits achieved with such responsiveness and the continuous-time monitoring 

system cost, finding the optimal (s, S) values that minimize long run average 

costs. 

[Kapuscinski and Tayur, 1996] analyzed a single product, single-stage 

capacitated production-inventory model under stochastic and periodic 

demand. For the finite-horizon, the discounted infinite-horizon, and the 

infinite-horizon average cases, the authors showed that the optimal policy is of 

base-stock, or order-up-to type. They used a simulation based optimization 

method based on infinitesimal perturbation analysis (IPA) to find the optimal 

policy parameters. Several properties of the optimal policy are discussed, such 

as the effect of capacity, demand, and penalty cost on the stock-levels. 

Additionally, some relevant issues related with the optimal solutions are 

numerically tested.  

The survey realized by [Bispo, 1997] refers that, for single machine and 

single product systems, base stock policies are optimal in a variety of settings. 

The optimal control policy for single period systems, multiple period finite 

horizon problems, and multiple period infinite horizon problems, maintains 
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its structure whenever the machine capacity is boundless, deterministic or even 

stochastic. 

The work of [Tayur, 1996] provides some insights into some more 

complex issues and extends the analysis to single product, serial systems. Once 

more, a simulation based optimization used IPA as a tool to find the optimal 

values for the decision variables. 

 

2.3 MULTI-PRODUCT, MULTI-STAGE MODELS 
 

Approaches to the planning, control, and scheduling of automated 

manufacturing systems originates from at least two distinct disciplines: 

Operations Research and Control Theory. From a general perspective, these 

two disciplines have some common characteristics. Both are concerned with 

decision-making based upon some analytical model which represents the 

system behavior with a limited degree of accuracy. 

 

2.3.1 Operations Research Perspective 

The multi-product, multi-stage models are natural evolutions of the above 

models. They try to simulate with a high level of accuracy the real production 

systems. An interesting result was obtained by [Clark and Scarf, 1960]. They 

showed that for multiple machines in series with single product and no 

capacity bounds, the base stock policies are optimal in terms of multi-echelon 

inventory. At a given machine, the echelon-inventory is defined as the sum of 

inventory downstream from that machine to the last one. For the finite 

horizon problem the optimal policy is defined by a critical number to order up 

to for each of the echelon inventories. Later research has extended the 

previous result to the infinite horizon problem. Despite of the remarkable 

previous results, for the multi-stage and capacitated models producing single or 
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multiple products, there are very few results concerning optimal production 

policies. These results usually refer sub-optimal base-stock variant policies 

proposed as heuristics to find the sub-optimal problem decision variables.   

The work presented by [Glasserman and Tayur, 1995], which contributed 

decisively to this thesis development, considers capacitated, multi-echelon 

systems producing a single product and operating under base-stock policies. 

The determination of the optimal base-stock values is achieved by means of an 

optimization procedure based on estimation of the derivatives with respect to 

base-stock variables through infinitesimal perturbation analysis. The authors 

showed that those estimates converge to the correct value for infinite-horizon 

and infinite-horizon discounted and average cost criteria, are easy to 

implement, and can also be computed with respect to parameters of demand 

and yield distribution.  Also, the authors presented some numerical examples 

with very useful simulation details and results. The clear sensitivity analysis 

makes the final contribution. 

Another contribution on multiechelon inventory systems is provided on 

[Graves, 1996]. The author considers an uncapacitated distribution system 

consisting of M inventory sites serving more than one site but receiving items 

from only other site, with deterministic delivery times, and stochastic demand. 

Each site in the system places orders according to an order-up-to policy. A 

computational study is used to better understand how to define the order-up-

to levels in a two-echelon system, and it is assumed that the policy is 

constrained in order to achieve a given service level. Hence, for each demand 

scenario and order policy, are presented the two order-up-to levels, that verify a 

desired service level (probability of stock-out and fill rate) with the minimum 

inventory amount. Finally, they conclude that, first, for the minimum-

inventory stocking policy, the central warehouse (CW) will stock out during an 

order cycle with a very high probability, since the base stock at CW is less than 

the expected system demand for the time from when the CW orders to the 

time the retail site place their last order. Second, the total safety stock in the 
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system is less sensitive to under-stocking the CW than to over-stocking. 

Namely, if the CW order-up-to level is changed to achieve a conventional 

service level, one can notice a significant inventory increase. Third, the CW 

base stock level appears insensitive to the number of retail sites, which suggests 

that the case of retailers with non-identical demand rates would show similar 

behavior. Finally, the general behavior of the optimal inventory policy seems 

not sensitive to the service criterion. Although, it depends on the specifics of 

the service criterion. 

 

2.3.2 Control Theory Perspective 

The control theory discipline is an alternative approach to address with 

the planning, control, and scheduling problems of manufacturing systems. As 

we move up in the production control hierarchy, the time scale increases, and 

the aggregate models can be used, taking the form of differential equations. 

This mathematical form provides techniques to determine a feedback control 

law that looks at the present inventory, machine status, and product demand 

to determine the present production rate.  

The works of [Kimemia, 1982] and [Kimemia and Gershwin, 1983] 

brought an important contribution to this area. They addressed the problem 

of controlling a production system with multiple machines and multiple part 

types, each subject to deterministic demand rates, where the machines are 

prone to failures. A multilevel hierarchical control algorithm was proposed, 

involving a stochastic optimal control problem at the top level. Next the 

authors note that, for each feasible region and for the stationary problem, 

there is a fixed buffer level, denominated hedging point, above which the 

optimal production rates are zero. In other words, the hedging point can be 

used to determine when to release a part into the system and how to set the 

production rates. The interpretation of the hedging point value is that of a 

base stock. Nevertheless, it should be stressed that, since the formulation only 
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takes into account the production surplus for end products, nothing can be 

said about the values of the internal buffers. 

[Akella and Kumar, 1986] show that the hedging point strategy is the 

optimal solution for a single-product manufacturing system with two-machine 

states (up and down). They also use the same aggregate-production model and 

assume that demand is constant. [Sharifnia, 1988] derives equations for the 

steady-state probability distribution of the surplus level in a single-product 

manufacturing system with multiple-machine states, when the hedging point 

strategy is used. This work is important because there is an arbitrary number of 

machine states’ corresponding to different failure modes of the system. The 

author shows that for each machine state, the cost-to-go function reaches its 

minimum at a hedging point. 

Other papers have continued the original work of Kimemia by means of 

addressing increasingly complex systems and models, such as including the 

internal buffers in the analysis for multiple products and considering 

manufacturing systems with re-entrant flow, [Bai and Gershwin, 1994],  [Bai 

and Gershwin, 1995], and [Bai and Gershwin, 1996]. 

In summary, the area of flow rate control has produced one of the most 

comprehensive and complete methodologies to deal with production planning 

and control for manufacturing systems. It involves long-term decisions 

(determining safety levels for the production), mid-term decisions (release of 

new parts into the system) and short-term decisions (scheduling parts into the 

available machines). The approach relies on the sound theory of optimal 

control and benefits from its elegant results, generating control policies that 

are functions of the system state. However, there are some issues which remain 

to be dealt with in a more satisfactory way. The only source of randomness 

considered is machine breakdowns. Demand variance is not taken into 

account, as well as the effects of random yield and processing time uncertainty, 

in order to determine the long-term safety levels. Also, there is no effort made 
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to determine how capacity should be shared, nor on studying the impact of 

different dynamic capacity schemes have on the system performance measures. 

 

2.4 MAKE-TO-STOCK VS. MAKE-TO-ORDER 

The decision of stock or not to stock a product can be influenced by 

several factors. As referred in [Silver et al., 1998] these factors include the 

system cost (forecasting activities, file maintenance, etc.) per unit time of 

stocking an item, the unit variable cost of the item both when it is bought for 

stock and when it is purchased to meet each demand transaction. It includes 

also the cost of temporary backorder associated with each demand when the 

item is not stocked, the fixed setup cost associated with the replenishment in 

each context, the carrying charge (including the effects of obsolescence), 

which, together with the unit variable cost, determines the cost of carrying 

each unit of inventory per period of time. Finally, it accounts also for the 

frequency and magnitude of demand transactions and for the replenishment 

lead-time. It is important to examine the replenishment lead-time and certify 

that customers are willing to wait the additional transportation time. If not, 

the cost of a temporary shortage should also be included in the analysis. 

 

2.5 MODELING ISSUES 

There are several tools to model and analyze discrete-event dynamic 

systems: Queuing Theory; Markov Chains; Petri nets and Simulation. This last 

tool, in addition with the perturbation analysis technique, are the two 

complementary methods used in this thesis for the implementation and 

optimization of a production process. 

The problem of planning, control, and scheduling activities in a 

manufacturing facility has received considerable attention from the operations 
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research and industrial engineering communities over the last 25 years. These 

main issues are concerned with decision-making based upon some model. 

These models represent the system behavior with a limited degree of accuracy, 

and they depend heavily on the issues being studied. 

There are several key modeling issues that complicate the control of an 

automated manufacturing facility. Any strategy or policy for operating such a 

system must be able to handle: uncertainty in product demand knowledge (at 

all levels of the production hierarchy); finite and random manufacturing 

capacity; random machine failures and repair rates. The knowledge of total 

product demand is based on actual orders that are only known for a specific 

period into the future plus some forecasted value obtained from prior 

experience as well as seasonal and cyclic variations. Uncertainty in product 

demand makes it difficult to set manufacturing capacity and rates of 

production. 

If manufacturing capacity were excessive, the control problem would 

become trivial. There would be sufficient machines to do all jobs at the 

expected time. However, excess capacity would incur higher costs. Capacity is 

not just the number of machines in the shop floor. The true capacity is related 

to the sources of uncertainty in the manufacturing system. One source of 

uncertainty is the reliability of the machines. Machines are prone to fail at 

random times, and the time to repair is also a random variable. This problem 

is strongly related with the plant maintenance program and procedures. 

Examples of other sources of uncertainty that affect capacity are worker 

and material absence; variations in the quality of the raw materials, which may 

affect production yield; variation in machine processing times caused by 

different operator experience or quality of raw materials. These types of 

uncertainty must be considered when estimating system capacity. The models 

and control algorithms should also be able to handle issues like setup times and 
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finite buffer sizes. When a machine switches from making one part to another, 

the setup of the machine must be physically changed. This takes a certain 

amount of time to accomplish and is called the setup time, which in many 

situations is a random variable. 

As referred in [Desrochers, 1990] there are several performance criteria 

that are used to determine optimal production control policies. Among these 

are: satisfy demand accurately; meet the due date; minimize the production 

costs; and minimize the total time required to complete all the jobs. 

Additionally, [Graves et al., 1993] referred that there are several other 

important issues that must be considered in model design: the time unit 

(months, weeks, days or shifts); the time horizon (one month, one year, etc); 

level of aggregation of the products (one aggregate product, a few product 

categories, or full detail); level of aggregation of the production resources (one 

plant or multiple resources); frequency of re-planning (every basic time unit or 

less); number and structure of production plans (e.g., a one-year plan, a three-

month plan, and a one-week plan, the last one released to the plant). 

Time Unit and Time Horizon 

The aggregate production planning is usually modeled using weeks or months 

as the time unit. The shorter the unit the more complex the problem that 

needs to be solved at the detailed level. In most real situations there is a range 

of values for the planning horizon. If seasonality exists it should be used a plan 

horizon of one year or more.  

Products Aggregation Level 

The aggregation approach is to focus attention on major cost sources, 

defining a plan that can be implemented in a simple and economic way. To do 

so the model structure considers relatively large costs and important resources. 

The appropriate level of aggregation depends on the cost structure, the 
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production line, and stationarity of the production process. Most of the 

models described in the literature assume one aggregate product. 

Facilities Aggregation Level 

Many aggregate planning models define the facility as a single resource. 

Some authors consider the work force as a single resource and assume that all 

levels of the work force can fit within the plant. 

Resources like types of labor, work centers, raw material availability may also 

be considered. 

Frequency of re-planning 

Although plans are made over an acceptable planning horizon, re-

planning occurs often and the plans are used in what is usually termed as a 

rolling mode. 

In practice, re-planning is done all the time because of changes in the data 

(forecast revisions, modified schedules, machine breakdowns, etc.). If re-

planning is too frequent, then the system may become unstable due to 

excessive nervousness, as mentioned in the literature (see [Graves et al., 1993]). 

Levels of plans before implementation 

Industrial companies often have several plans, at different levels of 

aggregation, rather than just one aggregate plan and a detailed schedule. 

The levels of aggregation depend on the existing number of plans, and the 

choices depend on the situation. The development of an appropriate set of 

models is related with the hierarchical production planning. 

 

2.6 RANDOM YIELD 

In the literature the predominant emphasis has been on measures to deal 

with demand uncertainty. However, in a complex production and inventory 

system there are several other sources of uncertainty. One can divide them into 

two main categories: capacity uncertainty and yield uncertainty, according to the 
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different ways by which they influence the outputs. Under a variable 

production capacity scenario, the realized capacity in a given time period could 

constrain what can be actually produced. If the planned production quantity is 

greater than the realized capacity, only part of it can be processed. On the 

other hand, the presence of random yield causes a random portion of 

processed items to be defective. Although both categories of uncertainty 

referred above are often present simultaneously in a production process, 

variable capacity is outside the scope of this thesis. 

The implications of yield losses are typically in the form of the costs of 

surplus due to good yield and scrap or rework and the costs of not satisfying 

the total demand (shortage costs), which are then incorporated into the 

objective function that drives the definition of lot sizing policies. Other 

consequences of random yield are in the reduction of production capacity and 

delayed output and the consequent late deliveries. This may cause starvation of 

downstream processes/operations, and thereby affect the production capacity. 

[Bispo, 1997] suggests that when it comes to studying systems with random 

yield one needs to consider essentially three different domains: modeling yield, 

controlling systems with a given yield structure, and improving yield. The 

modeling domain is concerned with identifying the more suitable method to 

approximate the random yield process as a stochastic one. The second domain 

deals with determining production decisions given that random yield exists 

and is unavoidable. Finally, improving yield is related with quality control 

issues and aims to improve production processes in order to increase yield or 

monitoring the output at critical stages to prevent that the process turns out of 

control. This last area is also outside the scope of this research. 

A notable overview of developments in the context of optimal inventory 

control in the presence of random yield is provided by [Yano and Lee, 1995]. 

The authors described the research to date on lot sizing in the presence of 

random yield, discussing issues related with the yield uncertainty, modeling of 
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costs, and performance. The issues presented on the following sub-sections are 

strongly based on the referred paper. 

 

2.6.1 Modeling of Yield 

The modeling of systems with random yield should consider the 

following topics: modeling of costs, modeling of yield uncertainty, and 

measures of performance. The modeling of some costs, such as setup and 

shortage costs, usually are not affected by the presence of random yields. 

Variable unit costs and inventory holding costs must be modeled depending 

on the scenario. Hence, variable costs should be defined as a function of the 

appropriate quantity (input, output, ordered or received quantity), while 

inventory holding costs often depend upon the timing and nature of the 

inspection process.  

[Yano and Lee, 1995] present five different ways of modeling yield 

uncertainty. The simplest model of random yield assumes that the number of 

good units in a batch of size Q follows a binomial distribution with parameters 

Q and p, where p is the probability of generating a good output from one unit 

of input. Such model is suitable for systems in control for long durations. A 

second way to model yield uncertainty is to define the distribution of the 

fraction of good units, often referred to as yield rate or stochastically 

proportional yield. This model is applied for large batch sizes, or when the 

variation of the batch size between production runs tends to be small. The 

third modeling approach considers that the distribution of the fraction of 

good items changes with the batch size. It involves specifying the distribution 

of the time until a repetitive process starts to make defective parts and 

becomes out of control. Situations where the failure is the result of state 

deterioration of the production system during a production run are examples 

of application of this model. Another modeling approach is applied for 

systems with the fraction of acceptable items stochastically increasing with the 
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length of the production run. This happens when the process setup involves 

trial and error in setting values that influence decisively the output quality. At 

last, the fifth approach assumes that yield uncertainty is the consequence of 

random capacity, the main source of which might be unreliable equipment. In 

such systems the output quantity is the minimum of the input quantity and 

the available capacity. 

The performance measures for lot sizing with random yield have as 

dominant criterion the minimization of expected costs. However, [Yano and 

Lee, 1995] highlight the fact that, with few exceptions, constraints on various 

measures of service have not been considered yet.  

In summary, models for lot sizing decisions in presence of random yield 

should consider a consistent characterization not only of the yield loss process 

and the distribution of yield losses, but also of the inspection process and its 

effect on timing and costs. An objective function and constraints that capture 

the consequences of yield losses is also a critical element of the modeling 

process. 

 

2.6.2 Production Decisions in the presence of Random Yield 

The literature in continuous-time review models contemplates exclusively 

single-stage models, and almost all require rather strong assumptions regarding 

stationarity of yield distributions, demands, and costs.  

As mentioned in [Bispo, 1997] even the model with stochastic demand 

and random capacity retains the base stock structure of the optimal policies. 

However, the presence of random yield in production systems neutralizes 

many of the nice structural properties of inventory control policies, namely the 

base stock structure. Many base stock policies are simultaneously order-point 

and order-up-to policies. Order-point policies are characterized by a point (or set 

of points) defined in terms of initial inventory, above which it is optimal not 
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to order. Order-up-to policies are identified as those where, when the optimal 

decision is to order, the optimal quantity is such that the ending inventory is a 

particular inventory point (or set of points). Many systems with random yield 

preserve the order-point property but lose the order-up-to property. Intuitively, 

one could expect that it might be estimated based upon the amount produced 

multiplied by the inverse of the expected random yield. However, the 

following references show that such policy is not correct.  

[Gerchak et al., 1988] analyzed the finite-horizon problem with constant 

costs and stationary demand. Yield was assumed invariant with the production 

quantity and stationary over time. Using as performance measure the profit 

maximization, they concluded that the order point does not depend on the 

yield distribution. Moreover, the amount to order depends not only on the 

expected random yield but also on the second moment of the random yield. In 

fact, the optimal quantity increases as the expected yield decreases but it 

decreases as the variance increases. It sounds reasonable since, with a high 

yield variance, large batch orders have a high probability of wasting a big 

amount of material, whereas smaller batch orders induce smaller absolute 

waste.  For the multiple period problem they have demonstrated that myopic 

policies are not generally optimal, and that order-up-to policies are not 

optimal, that is, the optimal production quantity is not necessarily a linear 

function of beginning-of-period inventory. 

In [Henig and Gerchak, 1990] the single stage, single period, finite-

horizon and infinite-horizon models with general production, holding and 

shortage cost structures, are analyzed. They verified that, under an assumption 

of stochastically proportional yield, there exist critical order points for both 

finite and infinite horizon problems. These critical order points are such that 

no order should be placed if the on-hand inventory level is above the critical 

order point; otherwise, an order should be placed. However, they derived a 

significantly complicated function of the system’s parameters, based on Taylor 
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series, for the order quantity. Additionally, the critical order point for the 

infinite-horizon problem with stationary demand and costs is also stationary 

and greater than or equal to the one obtained in the model with no losses. 

This implies that one can acquire an advantage from producing farther ahead 

than one would without random yields. They also provide an interesting 

literature review on random yield problems covering continuous and periodic 

review models. 

Another interesting discussion on random yield effects is provided in 

[Grosfed-Nir and Gerchak, 1996]. A general framework for modeling and 

analyzing Multiple Lot-sizing Production to Order (MLPO) single stage 

problems is discussed. The relevance of the MLPO problem can be explained 

not only under the scope of this thesis, but also mainly by the tremendous 

growth of production to order of relatively small volumes of custom-made 

items in recent years. The paper also derives a method for computing the mean 

and variance of the cost, and presents a numerical example where such cost 

structure is tested for several policies. The authors used a “motivating 

example”, with a yield structure characterized by a fixed probability for the 

process to become out of control, for each unit produced. All units completed 

before such occurrence are good; otherwise are defective. They referred several 

properties of the optimal solution that seem so intuitive that one would expect 

them to hold for all reasonable yield patterns, and researchers had indeed 

occasionally assumed them in their models. However, they proved that often it 

may not be the case. The first property usually assumes that the optimal run 

size ND increases with demand D. Their example shows clearly that this 

property does not always hold. Intuitively, beyond some value of N, the 

chances of the process not getting out of control are so low that even with a 

high demand level D, it is better to save on variable costs by starting with a 

smaller run, since incurring several setups is practically certain. The other 

interesting result contradicts the idea that the optimal lot size ND is always 
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greater than demand D, since selecting an N that is larger that D does not 

increase the probability that D units will be good. 

A different approach, related with Material Requirements Planning 

(MRP) systems, is presented in [New and Mapes, 1985]. The paper derives four 

different strategies to deal with random yield. The authors concluded that the 

best policy for make-to-stock situations under continuous production is to 

adjust the production quantity for the average yield rate and use fixed buffer 

stocks. For the make-to-order situations, they suggest a modification to the 

above policy to allow multiple production runs. For products with infrequent 

demand or for a single custom order the strategy recommended is the use of 

service level measures. At last, for multiple-order custom products, they 

propose using safety time in order to make possible the production division 

into smaller batches, which enable more frequent inspection and reduces the 

probability and size of overruns. 

[Karmakar and Lin, 1986] consider a multi-period problem with both 

random demand and yield. The objective is to allocate resources (consumable 

and renewable) to N products to minimize the sum of expected variable 

production, inventory holding, shortage, regular time, overtime, capacity 

acquisition, and capacity retirement costs. They develop methods to determine 

upper and lower values of the objective function.  

 

2.7 INFINITESIMAL PERTURBATION ANALYSIS 

Many systems found in manufacturing environments can be described as 

discrete-event systems. These events, which may occur at either deterministic 

or stochastic times, push the system from state to state throughout time by 

finishing and initiating a sequence of activities. Machine failures and repairs, 

sudden changes in demand profile, and machine starvation or blockages are all 

events occurring at discrete instants in time. The occurrence of these events 
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has an impact on the dynamic response of the manufacturing system, given 

that the beginning or conclusion of one of these events can propagate from 

machine to machine, changing its performance. The interaction of these 

events throughout time is a critical issue of discrete-event dynamic systems.  

 

2.7.1 The Key Features of Perturbation Analysis 

The Perturbation Analysis (PA) theory had its origins with [Ho et al., 

1979]. They established the flavor of perturbation analysis, focusing on the 

buffer storage optimization in a production line, based on a gradient 

technique. However, as referred in [Desrochers, 1990] the PA theory had its 

accidental beginning in 1977 while researchers from Harvard University were 

working at the FIAT 131 engine production-line’s monitoring system. This 

research leads to an efficient technique for calculating gradients, or 

sensitivities, in a serial-transfer line. The gradient for a discrete-event dynamic 

system is related to the perturbation of events and can be interpreted as the 

addition of one unit on the buffer size bi, which allows machine Mi to produce 

the same number of parts in less time. This effect represents a local gain in 

production, and tends to propagate pieces downstream in the line, since Mi 

feeds bi. Correspondingly, buffer vacancies can be propagated upstream. The 

status of the other machines will determine if this propagation will result in a 

line gain. For example, if the last machine has an extremely high failure rate 

that gain may not occur. Then, one is interested in computing the sensitivity 

represented by the rate of gain in production line by Buffer size increase at each 

buffer location and then allocate the buffer size at each location to maximize the 

performance index. The system-performance measures are statistically 

compared through experimentation. Performing experiments on discrete-event 

simulation models involves a continuous procedure of executing a set of 

instructions on the computer and, each simulation run evaluates a single 

scenario. 
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In a manufacturing system, for example, we may be interested in the 

effect of changing the processing time of one machine on the overall 

throughput of the system. To analyze such effect it would be necessary to run 

several experiments with the model at different processing times. Each 

simulation experiment would consist of changing one parameter and then 

estimating a measure for system performance. The main problem with this 

method is that each parameter must be analyzed individually in order to isolate 

its effect on the system. This procedure becomes very complicated as the 

number of parameters becomes significant, resulting in a prohibitively large 

number of experiments. Suppose there are N machines and N buffers. If we 

use extensive simulation it would be necessary N+1 simulations in order to 

compute the N components of the gradient vector. On the other hand, if we 

use PA the N gradients can be determined from one single simulation. This 

procedure gives the possibility to derive sensitivity estimates at each model 

simulation, giving to the analyst a significant help on the decision process of 

which parameters it is necessary to adjust in order to improve performance.  

The implementation of perturbation analysis techniques involves the 

installation of a mechanism within the simulation model to monitor the 

sample path as it evolves. With the simulation of the unperturbed (nominal) 

path, perturbation analysis tries to forecast what would have happened if the 

values of the parameters had been changed.  

See also [Ho, 1988] for some intuitive explanations of what perturbation 

analysis is and why does it work. One of the leading works of the perturbation 

analysis on general queuing networks was developed by [Cassandras and Ho, 

1983]. The authors have introduced the concept of similarity and, on the basis 

of an appropriate state-space representation, showed that perturbation 

equations around a nominal trajectory can be used to predict behavior by 

observing only one single sample realization for some classes of discrete-event 

dynamic systems, such as queuing networks and production systems. 
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2.7.2 Finite and Infinitesimal Perturbations 

The sensitivity of a transfer line production to a buffer level change is an 

example of finite perturbations in which the rules of perturbation propagation 

are used on parameters that take discrete values. On the other hand, there are 

several continuous parameter changes that could influence a series of discrete 

events. By way of illustration, if the repair rate could be increased at machine 

Mi, it would also result in a local production gain at Mi which, depending on 

the status of other machines, may propagate downstream to the end of the 

line. Therefore, infinitesimal perturbations are used to obtain the sensitivity of a 

performance measure with respect to continuous parameter changes.  

In spite of the fact that there is a deficit of theoretical foundation for the 

finite perturbation analysis algorithms, the infinitesimal perturbation branch 

had an interesting development and during the 80’s there was already 

significant theory supporting it. In the specific context of Infinitesimal 

Perturbation Analysis (IPA) [Suri and Zazanis, 1988] were responsible for the 

first developments on this area. For an M/G/1 queuing system, they 

considered the sensitivity of the mean flow time to a parameter of the arrival 

or service distribution. Among other issues, they showed that a perturbation 

analysis algorithm implemented on a single sample path of the system gives 

strongly consistent estimates of the sensitivity. 

The main issue of IPA is that we can make small changes to certain input 

parameters (ϕ) of a system without altering the sequence in which events 

occur. This means that, for any given simulation and for certain parameters, a 

change in one parameter (∆ϕ) can be made small enough, like an infinitesimal 

change (δϕ), such that the event times are shifted without any alteration in the 

respective order of occurrence. [Johnson and Jackman, 1989] referred this as 

the “deterministic similarity” assumption. The authors showed that IPA is an 

accurate technique for sensitivity analysis for serial transfer lines and that the 

assumption of deterministic similarity is a sufficient rather than a necessary 
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condition. Such feature is due to the linear nature of the IPA estimate. 

Nevertheless, as the experimental results indicated, discontinuities do exist in 

the performance measures functions, and hence the accuracy of IPA 

estimation for finite perturbation is not guaranteed. Consequently, the main 

limitations of the infinitesimal perturbation analysis are related with the 

incorporation of such a technique into a general-purpose simulation language. 

 

2.7.3 Perturbation Generation and Propagation 

The issue of perturbation generation and propagation is addressed in 

[Johnson and Jackman, 1989] in a very simple manner. Two separate issues 

must be considered in the implementation of an IPA algorithm: perturbation 

generation and perturbation propagation.  

As was already mentioned, a small change (∆θ) in a parameter (θ) has a 

smooth effect on the performance measure function [f(θ)]. Perturbation 

generation is nothing but the difference (∆xi) between the nominal (θn) and 

perturbed (θp) value of the parameter. For example, if we are interested in 

perturbing the mean of a parameter that follows an exponential distribution, 

we could simply convert the same random seed for the two means (µn, µp) and 

subtract them to find the difference (∆xi). Because we are interested in the 

instantaneous gradient or derivative of the performance measure function, and 

since we are considering infinitesimal changes (δθ) of the parameter (θ), this 

process can be substantially simplified. One never needs to specify the 

perturbed mean or calculate a finite difference (∆xi) since the information 

necessary to calculate the gradient is contained in the nominal value of the 

service time (dx/dµ=x/µ). Such property turns IPA into an efficient method 

since it requires little additional effort in addition to the computation 

necessary to simulate the system. 
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CHAPTER  
  

 

 
MODEL DEFINITION 

 
 

3.1 INTRODUCTION 

The model presented in this thesis considers a multi-product, multi-stage 

capacitated process, with product splitting, random yield, and insignificant 

set-up times, facing uncertain demand. At a given process stage s, the 

inventory available of product p can be used to process m different sub-

products. Whenever such a stage exists, it is said that a product split occurs. 

The framework used is periodic review, capacitated, multi-product, 

production-inventory system working under an echelon base stock policy. To 

be precise, given a particular product p and stage s, it is necessary to add all 

inventory downstream from that stage to compute the echelon inventory. If 

the echelon inventory falls below the corresponding base stock value, the 

3 
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production decision will be equal to that difference, provided there is 

sufficient upstream inventory and enough capacity.  

Under the framework of discrete time inventory control, the problem 

now addressed analyzes several different production policies, which are tested 

in perfect and random yield production systems. The system performance is 

measured in terms of costs and lead-times. One may consider discrete time as 

a valid approach for this problem, since decisions are made every production 

shift, inducing a periodic review structure on the production decisions. 

 

3.2 THE GLASS MANUFACTURING PROCESS 

The model presented on this thesis simulates the hand-made glass 

production process, which may be divided in two main areas – the hot area 

and the cold area – consisting on a set of sequential operations. Figure 3.1 

shows a general layout for the glass manufacturing process. Usually there are 

seven different product families (“Centrifugado”, “Belga”, “Frascaria”, 

“Marisa Fina”, “Marisa Grossa”, “Monomóldica” and “Multimóldica”) 

depending on the product type and used technique, some of them being more 

technological-intensive and others labor-intensive. 

 

 
 
 
 
 
 
 

Figure 3.1 – Glass Manufacturing Production Process 
 
 

As soon as the several operations were perfectly identified, it was 

possible to identify a typical working sequence. Remark that at the finishing 

 Raw Materials 
Preparation Furnace Annealing 

Lehr
Final Stock

Moldling Posts Finishing Posts 
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posts the products always follow the same operations sequence. However, 

there are some products, which do not need to perform all the operations. In 

these situations the products move immediately downstream to the next 

relevant stage. To improve the understanding and identification of the 

products flow, and for an easy model implementation, a simplified version of 

the process was developed. Figure 3.2 presents such version. 

 

 

HOT-AREA PROCESS LAYOUT 

 

 

 

COLD-AREA PROCESS LAYOUT 

 

 

 

Figure 3.2 – Glass manufacturing process layout (model version) 

 

 

I. Hot-Area Process Stages  

After the raw materials preparation, the glass is melted on the furnace 

according to specific parameters (temperature, time, pressure, etc.) in order to 

achieve the correct mechanical and visual properties. The melted glass is 

taken out of the furnace to the several molding posts. Some of these posts 

may be manual or automatic. Each manual post consists of, apart from the 

molding tools, a team of two to twelve workers, one of which is the post chief. 

The number of people in each team changes according to the product family. 

The features of the production process in this area may become much more 

complex, increasing the cycle time, depending on mold types, product color, 

product weight, finishing, warming and cooling processes. 

As far as the capacities of the furnace, molding posts and annealing lehr, 

they all are finite. However, the furnace’s capacity (800ton./day) ought to be 
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II 

Stone 
Cutting Marking Acid  

Immersion
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Packing 
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the main constraint to the process. The furnace needs to work on a 

continuous mode, in order to avoid a possible failure. Therefore, it is valid to 

assume that melting glass is available at any time for the modeling stage, or in 

other words, the furnace capacity is several times larger than the total 

modeling stage capacity, excluding the possibility of a starvation scenario. 

Before and after the rough cutting posts, the articles go through an inspection 

stage (Selection I and Selection II).  

II. Cold-Area Process Stages 

After being taken out of the hot-area’s last stage, most of the articles need 

to go through a set of finishing process (Marking, Stone Cutting, Acid 

Immersion, and Selection and Packing). The number of people working in 

each post/machine is usually one or two. Also, there are people whose task is 

carrying the articles from one post to another. The posts capacity is finite and 

the setup times of the different posts are negligible when compared to the 

operation processing time. 

 

3.3 PRODUCTION STRATEGIES 

This work deals with three different production strategies, all supported 

on the existence of a set of base stock variables, Z, defined for each echelon 

inventory variable. The echelon inventory of a stage is defined as the sum of 

local inventories from that stage down to the last stage of production. The 

three strategies are: Make-to-Order strategy, Make-to-Stock strategy, and 

Delayed-Differentiation strategy.  

Under an MTS strategy, the production decision for product p at stage s 

will depend, simultaneously, on the difference between the base stock level 

and present inventory, the inventory available at the previous buffer, the 

available capacity, and the production limit.  
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With an MTO strategy the products are only produced after demand is 

realized and all the base stock levels are set equal to zero. That is, an MTO 

strategy is an MTS strategy with the Z levels set to zero. 

One can describe a DD strategy as a combination of a make-to-stock 

policy and a make-to-order strategy. In order to decrease the product’s 

manufacturing lead-time one can create an intermediate stock of products 

with the same baseline geometry. On the hot-area stages the production 

strategy is an MTS one. After demand is realized, the products are subtracted 

from the intermediate stock and produced under an MTO strategy, during all 

cold-area stages. In other words, a DD policy is an MTS strategy with the cold 

area Z levels set to zero. 

Under this thesis context one should distinguish two concepts: policy 

and strategy. The first concept is related with the production decision making 

procedure, which is based on a comparison between the weighted shortfall, 

the available inventory and capacity, and the production limit. Then, the 

production policy can execute several different management strategies such as 

the strategies under analysis, depending on the setting of some of the control 

parameters. 

 

3.4 THE BASIC MODEL 

The remaining of this chapter describes the main structure of a 

production process model implemented to analyze and understand the 

process dynamics. Before being completed, each product p has to go through 

S process stages (machines). There are infinite capacity intermediate buffers 

where the products are placed while waiting their turn to be processed by the 

next machine or depleted by external demand if the previous operation was 

the last one. Somewhere during the process product splitting occurs. At this 

operation each product p can lead up to M sub-products. 
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Despite the results discussed in chapter 2 concerning yield modeling and 

its consequences on production decisions, the present work will consider 

standard base stock policies. However, it is our conviction that the base stock 

levels will reflect reasonably well the yield influence. We refer the reader to 

Chapter 5 for a discussing on future work. 

The following notation is valid throughout this text: 

! P products, indexed by pm (the index m= 1, …, M indicates sub-

class of product p defined for the cold area stages);  

! S stages, indexed by s (the last stage of the process is stage 1, 

while first stage is stage S); 

! N time periods, indexed by n; 

! 
mp

nD : Demand for product pm in period n at stage 1 (last stage); 

! 
spmZ : Echelon base stock level for product pm at stage s; 

! 
sp

n
mI : Inventory in time period n for product pm at stage s; 

! 
sp

n
mE : Echelon inventory in time period n for product pm (sum 

downstream all sp
n

mI  , beginning at stage s); 

! 
sp

n
mY : Shortfall in time period n for product pm at stage s; 

! 
sp

n
mP : Production amount in period n for product pm at stage s; 

! 
spmα : Random yield correction factor for product pm at stage s; 

! 
sC : Capacity of stage s; 

! 
spmT : Processing time of product pm at stage s; 

! 
spmU : Production limit for product pm at stage s; 

 

This nomenclature considers stage S as the first stage of the process and 

stage 1 the last one. For example, 113
nI  represents the available inventory of 

sub-product 3 of product 1, at the last buffer at the beginning of time period 

n, from which random demand is satisfied or backlogged. For ease of 
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explanation and henceforth, the reference to a product p is made generically, 

that is, not regarding if it is a product p or a sub-product pm. 

The issue of how to compute costs is discussed in [Glasserman and 

Tayur, 1995]. One may consider two alternative procedures: Cost accounting 

after demand takes place or cost accounting after production has been 

decided. In the first procedure, the production quantities are set for all 

products and stages at the beginning of each period. Inventory levels are 

updated at the end of the period according to the achieved production and 

the realized demand, which is assumed to occur only after production has 

been decided. This demand is instantly satisfied if there is sufficient 

inventory. If not, it is backlogged and eventually satisfied with future 

production runs. The second procedure assumes that demand occurs at the 

beginning of each time period. Next the production quantities for all 

products and stages are determined and, finishing the period, the inventory 

levels are updated according to the reached production and demand. After, 

costs are incurred, depending on the remaining inventory quantities. In line 

with the established in inventory control theory, the cost estimation 

procedure in this work follows the exposed on the first procedure. 

Even if the model described in this chapter embodies some sources of 

uncertainty, one needs to consider it a relatively simple model. The demand 

and production yield randomness are the only two sources of uncertainty 

considered in the model. Production processes are under many other sources 

of uncertainty like machine failure, raw material properties, processing times, 

and so forth. Nevertheless, one needs to understand simplified versions of 

production processes in order to get insights and effectively manage more 

complex versions of them. Incorporating variable capacity and non-

deterministic processing times on the present model will not be a complex 

mission, since its structure is easily adjustable to such scenario. 
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3.4.1 Variable Classes 

The main model variables should be classified into three classes 

according to their function: state variables, control variables, and decision 

variables. 

Echelon variables and shortfall variables, both functions of inventory 

variables, form together the first class of variables. Their value reproduces the 

process dynamics since they are updated at each simulation cycle. The 

echelon base stock, the production limit and the capacity variable form the 

control variables class. The first two variables hold the same value during all 

simulation, while capacity variable is time independent, being initialized at all 

simulation cycles. The last class consists only of the production variables, 

which have to be computed at each simulation cycle and reset for next cycle, 

because they are not explicitly time dependent.     

 

3.4.2 State Variables Basic Recursions 

The inventory, echelon inventory, and shortfall variables are the state 

variables that define the process dynamics. Their equations will now be 

presented as well as the initial conditions and a set of alternative variables. 

 

I. INVENTORY DYNAMIC EQUATION 

The inventory equations are given by: 
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The first line of the equation describes the inventory consumption by 

external demand at stage 1 (last stage) at a given time period n. The remaining 

lines of (3.1) describe the inventory evolution at a given intermediate stage s 

and time period n. The inventory level is consumed by an amount 

corresponding to the production of the downstream stage s-1 and increased by 

the amount effectively produced at stage s. The sum on the last stage of the 

hot-area reflects the division of each base product in a set of M sub-products. 

 

II. ECHELON INVENTORY EQUATION 

The echelon inventory can be described by the following recursive equation: 
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The sum of inventory downstream for each product p at a given time 

period n corresponds to the echelon inventory. At the last stage (stage 1) the 

echelon inventory is just the local inventory, as stated by the first line. The 

echelon inventory for the other stages is defined recursively by the other lines 

depending on which stage one is interested. 

After simple manipulation of (3.2) it is possible to obtain the echelon 

inventory dynamic equation: 
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III. SHORTFALL DYNAMIC EQUATION 

The following equation describes the shortfall process dynamics. A 

shortfall is defined as the difference between the echelon base stock and the 

echelon inventory and, by definition, is always non-negative. 

 

ps
n

psps
n EZY −=                                                  (3.4) 

 

psZ represents the echelon base stock level for product p at stage s. 

Considering the inventory dynamic equation (3.1), it is possible to derive a 

similar one for the shortfalls, which highlights the demand role in moving the 

echelon inventory away from the target and the production efforts trying to 

reduce shortfall to zero: 
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IV. INITIAL CONDITIONS 

At instant n=0 the state variables will be set at their base stock levels: 

   11
0

pp ZI =   

   )1(
0

−−= sppsps ZZI  

The initial conditions for echelon inventories will be defined according to 

equation (3.2):  

psps ZE =0  

The remaining initial variables are set equal to zero. 

 

 

V. ALTERNATIVE VARIABLES 

Let the following equation represent an alternative set of control variables 

linearly related with the multi-echelon base stock variables. 
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[Bispo, 1997] proposes this alternative set of control variables, which 

simplifies the perturbation propagation. In order to keep consistency, the 

base stock variables have to be ordered respecting )1( −≥ spps ZZ , which is not 

always simple to manage. The use of these alternative variables will simplify 

such propagation. 

 

3.4.3 The Model Cost Structure 

The intrinsic product value increases as it flows throughout process stages 

since it gets more value added at each stage. Therefore, the holding costs are 

estimated based not only on raw materials cost, but also on the hourly cost of 

resources used to perform the activities related with a given stage, while 

backloging costs are related with last stage’s holding cost. 

 

Let 

 se  - Energy cost at stage s, per unit of time; 

  sr  - Human resources cost at stage s, per unit of time; 

   pm  - Raw material cost for product p;                               (3.7) 

 

which allows the recursive definition of holding costs structure as:  
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The penalty costs are not as simple to estimate because it is necessary to 

convert into numbers all the disadvantages of not satisfying the costumer, 

which suggests some intangible features.  
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3.4.4 The Performance Measures 

Present research usually considers two different kinds of performance 

measures: operational cost based and service level based. The traditional cost 

based measures are related with the accounting of costs to inventories and 

backlogs, while service level based measures deal with the system’s 

performance in satisfying costumer needs. 

 
 
I. OPERATIONAL COST BASED MEASURES 

Defining holding and backloging costs by the following notation, 

 

  psh - holding cost rate for product p and stage s; 

  pb  - backlogging (or penalty) cost rate for product p at stage 1;     (3.9) 

 

and the single stage cost as: 
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The last term of equation (3.9) expresses the parts which are defective 

and scrapped. Although these parts cannot continue being produced, since 

the raw material is glass, it can later re-enter in the furnace and used in future 

runs. That is why we only incur energy and labor costs for lost parts.    

 

Hence, the finite horizon average cost is given by:   
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and the infinite horizon average cost by: 
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In order to consider the time value of money we need to associate a 

discount factor [ ]1;0∈β . Therefore, the infinite horizon discounted cost is 
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II. SERVICE LEVEL BASED MEASURES  

Measures based on service level are quite important under scenarios 

where shortage costs estimation is often a laborious operation. The 

consequences of lost customers are very difficult to measure. They may choose 

to go elsewhere in the future, which means loss of future revenues. Whereas it 

is hard to place a money value on loss of future revenues and customer 

goodwill, it is much easier to define a service level target. This is the reason 

why service level measures are a widely used tool. 

 

The most common measures are: 

 

i) Type-1 Service Level – the proportion of periods in which all 

demand is met; 

ii) Type-2 Service Level – the proportion of demand satisfied 

immediately from inventory. 
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Even if Type-2 service level is what one usually means by service, the 

Type-1 service level is the most used because of its simplicity.   

Additionally, and in the context of this thesis, we are going to deal with 

an indicator, which expresses time delay from instant of costumer order 

arrival to instant of total order delivery – the lead-time. 

[Bispo, 1997] introduces a result, designated as optimality condition, which 

is related with the service level. This condition states that the optimal base 

stock levels for the average cost measure for any production policy and any 

capacity sharing mode are such that the following condition is true: 

   

( ) 1
1

pp

p
pp

n hb
b

IDrP
+

=≤               (3.15) 

 

3.4.5 The Derivatives of the Basic Model 

The derivatives of inventory, echelon inventory, shortfall and 

production levels can be obtained by differentiating the respective dynamic 

equations. They are taken with respect to spmZZ =°  for some p=1, …, P, s=1, 

…, S and m=1, …, M. The same is valid for the other control variable, the 

production limit °U . Since, even under infinitesimal perturbations, the base-

stock levels have to remain ordered, let us assume that, for the applicable 

strategies (MTS and DD) Sppp mmm ZZZ <<<< ...0 21  is a valid relation. 

 
 
 
3.4.6 State Variables Derivatives 

We simply detail the inventory derivatives, given that the procedure is 

relatively simple. The other variables follow the same method. 

 
 
I. INVENTORY DERIVATIVES 

The inventory derivatives are governed by the following two equations: 
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II. INITIAL CONDITIONS DERIVATIVES 

The initial conditions must also be differentiated, as stated in the 

following expressions: 
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where  { }•1  is the indicator function. 
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3.4.7 Performance Measures Derivatives   

In line with equation (3.11), the operational cost derivatives are given 

by: 
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3.5 THE PRODUCTION DECISIONS AND THEIR DERIVATIVES 

The production rules are defined to manage the dynamic capacity 

allocation. In other words, the production decisions are necessary to decide, 

in each period n, how the available capacity is going to be distributed among 

the different competing products when a shortage of capacity regarding the 

total production needs becomes a factor. 

The shortfall equalization for every product is a way to dynamically 

allocate capacity. This procedure assigns capacity to products in decreasing 

order of their present distance to the target level, the echelon base stock psZ .  

As referred in [Bispo, 1997], the intuition behind an algorithm that 

equalizes the shortfalls is that one should start by allocating capacity to the 

product with a higher difference to its target level psZ , that is, the product 

with the highest shortfall, until it reaches the level of the product with the 

second highest shortfall. The next step consists on the distribution of the 

available capacity in equal parts to both products until their shortfalls 
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equalize that of the third highest shortfall. Note that, at any point, one can 

have different shortfalls at the end of the production decision as a 

consequence of capacity exhaustion or insufficient inventory for some 

products. However, the problem of inventory exhaustion at the first stage 

does not exist since raw material is always available, avoiding starvation. Since 

one can produce several products within a production period, one needs 

some rule that allows the distribution of the available capacity by the 

products.  

 

3.5.1 The Production Decisions Algorithm 

The next algorithm is inspired on the Equalize Shortfall Algorithm 

developed in [Bispo, 1997], with some significant modifications. The first one 

deals with the shortfall ordering issue. While in the above the ordering is 

established on a shortfall absolute value, here it will be based on a weighted 

shortfall, that is, the shortfall absolute value divided by the average demand. 

The second modification concerns the capacity allocation problem. In [Bispo, 

1997], section 3.4, the production decisions are determined in order to 

continuously equalize each product shortfall. The next algorithm, in contrast, 

does not consider the equalization. For the product with the higher weighted 

shortfall, the production decision is the shortfall value if there is available 

capacity, upstream inventory and if the production limit is not exceeded. The 

algorithm proceeds by allocating capacity to products by decreasing order of 

their weighted shortfall. 

 

!!!!  PRODUCTION DECISIONS ALGORITHM 

For each product p and at each time period n, the following algorithm 

gives the production decisions for each process stage s: 
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STEP 0 – Set control variable sC , decision variable psP and their derivatives to 

initial values. 
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   value stagecapacity  Cs =                      (3.20) 
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STEP 1 – Order, for each stage s, the products by decreasing order of  

    

   



















∑
=

otherwise    ,

stages;area  -cold    ,
][

1m

M
p

ps

p

sp

m

m

m

D

Y

D
Y

E

E
                           (3.22) 

 

after demand is realized. Consider that j = (1),…, (P) expresses that ordering.  

 

   

STEP 2 – The production decision and its derivative, for product 

corresponding to any j is determined as follows: 
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STEP 3 – Update the available capacity as follows:    
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Likewise the derivatives are updated as: 
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and 
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STEP 4 – If  0=sC , STOP. 

The total production for stage s is bound by capacity. 

Otherwise go to STEP 5. 

 

STEP 5 – If kj < , set 1+= jj    and    go to STEP 3. 
Otherwise, STOP.  

The total production for stage s does not use up all the available capacity. 

!  END OF THE PRODUCTION DECISIONS ALGORITHM 

 

  The algorithm generates the production decision and its derivative at the 

same time. By the end of the procedure, the parameter ps
nP  will contain the 
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production decision for product p at stage s at the instant time n, while °∂
∂

Z
P ps

 

and °∂
∂
U
P ps

 its derivatives. 

3.6 INFINITESIMAL PERTURBATION ANALYSIS VALIDATION 

The Infinitesimal Perturbation Analysis approach needs to be validated 

in the framework of this model. The validation procedure consists on 

showing that all variables are differentiable, providing their values, and finally 

to prove that expectation and derivation are permutable operators. This 

validation is presented in [Bispo, 1997] for multi-product, multi-stage, re-

entrant flow shops, subject to random demand, using a discrete time, 

capacitated, production-inventory model. Since the model presented in this 

thesis is a particularization of the above model, the IPA approach is valid. 

The IPA approach was implemented by means of the optimization 

procedure which uses the average total cost and its derivatives with respect to 

all variables to determine a new set of Z and U values if none of the stopping 

criteria is verified (see Figure 3.3). Examples of stopping criteria are small 

gradient norm and a maximum number of iterations. 

 

 

 

 

 

 

 

 

Figure 3.3 – Optimization-Simulation procedures interaction 

Optimization Procedure 
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       CHAPTER 

4 CHAPTER       
  EXPERIMENTAL STUDY 

 
 
 

4.1 INTRODUCTION 

In this chapter we analyze some numerical experiments carried out with 

the simulation optimization package developed (see Appendix A for more 

details on the software and on the optimization procedure). Several 

computational experiments will be presented in order to provide some insights 

into the behavior of the glass manufacturing production process under 

different production policies.  

 

4.2 SYSTEM AND PRODUCTS DATA 

The simulation of glass manufacturing processes with a high degree of 

accuracy will require considering the complete set of products, studies on their 

demand patterns, and knowing the real cost structure of the company, just to 

4
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mention some relevant issues. Obviously, such scenario will require not only a 

tremendous computational power but also the development of an entirely 

different application (with data bases), which is outside the scope of this thesis. 

From the almost 900 references in the catalog, 27 products were selected, 

which were divided in 3 groups of 9 products each. These groups represent the 

three classes of demand levels – high, medium and low – and are based on a 

Pareto’s Law categorization. The high demand total quantity is roughly 80% of 

the total units, while low level accounts only for 5% of total demand. 

The processing times of the 27 products for different stages are according 

with those used on the company’s information system. They were determined 

with the standard production rates and number of operators per stage. The 

wide range these values present reflect the degree of complexity and manual 

labor intensity of any product. Some products do not need to pass through all 

processing stages, which was simulated with very low processing times (0,00001 

minutes/unit). The capacity of each stage, expressed in minutes, corresponds to 

the available working time in one production shift. The firm works 24 hours on 

a four-shift base, which corresponds to 480 minutes per shift. 

Product split occurs at the end of the hot area, i.e., at stage 5. Stage 4 

takes inventory from stage 5 to produce one of the three possible sub-products 

out of each main product. 

We test four different production strategies: MTS, MTO, DD, and a mix 

of the three, called MTS/DD/MTO. This last strategy applies MTS to high 

demand products, DD to products of intermediate demand level, and MTO to 

low demand products. The first three were previously defined. 

4.2.1 Cost Structure 

As described in section 3.2.4, the developed cost structure accounts for 

three main direct costs: raw material cost, energy cost, and direct labor cost. 

Rather than represent real costs, the values try to illustrate the relative weight 
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between them. With net weights varying from 0,03 Kg to 6,03 Kg, it was used a 

value of 2 monetary units per kilogram for the glass cost. Next table shows the 

values of energy cost and labor cost to all process stages. The penalty cost of 

each product is defined according to the respective holding cost. It is used a 

factor of 1,3 for high demand products, 1,4 for medium demand products, and 

1,5 for products with a low level of demand. 

 

Table 4.1– Energy and labor hourly costs 
 

                STAGES   

 COSTS 
9 8 7 6 5 4 3 2 1 

Energy Cost 
[m.u./hour] 

0,5 3,0 1,0 3,0 0,1 3,0 3,0 3,0 0,1 

Labor Cost 
[m.u./hour] 

90 8 20 30 20 10 10 20 30 

 
 

4.2.2 Demand and Yield Structures 

Demand and yield are the two sources of randomness of the production 

system. While the first tries to replicate the uncertainty of the demand pattern, 

the second aims to reproduce non-deterministic production resources. The 

simulator uses two parameters – average demand and the inverse of the 

variance coefficient (ivc) – to generate a random number according to an Erlang 

distribution. All the experimental study was performed with an ivc =1. Under a 

non-perfect yield (NPY) scenario the average demand level must decrease when 

compared with the perfect yield (PY) scenario in order to maintain the same 

desirable bottleneck load (85%). Table 4.2 shows the average demand values 

depending on demand level and yield scenarios. 
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Table 4.2– Average Demand to both yield scenarios 

DEMAND 

LEVEL 

[units/shift] 

PERFECT 

YIELD (PY)    
[% TOTAL] 

NON-PERFECT 

YIELD (NPY)      
[% TOTAL] 

High 17,362 [80%] 14,886 [80%] 

Medium 3,255 [15%] 2,791 [15%] 

Low 1,628 [5%] 1,396 [5%] 

 

The yield factors used on the numerical experiments are equal to those 

available at the company’s information system, which were obtained from 

historical data. These rates represent an attribute of each stage, being almost 

product independent. The molding stage has the lowest average yield rate 

partially explained by a strong human labor dependency and operation degree 

of complexity. On the other stages, less human dependent and technically more 

simplified, yield is close to 100%. See Table 4.3 below for the average yield 

factors at each process stage.  

 
 

Table 4.3 – Average yield factors for non-perfect scenario 
 

STAGES 9 8 7 6 5 4 3 2 1 

Yield 
Factor 

0,6 0,9 0,95 0,95 0,95 0,95 0,95 0,95 0,95

 

One should mention that the application is not limited to consider stage 

dependent yield factors. It is possible to define a different yield factor for all 

products and stages. 
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4.3 SIMULATION CYCLES 

 

The decision of how many simulations cycles need to be performed must 

deal with two competing questions: time and accuracy. 

 

 

 

 

 

 

 

Figure 4.1– Cost vs. simulations cycles for PY and NPY scenario 

  

The number of simulation cycles must be sufficiently high to produce the 

most accurate estimates, regardless of the increasing simulation time. Figure 4.1 

demonstrates how cost evolves with the number of simulations. 

Both in PY and NPY scenarios the cost stabilizes in the neighborhood of 

2000 simulation cycles. However, and even though the oscillation is only within 

± 2,0 % of the average cost, all the simulations will be performed with a length 

of 8000 cycles.  

 

4.4 NUMERICAL RESULTS 

An in-depth analysis of this production system would be a considerable 

task to complete given the number of parameters to be taken into account: 

average demand, demand variance, processing times, holding costs, penalty 

costs, number of stages and their capacity, and production policies. For this 

reason, the numerical study was limited to two main simulation groups with 

three scenarios each.  The simulation groups are divided in limited production 

(LP) and non-limited production (NLP) approaches, which are individually 

formed by the following scenarios: perfect yield production (PY), random yield 
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production (NPY) and perfect yield production with a lower machine load (PY-

LL) using demand corresponding to the random yield scenario. For each one of 

these scenarios and production strategies, we present the optimal cost, in-house 

cost, and lead-times.  

4.4.1 Numerical Results Confidence Interval 

In all experiments, and after optimizing the values of the control 

variables Z and U, 25 replications were performed to verify the results’ accuracy. 

These 25 replicas are a sample from a normal distribution with unknown mean 

µ and unknown variance σ2 out of which we wish to construct a 100.(1–α) 

percent confidence interval for µ. Since σ is unknown, we can no longer base 

our interval on the fact that [ n (Xi - µ)]/σ has a unit normal random variable. 

However, by letting S2 denote the sample variance, then [ n (Xi - µ)]/S has a t 

distribution with n-1 degrees of freedom. All the intervals presented are 

determined with 95% confidence and refer solely to costs. 

4.4.2 Limited Production Approach (LP) 

On the first group of experiments the production system was simulated 

assuming each production decision is bounded by some limit, U. U was taken 

also as a control parameter subject to optimization. The initial values of the 

production limit were set at their minimum stable value, that is, equal to the 

average demand. During the iterations, the optimization algorithm will change 

the U values according to the gradient information and ensuring the successive 

values of U to be inside their feasible region. 

 

Scenario 1: Perfect Yield Production (PY) 

Under an MTS production strategy, all the control variables are adjustable 

and the Z and U values are defined depending on gradient information. Any 

production strategy different from this one will have a higher cost, since some 

of the base stock values are forced to zero on the other strategies. In ascending 
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order of cost, the production policies will then be ranked as: MTS, 

MTS/DD/MTO, DD and MTO. 

Figure 4.2 presents the evolution of the costs during the optimization 

procedure and serves the purpose of illustrating the convergence properties of 

the overall algorithm. In terms of optimal cost the ordering of the four 

strategies should not be a surprise. For the MTO strategy we simply optimize 

the values of U and keep all Z’s equal to zero. For the DD strategy, additionally 

to the MTO, we optimize the Z values for the hot area, keeping the Z values for 

the cold area all equal to zero. For the MTS strategy all values of U and Z 

variables are subject to optimization. The MTS/DD/MTO strategy has less 

variables forced to be zero than the DD strategy and more variables forced to be 

zero than the MTS strategy. Therefore, the strategy which allows for a smaller 

number of variables to be set to zero will have the lower optimal cost. 
 

Figure 4.2 – Cost optimization evolution (LP – PY scenario) 

 
 

Table 4.4 shows the minimum average total cost (Optimal Cost) reached 

by the optimization process, when optimization was halted, the corresponding 

gradient norm, the confidence interval for the costs of the 25 replications 

performed with Z and U placed at their optimal values, and the in-house costs. 
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and in-house cost). For the same demand profile, one must pay a higher penalty 

cost since there is no stock available to satisfy customer orders. On the other 

hand, this strategy incurs less holding costs. Understandably, the MTS 

production strategy achieves the lowest total cost, but paying the highest 

holding costs. For the process environment simulated within this experiment, 

having a production-to-order strategy in spite of a production-to-stock strategy 

could mean almost 30% less in tangible costs (in-house costs). Nevertheless, a 

more strategic vision that values customer service will probably implement an 

MTS production strategy, reducing the optimal average total cost roughly 65%. 

A similar analysis can be made for the remaining production policies.  

See section 4.4.4 – Discussion on Optimal Convergence – for further 

analysis on optimal values and gradient norm. 

 

Table 4.4 – Cost data for all production strategies (LP – PY scenario) 
 

PRODUCTION 

STRATEGY 
OPTIMAL 

COST 
CONFIDENCE 

INTERVAL 
GRADIENT 

NORM 
IN-HOUSE 

COST 

MTO 2606,04 ± 1,79  % 15.07 431,43 

DD 1679,76 ± 2,27 % 13,51 490,49 

MTS/DD/MTO 1249,08 ± 3,08  % 11,65 560,41 

MTS 957,88 ± 6,07  % 8,01 608,95 

 
 

One can access the system performance not also accounting for its holding 

and penalty costs but also measuring the system’s responsiveness to customer 

orders. The average number (and its standard deviation, σ) of production shifts 

– lead-time (LT) – necessary to satisfy a customer order is presented in Table 

4.5.  

When it comes to the DD and MTO production policies, and since we 

need to have comparable values, the lead-times are counted, respectively, after 4 

and 9 production shifts. These numbers represent an assumed time period 

during which the customer willingness to wait is significant. That is, the 
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probability of paying the corresponding penalty costs during those periods is 

low. Nevertheless, if the time value of money is considered, the waiting period 

may represent an important cost to the company. 

 
 

 Table 4.5– Average lead-time and its standard deviation (LP – PY scenario) 
 

STRATEGY MTO DD MTS/DD/MTO MTS 
Demand 

Level LT σ LT σ LT σ LT σ 

High 2,99 3,20 2,22 1,06 1,68 2,51 1,88 2,00 

Medium 2,13 1,72 1,90 0,83 1,98 0,78 1,06 1,40 

Low 1,47 1,84 1,78 0,84 1,77 0,81 0,74 1,43 

All 
Products 2,19 2,37 1,97 0,99 1,81 1,75 1,23 1,70 

 
 

As expected, in terms of lead-times the MTS production policy beats DD 

and MTO performances, independently of the demand level. Also expected is 

the result of the compound strategy (MTS/DD/MTO). Since that medium and 

low demand level products are produced under DD and MTO policies, the 

system has more available capacity to satisfy high demand level orders, when 

compared with all products being produced under an MTS policy. This explains 

the improvement on high demand products’ lead-time and the deterioration of 

the other two product groups. If we compare the MTO strategy with the DD 

strategy we can conclude that, a slight increase (+13,5%) in holding costs means 

only a minor reduction on products’ lead-time. However, if we account for the 

penalty costs, the DD strategy achieves a 35,5% reduction in the optimal cost. 

The small absolute difference between the average lead-times (1,23 shifts to 

2,19 shifts, i.e., 7,4 hours to 13,1 hours) of the extreme strategies could be 

explained by the process reliability. The presence of random yield will 

considerably change these values, as we will see in the next scenario.  
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Scenario 2: Non-Perfect Yield Production (NPY) 

Introducing the production randomness (see Table 4.3 for yield factors), 

we are now interested in comparing the system’s performance with scenario 1. 
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Figure 4.3– Cost optimization evolution (LP – NPY scenario) 

 

This experiment maintains the same hierarchy for the optimal and in-

house costs. One should remark that the cost values of both scenarios are not 

comparable in absolute terms, since the last one was simulated with lower 

values of average demand. Moreover, the inferior value found for the DD and 

MTS/DD/MTO strategies (see Table 4.6) suggests that, despite the additional 

cost paid for item disposal, it is not enough to compensate the holding cost 

decrease due to lower average inventory levels. Also in this scenario, and 

considering the production process implemented, the cost differences between 

the two extreme strategies are relevant. Although an MTS strategy could 

represent more 30% in holding costs, it represents 67% less if all costs are 

incurred.   
 

Table 4.6 – Cost data for all production strategies (LP – NPY scenario) 

 

PRODUCTION 

STRATEGY 
OPTIMAL 

COST 
CONFIDENCE 

INTERVAL 
GRADIENT 

NORM 
IN-HOUSE 

COST 

MTO 3079,57 ± 1,94 % 15,12 488,58 

DD 1529,43 ± 0,75 % 12,68 540,42 

MTS/DD/MTO 1075,87 ± 0,86 % 9,41 595,24 

MTS 999,05 ± 01,42 8,29 631,53 
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The degradation induced by the presence of random yield is easily 

identified, both in terms of costs and of average lead-times This issue is 

particularly significant when the system is producing to order (see Table 4.7).  

 

Table 4.7– Average lead-time and its standard deviation (LP – NPY scenario) 
 

STRATEGY MTO DD MTS/DD/MTO MTS 
Demand 

Level LT σ LT σ LT σ LT σ 

High 7,21 4,64 2,71 0,98 1,24 1,83 2,73 2,68 

Medium 6,66 2,59 2,67 0,96 2,61 0,89 1,17 1,56 

Low 4,67 3,27 2,74 0,96 4,87 2,41 0,73 1,62 

All 
Products 6,18 3,70 2,71 0,99 2,91 2,63 1,54 2,11 

 
 

This scenario maintains the average lead-times structure presented in 

scenario 1. However, the differences between DD and MTO strategies must be 

emphasized. Even under just a tangible costs accounting, a 10,6% increase on 

in-house costs may represent a decrease in lead-times from 7,21 shifts (43 

hours) to 2,71 shifts (16 hours). Despite the worst lead-times of medium and 

low level products, and an increase of 8% on optimal cost relative to MTS, an 

MTS/DD/MTO causes a reduction of 55% (from 2,73 shifts to 1,24 shifts) on 

the average lead-time of high demand products.  

Recall that lead-time values are computed after the waiting period of 4 and 

9 shifts, depending if we are under a DD strategy or under an MTO strategy.  

 

Scenario 3: Perfect Yield Production – Lower Load (PYLL) 

This scenario corresponds to an experiment realized with perfect yield, but 

with demand of scenario 2. Therefore, with the system’s load reduction from 

85% to 73%, we must incur less costs that those of scenario 1, and reduce lead-

times of the same scenario. 
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Table 4.8 confirms the expectation on lowest costs and on the cost 

hierarchy. In line with the results obtained for the two previous scenarios, the 

MTS strategy represents a decrease of 67% on the optimal cost and an increase 

on the in-house costs of 45%. Also, the expected lead-time reduction is 

presented on Table 4.9. 

 

Table 4.8 – Cost data for all production policies (LP – PYLL scenario) 
 

PRODUCTION 

STRATEGY 
OPTIMAL 

COST 
CONFIDENCE 

INTERVAL 
GRADIENT 

NORM 
IN-HOUSE 

COST 

MTO 2228,23 ±  1,32 % 14,56 375,33 

DD 1420,24 ± 2,45 %  12,23 470,49 

MTS/DD/MTO 908,95 ± 6,02 % 11,21 523,01 

MTS 741,13 ± 4,66 % 3,15 545,58 
 
 
 

Table 4.9 – Average lead-time and its standard deviation (LP – PYLL scenario) 
 

STRATEGY MTO DD MTS/DD/MTO MTS 
Demand 

Level LT σ LT σ LT σ LT σ 

High 2,92 3,10 1,62 1,06 1,15 1,55 1,25 1,47 

Medium 2,13 1,69 1,59 0,82 1,48 0,67 1,02 1,28 

Low 1,53 1,80 1,47 0,94 1,69 0,71 0,91 1,29 

All 
Products 2,19 2,32 1,97 0,99 1,47 1,57 1,03 1,34 

 

 

From these three experiments, one concludes that all the scenarios present 

the same cost hierarchy, both in terms of average total cost and in terms of 

average in-house cost. This suggests that such hierarchy should hold for any 

other demand and yield patterns. Additionally, as already expected, the random 

yield presence induces degradation of costs and lead-times. 

 



C H A P T E R  4  –  E X P E R I M E N T A L  S T U D Y  

 65

4.4.3 Non-Limited Production Approach (NLP) 

This second group of experiments emerges with several other 

accomplished simulations and, simultaneously, the need of try to reduce more 

the gradient norm. At the Non-Limited Production Approach the U levels are 

fixed at their maximum feasible values. Given that we are fixing some of the 

variables, the optimal values should be higher than those obtained with the LP 

approach. However, the results are not in agreement with such statement, 

suggesting that under the LP approach the optimization is halted before 

reaching the optimum (see section 4.4.4 for additional discussion on this 

topic).  

All the results obtained for the three scenarios are in line with those 

presented for the LP approach, both in terms of costs and lead-times, 

degradation induced by random yield, and relative differences between costs 

and between lead-times. Therefore, the corresponding figures and tables are 

presented, in order to verify such agreement.  

 

Scenario 1: Perfect Yield Production (PY) 
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Figure 4.4– Cost optimization evolution (NLP – PY scenario) 
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Table 4.10 – Cost data for all production strategies (NLP – PY scenario) 

 

PRODUCTION 

STRATEGY 
OPTIMAL 

COST 
CONFIDENCE 

INTERVAL 
GRADIENT 

NORM 
IN-HOUSE 

COST 

MTO 2441,49 ± 0,66 % 13,42 454,73 

DD 1661,14 ± 0,92 % 10,42 539,10 

MTS/DD/MTO 1027,65 ± 1,03 % 9,32 608,30 

MTS 853,50 ± 1,15 % 2,40 641,28 

 
 
 

Table 4.11– Average lead-time and its standard deviation (NLP – PY scenario) 
 

STRATEGY MTO DD MTS/DD/MTO MTS 
Demand 

Level LT σ LT σ LT σ LT σ 

High 2,41 2,34 2,08 1,02 1,12 1,44 1,16 1,38 

Medium 2,50 2,50 1,95 1,28 2,10 1,40 1,31 1,42 

Low 2,12 2,53 2,09 1,29 1,81 1,43 1,54 1,44 

All 
Products 2,35 2,37 2,04 1,15 1,68 1,67 1,34 1,46 

 
 
 
 
Scenario 2: Non-Perfect Yield Production (NPY) 
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 Figure 4.5 – Cost optimization evolution (NLP – NPY scenario) 
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Table 4.12 – Cost data for all production strategies (NLP – NPY scenario) 

 

PRODUCTION 

STRATEGY 
OPTIMAL 

COST 
CONFIDENCE 

INTERVAL 
GRADIENT 

NORM 
IN-HOUSE 

COST 

MTO 2822,70 ± 0,53 % 12,64 489,60 

DD 1525,15 ± 0,81 % 10,98 545,13 

MTS/DD/MTO 1044,05 ± 0,87 % 9,31 626,77 

MTS 829,45 ± 0,90 % 2,25 647,41 

 

 
 

Table 4.13 – Average lead-time and its standard deviation (NLP – NPY scenario) 
 

STRATEGY MTO DD MTS/DD/MTO MTS 
Demand 

Level LT σ LT σ LT σ LT σ 

High 6,13 3,14 2,77 1,06 1,10 1,51 1,18 1,47 

Medium 6,29 3,34 2,83 1,18 2,93 1,30 1,28 1,40 

Low 5,26 3,49 2,78 1,18 4,90 2,36 1,03 1,42 

All Products 5,89 3,30 2,79 1,11 2,98 2,65 1,16 1,43 
 
 
 
 
Scenario 3: Perfect Yield Production – Lower Load (PYLL) 
 

 

Table 4.14– Cost data for all production strategies (NLP – PYLL scenario) 
 

PRODUCTION 

STRATEGY 
OPTIMAL 

COST 
CONFIDENCE 

INTERVAL 
GRADIENT 

NORM 
IN-HOUSE 

COST 

MTO 2043,18 ± 0,39 % 12,55 374,85 

DD 1310,85 ± 0,46 % 10,41 467,43 

MTS/DD/MTO 866,10 ± 0,58 % 9,32 512,47 

MTS 704,11 ± 0,65 % 2,33 532,64 
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 Table 4.15 – Average lead-time and its standard deviation (NLP – PYLL 
scenario) 

 

STRATEGY MTO DD MTS/DD/MTO MTS 
Demand 

Level LT σ LT σ LT σ LT σ 

High 2,23 2,23 1,51 0,72 1,12 1,34 1,11 1,33 

Medium 2,31 2,36 1,83 0,78 1,85 0,93 1,18 1,32 

Low 1,87 2,40 1,77 0,78 1,76 0,93 0,74 1,40 

All Products 2,14 2,23 1,70 0,75 1,57 1,53 1,01 1,31 
 
 
 

4.4.4 Discussion on Convergence 

The results obtained with the NLP approach suggest that the optimization 

algorithm has some problems in reaching the optimum before the maximum 

number of optimizations halts the experiment. With the several other 

experiments performed became apparent a strong dependence on the initial 

step of the algorithm.  

It should be remarked that, given the number of variables of the problem 

(306), a gradient norm of 10 represents an average derivative value of only 

0,572, which is by itself a low value. Despite the non-convergence to the 

optimal values, it is our conviction that the qualitative behavior obtained will 

not change with slightly more accurate results (see Figure 4.6 and Table 4.16 for 

such an example).  

 

 

 

 

 

 
 
 
 
 
 

Figure 4.6 – Convergence comparison (MTS strategy) 
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Table 4.16– Costs data comparison (LP scenario) 
 

OPTIMIZATION OPTIMAL 

COST 
CONFIDENCE 

INTERVAL 
GRADIENT 

NORM 
IN-HOUSE 

COST 

A (LP – PY) 957,88 ± 6,07  % 8,01 608,95 

B (LP – PY) 906,79 ± 5,78  % 5,54 639,12 
     

A (LP – NPY) 999,05 ± 1,42  % 8,29 631,53 

B (LP – NPY) 863,79 ± 0,93  % 2,88 650,45 
 

 

“Optimization A” and “Optimization B” refer to different initial steps for the 

same problem. The gradient when the optimization is halted is lower in 

“Optimization B” as well as the reached average total cost. 

These experiments were produced to test the optimization algorithm. The 

fact that different initial steps may lead to different final total costs should serve to 

show that the used optimization algorithm may not be the most suited (see section 

5.2 for further discussion). It should be stressed that the IPA procedure and 

respective gradient estimation have no influence on these results. 

In section 3.4.4 we presented the optimality condition, establishing a 

connection between operational costs and Type-1 service level. In order to evaluate 

the convergence of the optimization procedure we computed the achieved Type-1 

service level for “Optimization A” and “Optimization B”. Table 4.17 shows those 

levels. 

According to equation 3.13 the optimal service level for products ranges 

between 57% and 60%. Table 4.17 shows that for an optimization execution 

which is halted with a lower gradient, the achieved service level is closer to what 

is established by equation 3.13. 
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Table 4.17 – Average Service Level Comparison (LP scenario) 
 

  
 
 
 
 
 
 
 
 
 
 

  

According to equation 3.13 and the holding and penalty costs used, the 

optimal service level is the one displayed under “OPTIMAL SL” on Tables 4.18 

and 4.19. 

 

 Table 4.18 – Average Service Level (LP, MTS strategy) 
 

PRODUCTS OPTIMAL SL AVERAGE SL 
(PY scenario) 

AVERAGE SL 
(NPY 

scenario) 

High 
Demand 57,00 % 39,68 % 50,15 % 

Medium 
Demand 58,00 % 55,20 % 56,67 % 

Low 
Demand 60,00 % 47,66 % 57,33 % 

 

 

Table 4.19 – Average Service Level (NLP, MTS strategy) 
 

PRODUCTS OPTIMAL SL AVERAGE SL 
(PY scenario) 

AVERAGE SL 
(NPY 

scenario) 

High 
Demand 57,00 % 51,18 % 53,75% 

Medium 
Demand 58,00 % 57,53 % 58,68% 

Low 
Demand 60,00 % 44,90 % 64,73% 

 

PRODUCTS OPTIM. A 
(LP – PY) 

OPTIM. B 
(LP – PY)

 OPTIM. A 
(LP –NPY) 

OPTIM. B 
(LP – 
NPY) 

High 
Demand 29,14 % 39,68 %  23,04 % 50,15 % 

Medium 
Demand 51,75 % 55,20 %  50,25 % 56,67 % 

Low 
Demand 68,82 % 47,66 %  67,21 % 57,33 % 
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These tables present the best service levels achieved in the several 

experiments conducted. The difference to the optimal service level shows that 

the optimization algorithm was halted short of converging to the optimal 

average total cost. However, it should be emphasized that the final gradient is 

very small in some cases. Take for instance “Optimization B (LP-NPY)” of Table 

4.16, where the norm of the final gradient is a little less than 3, in an 

optimization problem with 306 variables. 

The results of Tables 4.18 and 4.19 show also that the service level seems 

to be more sensitive to small changes of the control variables than the average 

total cost. Nevertheless, the proximity to the optimal service level is quite 

significant in some instances. Moreover, the cases where there is a strong 

difference for the service level are easily explained by the fact that the final 

gradient is not as small as the gradient of those other cases where the difference 

for the service level is small. 

The implementation of alternative optimization algorithms is a possible 

approach to try to increase the accuracy of these results (see section 5.2 for 

further discussion on this topic). 

 

4.4.5 Weighted Shortfall versus Non-weighted Shortfall 

As referred in section 3.4.1, the priority rule to allocate capacity to the 

different products, is based on the descending order of the shortfall weighted 

by the average demand. We are now interested in studying the impact of an 

alternative strategy on the system’s performance, namely on average total cost. 

The comparison will be done with a non-weighted shortfall policy. 
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Figure 4.7 – Weighted shortfall vs. Non-weighted shortfall – ivc=1,0 and 
ivc=10,0 (NLP – NPY scenario) 

 

Either with a variance coefficient of 1,0 or 1/10,0 the cost difference is 

less than 1%, reflecting the fact that high demand products account for 80% of 

total demand, as presented in Table 4.16. However, a non-weighted shortfall 

ordering will highly increase the lead-time of lower demand products, since it is 

only after several shifts that their shortfall will compete with those from high 

demand products (see Table 4.21). This result is in line with the discussed on 

the previous section, that is, a small difference on the control variables will not 

change significantly the average total cost, but could highly change the Type-1 

service level.  

 

Table 4.20 – Weighted shortfall vs. Non-weighted shortfall – ivc=1,0 and 
ivc=10,0    (LP – NPY scenario) 

 

POLICY OPTIMAL 

COST 
IN-HOUSE 

COST 
GRADIENT 

NORM 
CONFIDENCE 

INTERVAL 

Weighted (ivc=1) 863,79 650,45 2,88 ± 0,93 % 

Non-Weighted (ivc=1) 889,07 643,89 4,75 ± 0,96 % 

Weighted (ivc=10) 626,03 561,64 3,56 ± 1,05 % 

Non-Weighted (ivc=10) 629,53 572,34 4,02 ± 1,34 % 
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Table 4.21– Average lead-time and its standard deviation comparison (Weighted 
shortfall vs. Non-weighted shortfall) 

 

POLICY Weighted 
(ivc=1,0) 

Non-Weighted 
(ivc=1,0) 

Weighted 
(ivc=10,0) 

Non-Weighted 
(ivc=10,0) 

Demand 
Level LT σ LT σ LT σ LT σ 

High 1,28 1,76 1,47 1,99 1,03 0,80 1,06 0,73 

Medium 1,12 1,36 1,09 1,42 0,49 0,66 0,60 0,79 

Low 0,99 1,37 9,70 8,72 0,41 0,67 16,18 15,60 

 
 

The consequences of the results presented in this chapter in terms of 

defining the most appropriate strategy will be discussed in Chapter 5. 

 

4.5 HARDWARE AND TIME REQUIREMENTS 

All the experimental study was performed under personal computers with 

Pentium III processors at 750 MHz, and 512 MB RAM simms. Each iteration of 

the optimization ran for 8000 simulation periods and took 4 minutes per 

iteration. Finding the optimum took an average of 150 iterations. Thus, the total 

time required for an experiment was 600 minutes.  
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CHAPTER  
  

 

 

CONCLUSIONS & FUTURE RESEARCH 
 

5.1 CONCLUSIONS 

This thesis proposed a framework to study the glass manufacturing 

production process. It considered four different production strategies – make-

to-stock, make-to-order, delayed-differentiation, and a combination of these 

three strategies according to the demand level (MTS/DD/MTO). This thesis 

presented their impact on several performance measures: average total cost, in-

house costs, and products’ delivering time (lead-time). 

The process was modeled as a discrete time, capacitated, multi-stage, 

multi-product, production-inventory system, with random yield, operating 

under multi-echelon base stock policies. The production decisions are taken in 

accordance with the weighted shortfall. 

5 
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A simulation-based optimization was the tool used to analyze the glass 

production system, given the complexity of an analytical approach for those 

types of systems. The dynamics of the state variables, the production decisions, 

and their derivatives were provided by means of recursive equations. The 

gradient components are computed via Infinitesimal Perturbation Analysis, 

providing the rapid identification of good solutions. Therefore, and in the 

context of this thesis, the simulation is used as an optimization tool to derive 

the optimal parameters for the proposed production strategies. 

A set of computational experiments is presented in order to get some 

insights about the impact of the different production strategies on the 

performance measures. 

Recalling one of this thesis’ motivations was to try to understand why, in 

the glass industry, the management teams usually decide for a production-to-

order strategy. The numerical results of the previous chapter clearly show that a 

make-to-order strategy incurs less in-house costs than all the other strategies, 

while having the highest average total cost and the worst lead-times. Therefore, 

what could justify the actual common strategy? First, one needs to recognize 

that the average total cost reflects not only the in-house costs but also the 

penalty costs incurred for not immediately satisfying the customer. It is also 

known that these costs are hard to estimate, since they must incorporate 

intangible features. Additionally, if we consider that in-house costs essentially 

account for the value paid for raw material, energy, and labor costs, i.e., those 

costs with immediate impact on the companies’ financial statements, the 

managerial decision is perfectly understandable.  

It is important to stress that, despite the results presented, the MTO could 

represent the right strategy. Suppose that the costumer willingness to negotiate 

the lead-times is reasonable and that we are not under the competitors’ 

pressure, then the referred intangible costs are negligible. Although this is not a 

frequent scenario, an MTO strategy would be the right one. 
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However, under the actual business context, where strong competition is a 

factor, and time and customer service level are critical issues, it sounds logical 

to pursue strategies different from the MTO. Despite the uncertainty associated 

with intangible costs estimation, management policies tending to valorize 

service level measures could be more profitable in the medium/long term 

horizon.  

Moreover, given the high uncertainty induced by the random yield, an 

MTO strategy seems inappropriate given that lead times are higher than they 

would be on more reliable processes, where MTO could make more sense.  

Usually, the estimation of the holding and penalty costs is a difficult task. 

Moreover, not only it is hard to place the real value added by a given operation, 

but also it is hard to measure the exact impact of backlog in terms of cost. The 

optimality condition introduced in section 3.4.3 establishes an equivalence 

between penalty costs and service level. Additionally, we know that the relative 

proportion between holding and penalty costs defines the system’s 

performance. Therefore, setting a target service level is an easier task than to 

determine what should the penalty costs be. 

As a final remark, one can state that the decision of produce-to-order, 

produce-to-stock or any other composite strategy cannot be taken independently 

of the business context. All the aspects must be evaluated in order to 

understand what are the critical issues for success, or, in other words, what are 

the factors most valued by the customer. The framework developed on this 

thesis provides means to measure the impact of a strategy change, helping 

management evaluating the exact trade-off involved. 

 

5.2 FUTURE RESEARCH 

This thesis provides a broad set of topics that are worthy of further 

investigation. Perhaps, the key one is related with the study of additional 

production strategies and the model development in order to incorporate more 
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real process properties. An MTS/DD/MTO policy using the remaining free 

capacity to produce high demand products could be an alternative production 

strategy.  

The introduction of random capacity, random processing times and 

maintenance periods on the model, in addition with the study of their impact 

on the system’s response under different production strategies, is another 

possible direction for future research. Also for future study, and regarding the 

production decisions, it will be relevant to analyze other priority ordering rules 

and test different production decision algorithms. The Equalize Shortfall 

Algorithm is an example (see [Bispo, 1997]). 

Another aspect not fully addressed in this thesis is the utilization of 

policies which are more adequate to deal with random yield. Some sort of order 

amplification to compensate for yield losses would be a possible approach. 

Additionally, the IPA technique is nothing but an excellent tool to investigate 

the possible benefits of alternative production rules that produce more than 

effectively needed to compensate for random yield. It is necessary that such 

rules are described by a simple set of parameters and the model guarantees the 

adequate smoothness properties of the cost function. 

This thesis uses a discrete step version of the Fletcher and Reeves 

optimization algorithm. During the experimental study some difficulties were 

experienced in converging to the optimum. These difficulties suggest that, 

despite the results obtained in [Nunes et al., 1999], the above algorithm is 

probably not the most suitable. Then, implementing and comparing the 

performance of alternative optimization algorithms would be a step further to 

improve the quality of the generated results. The Davidon-Fletcher-Reeves 

algorithm or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm could be 

more effective alternatives. See [Bazaraa and Shetty, 1979] for a description of 

these and other discrete step optimization algorithms. 
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APPENDIX  
  

 

THE SIMULATION & OPTIMIZATION 

SOFTWARE – SIMULGLASS  
 
 

A.1  GENERAL DESCRIPTION 

Despite the several process simulation software available in the market, the 

degree of customization one must introduce on the process model defined in 

chapter 3, turned out to be necessary the development of a simulation and 

optimization package so that the glass manufacturing process becomes 

represented as accurately as possible. A user-friendly interface was another 

important motivation on the referred tool creation. 

The Microsoft Visual Basic 6.0 – Enterprise Edition, from Microsoft Visual 

Studio, was the development tool used to implement the software. Simplicity, 

design capabilities, connectivity with other software, and previous language 

knowledge, were the main issues considered on the software selection.  

A 
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For a given production strategy selected by the user, the application, 

designated as SimulGLASS – Inventory Decisions Support System – see Figure B.1, 

uses the process parameters (stages’ capacity and system cost structure) and 

products’ data (demand level, processing time and yield factor) to determine 

the optimal values of the base-stock variables, Z, and production limit, U, for 

each product p and stage s, by means of an optimization procedure based on 

Infinitesimal Perturbation Analysis. It produces two performance measures: 

the total cost and products’ lead-time, associated with the optimal Z’s and U’s. 

Although the application was designed to solve a concrete problem, minimum 

modifications are needed to solve any problem that requires discrete event 

simulation.  

The application is composed of the following modules: 

FORMS – Module containing all the forms used as interface with the user; 

DECLARATION – Definition of all global variables used in the program;  

AUXILIAR – Contains all the auxiliary procedures and functions used by the 

other modules; 

DATA – Contains all products and system parameters used for the 

experimental study (see Chapter 4). This data is also available in file format; 

SIMULATOR – Simulates the glass manufacturing process, using the values 

defined in the Data module; 

OPTIMAL – Computes the optimal values of the decision variables Z and U, 

according to the production strategy defined by the user; 

 

A.2  THE USER INTERFACE AND INPUT VARIABLES  

The program main menu provides access to four main windows, which 

constitute the interface with the user. These windows are: the Product 

Parameters Window, the System Cost Structure Window, the Decision 
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Variables Window, and the Simulation and Optimization Parameters 

Window.  

 

A.2.1   Product Parameters Window 

As one can see in Figure B.2 (see Appendix B), the Product Parameters 

window has three tabs, each one for the different product groups (divided 

according to the demand level – High Demand Products, Medium Demand 

Products and Low Demand Products), on which one needs to enter the 

information related with the products, as displayed on Table A.1. Four 

combo boxes are also available to provide a rapid insertion of values for all 

products. The Default Values button provides a quick input of all default data 

related with the product parameters present in the DATA module. 

 

Table A.1 – Product Parameters 

PARAMETER UNITS DESCRIPTION 

Processing Time, 
spmT  [min./unit] Processing time of product p at stage s 

Yield Factor, spmα  [0 –1] Yield factor for product p at stage s 

Demand Average, 
mp

D  
[units/shift] Average demand for product p at stage 1 

Demand Variance 

Coefficient, mp
Dσ  

[units/shift] Demand variance coefficient for product p at 
stage 1 

 
 

A.2.2  System Cost Structure Window  

The application works with a direct cost structure, which integrates labor 

costs and energy costs – both proportional to working time – with raw materials 

costs. Hence, the user needs to input the hourly cost of labor and energy at each 

stage of the process, the cost of each kilogram of glass, and the glass quantity 

needed to produce each product. These parameters and their units are presented 

on Table A.2. 
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The Default Values button displayed on Figure B.3 allows a fast insertion of 

all default information contained in the DATA module and related with the 

process costs. This set of numbers will be used, as explained in section 4.2.1, to 

establish the products holding cost psh  and penalty cost psb , used to find the 

total cost related with a given production strategy. 

 

Table A.2 – System Cost Structure 

PARAMETER UNITS DESCRIPTION 

Labor Cost [u.m./hour] Hourly manual labor cost at each process stage s 

Energy Cost [u.m./hour] Hourly energetic cost at each process stage s 

Glass Cost [Esc/Kg]   Cost of raw materials kilogram 

Glass Quantity [Kg] Quantity of glass for product p 
 
 

A.2.3  Decision Variables Window 

The base stock levels spmZ  and the production limits spmU , for each 

product p at a given stage s, form the two groups of decision variables, which 

need to be initialized by the user. Despite the set of default values defined on 

DATA module, which can be accessed by the Default Values button, it is 

possible to start the application with any values of spmZ  and spmU , once the 

following two conditions are verified: 

i) Stability condition – All base stock levels have to be ordered in 

accordance with Sppp mmm ZZZ <<<< ...0 21 ; 

ii) Feasible region condition – the production limit of each 

product has its feasible domain defined as sp

s
spp

m

mm

T
C

UD << , 

where mp
D , sC , and spmT  represent, respectively, the average 

demand, stage’s capacity, and processing time of a given product 

p at process stage s. 
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Another parameter that needs to be established at this time is the 

production policy. Each product has a combo box with the available policies – 

MTS, DD and MTO – for simulation. Basically, this combo box works like a 

switch that forces the values of the base stock levels when the policy selected 

is other than MTS.  

As one can see at the right side of Figure B.4, there are four buttons for 

quick adjust of the decision variables according to the policy selected. These 

buttons represent four different pre-defined production strategies. All products 

MTS will simulate and optimize a scenario where all base stock levels are 

subjected to optimization, while All products MTO corresponds to a scenario 

with all base stock levels set to zero. The selection of All products DD button 

will run the application with all products simulated under a delayed-

differentiation policy. In terms of base stock levels, this option conducts to 

null values at the cold-area stages and adjustable values at the hot-area process 

stages. Lastly, the MTS/DD/MTO button stands for a simulation scenario 

where the products with a high level of demand are produced under a make-

to-stock policy, the medium level ones under a delayed differentiation policy 

and the low ones under a make-to-stock policy.  

A final reference to the Base Stock Z and Production Limit U combo-boxes, 

which linked to the Multiplying Factor text-box, allow a quick launch of all Z 

and U values, guaranteeing simultaneously the Stability Condition and the 

Feasible Region Condition. 
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Table A.3 – Decision Variables  

PARAMETER DESCRIPTION 

Base Stock Level, spmZ  
[units] 

Base stock level of product p at process stage s 

Production Limit, spmU  
[units] 

Production limit of product p at process stage s 

Production Policy Combo 
Box 

Selection of one of the available policies for each product p 

All products MTS button Selection of Make-to-Stock policy for all products 

All products MTO button Selection of Make-to-Order policy for all products 

All products DD button Selection of Delayed-Differentiation policy for all products 

MTS/DD/MTO   button 
Selection of a combined policy in accordance with demand 
level  (High demand – MTS, Medium demand – DD, Low 

demand – MTO) 
 

 

A.2.4  Simulation and Optimization Parameters Window 

The Simulation and Optimization Parameters Window (see Figure B.5) 

exhibits all the parameters needed to control the process simulation and 

optimization.  

The manufacturing process is simulated during a number of cycles defined 

by the user at the Number of Simulations text box. Each cycle may represent a 

production shift, a production day or any other time scale, depending on the 

time relation between products processing times and stage capacity, which the 

user has to define. Often, a small number of simulations do not incorporate all 

the possible production situations and, if there is a significant number of 

unusual occurrences they will greatly affect the final result. Therefore, it is 

heavily recommended the usage of a large number of simulations so that such 

effect can be, if not eliminated, strongly reduced. 

The optimization has three convergence criteria that stop the application 

execution: a maximum number of optimizations – defined at Nº Max. 

Optimizations text box; a step, used with the cost function gradient to determine 
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a new values for the control variables – labeled as Minimum Step text box; the cost 

difference between two consecutive optimizations – defined at Epsilon text box. 

The optimization module has a procedure to guarantee the stability 

condition any time a new set of variables is determined. If the gradient 

information leads to a violation ( )1( −< spsp mm ZZ ) of the above condition, the value 

defined at Epsilon Delta text box is used to correct such infringement defining 

)1( −+= spsp mm ZDeltaEpsilonZ .  

The number in the Step text box is used as the initial program step, being 

applied after the first simulation to calculate the new set of Z and U variables. 

The answer for a typical value for an initial step is not obvious, depending on 

several factors.    Hence, the best approach to find a fine value for the initial step 

is probably a sensitivity analysis procedure. 

Two different ranking strategies of products shortfall are implemented in 

the code. If the Weighted Shortfall check box is selected the products are ranked in 

descending order of their shortfall divided by average demand. If it is not 

checked, the ranking is built only based on shortfall. 

At this point one need also to define each stage capacity (using units 

according with those presented on Table A.4), which, as referred above, depends 

on the time basis of all relevant variables. 

The Policy Selection combo box must be used to inform the program of 

which of the policies, already mentioned on this text, one intends to simulate.  

During the program execution one can verify its evolution on the two 

counters available – the Simulations Counter and the Optimizations Counter. Given 

that these counters are processor consuming, subsequently time consuming, the 

user can turn them off through the Counters On/Off Switch. To finish, once all 

parameters are defined, one just needs to press the Run button to start the 

program.  
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Table A.4 – Simulation and Optimization Parameters 

PARAMETER DESCRIPTION 

Number of Simulations  Number of production shifts 

Minimum Step Minimum step value to guarantee convergence 

Epsilon Minimum cost difference to guarantee convergence  

Epsilon D Minimum value to guarantee the Stability condition 

Step Optimization Initial Step 

Nº Max. Optimizations Maximum number of optimization iterations 

Stages Capacity Definition of each process stage capacity [min.] 

Policy Selection    Combo 
Box 

Policy definition (MTS, MTO, DD or MTS/DD/MTO) 

Weighted Shortfall Check 
box  

Selection between raking or not the shortfall weighted with 
average demand in Production Decisions Algorithm 

Simulations Counter Number of simulations already completed 

Optimizations Counter Number of optimizations already completed 

Counters Switch Turns ON and OFF the counters 

Run button Starts the Simulation / Optimization process 

Main Menu button Returns to the application Main Menu 

 

A.3  THE SIMULGLASS OUTPUT  

The output provided by the SimulGLASS program can be divided in two 

main groups representing system performance measures, both related with the 

selected production strategy. One group, focused on the cost performance 

measure, has not also the historical evolution of cost during the optimization 

process but also the decision variables optimal values corresponding to the 

minimum cost scenario, amongst other less significant results. The other 

performance measure group contains lead-times, structured by product and by 

demand level group.    

A.3.1  Historical Cost and Optimal Z  and U Values  

Before running the application one must create the folder simuldata at the 

PC root –c:\simuldata\. The text file that contains the results – optimal.txt – is 
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created automatically by the application. By default, if the file already exists in 

the folder, it is overwritten. The following results are available at the file: 

i) Historical evolution of cost for all optimizations performed; 

ii) Minimum cost found by the optimization process; 

iii) Base stock levels *Z  and production limits *U , for all products at 

each stage s, corresponding to the minimum system cost 

scenario – the so called optimal values; 

iv) Cost function gradient and its norm, corresponding to the 

minimum process cost state; 

A.3.2  The Lead-Times 

The lead-times are computed with a production scenario having as base 

stock levels and production limits those resulting from the optimization process. 

These results are recorded in the file located at c:\simuldata\leadtime.txt, which is 

also an overwrite type file. One may divide the results provided in leadtime.txt 

file as follows: 

i) Average lead-time and lead-time standard deviation for all 

products; 

ii) Average lead-time and its standard deviation for each demand level 

group – High, Medium and Low demand level; 

iii) An overall average lead-time and its standard deviation; 

iv) The 95% confidence interval with 25 replications with Z and U at 

their optimal values; 

v) The type-1 service level for all products; 

   

A.4  THE SIMULATION MODULE 

This module represents the core of the application since it tries to replicate 

the glass manufacturing process dynamics. The following seven key procedures 

form it: Demand Generation, Echelon Update, Shortfall Update, Production 
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Decisions, Inventory Update, Cost Update and Lead-Time. These procedures are 

nothing but the code implementation of module equations presented at Chapter 

3. The flowchart presented on figure A.1 illustrates the main simulation 

algorithm. 

A.4.1  Demand and Yield Generation Procedure 

At each simulation cycle a new demand vector is determined using an 

Erlang Distribution, which uses two parameters – average demand and the 

inverse of the variance coefficient – to generate a random number between 0 

and 1, which then is used to calculate the demand value for a known product 

p at a given simulation cycle n. 

Both perfect yield and random yield can be incorporated in the 

production system and simulated by the application. A new vector of yield 

coefficients is computed at each simulation run if such feature has been 

selected. The random yield is generated through a uniform distribution with 

bounds such that the average matches the value specified by the user.     

A.4.2  Echelon Update Procedure 

Although this procedure is not used at the application final version, it 

was extremely useful during the testing period. It computes for all products 

both the inventory sum upstream from stage 1 of the process (see equation 

(3.3)) and its derivatives as stated by equations (3.16) and (3.17) but 

considering the echelon variable. Once the echelon inventories are computed, 

one can estimate the quantity needed to reset the base stock levels – the 

shortfall. 
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Figure A.1 – Simulation algorithm flowchart 

 

 

A.4.3  Shortfall  Update Procedure 

During all simulation run, the shortfall procedure determines for all 

products and stages the difference between the base stock level and echelon 

inventory in line with equation (3.5). The shortfall derivatives are also 
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computed at this stage using equations (3.16) and (3.17) but applied to the 

shortfall variable. 

A.4.4  Production Decisions Procedure 

Section 3.5 describes the production decisions algorithm, which was 

translate to code in this procedure. After ranking all products in descending 

order of their weighted shortfall (or pure shortfall, depending on the strategy 

selected) the production decisions are taken considering de actual shortfall, 

the inventory at the upstream stage, the available capacity, and the production 

limit. In line with equation (3.23), the minimum of these values corresponds 

to the quantity that will be produced, while the production derivatives were 

codified taking into consideration equations (3.24) and (3.25). 

It was necessary to create auxiliary arrays to deal with the process 

transition stage – stage 4 – both for control variables and its derivatives, 

because at each production decision it is required to update their values. In 

other words, one needs to incorporate on every product the effects produced 

by its three sub-products. 

To rank the weighted shortfall matrices, two sorting algorithms were 

implemented – the Selection Sort (n2 degree) and the Quicksort (n.log(n) 

degree) as presented in [Cormen et al., 1997]. Nevertheless, the experiments 

showed that even for production systems with a considerable dimension (27 

products and 9 stages) an n.log(n) degree sorting algorithm represents only less 

than 1% of processor time when compared with a n2 sorting algorithm. 

Hence, the relative performance of both algorithms will become visible just 

for very large arrays. 

 

A.4.5  Inventory Update Procedure 

After deciding the production quantities one needs to update the 

inventory at each stage. Such update is made in line with equations (3.1) and 
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(3.16-17) corresponding in that order to the inventory variables and to the 

inventory derivatives. 

A.4.6  Cost Update Procedure 

The equations (3.11) and (3.18) describe the way the performance 

measure cost and its derivatives are computed every simulation cycle. Holding 

and penalty costs for all products are computed during the simulation run. 

The sum of these costs is divided by the number of cycles to get an average 

cost, which is the scalar returned by the Cost Update Procedure. 

A.4.7  Lead-Time Procedure 

After finding the optimal values for the different production policies, 

the application will compute the average lead-time of all orders received. If 

the system has sufficient inventory to satisfy all the order, the lead-time is 

zero. Otherwise, it starts counting the number of simulation cycles necessary 

to deliver the complete order. For strategies diverse from the MTS, one can 

define a time lag during which the costumer is willing to wait for the order. 

After that, the clock starts to count the waiting period. This procedure will 

also compute the type-1 service level, according to the selected policy.  

 

A.5  THE OPTIMIZATION MODULE 

In this thesis context, and considering that the IPA algorithm needs the 

calculation of the performance measure function gradient, one must choose 

an algorithm that requires evaluation of the function derivative. Algorithms 

using the derivative are somewhat more powerful that those using only the 

function value, but not always enough so as to compensate for the additional 

calculations of the derivatives. There are two major families of algorithms for 

multidimensional minimization with the calculation of first order derivatives. 

The first family goes under the name Multidimensional Search Using Derivatives, 
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which includes the Steepest Descent method and the Newton method. The 

second family, Multidimensional Search Using Conjugate Directions, includes the 

Davidon-Fletcher-Powell method, the conjugate gradient method of Fletcher-

Reeves and the Zangwill method. The work of [Nunes et al., 1999] highlights 

the better performance of Fletcher-Reeves method in the context of this thesis, 

when compared with the other optimization algorithms. 

A.5.1  The Fletcher and Reeves Algorithm 

As described in [Bazaraa and Shetty, 1979] the conjugate gradient 

method of Fletcher and Reeves deflects the direction of steepest descent by 

adding to it a positive multiple of the direction used in the last step.  

 

INITIALIZATION STEP  

Choose a terminating scalar ε >0 and an initial point x1, which is a value for 

the decision variables (Z, U). Choose the initial step size δ1. Let d1 = - ∇ J(x1), 

i=k=1. Let count=0. 

 

STEP 1 

If ∇ J(xi)< ε, STOP. Otherwise, let xi+1 = xi + δk.di. 

If J(xi+1) < J(xi) go to STEP 2, otherwise go to STEP 3. 

 

STEP 2 

The iteration is a success and a new direction is constructed: 

di+1 = ∇ J(xi+1)+α i.di where 
( )
( ) 2

2
1

i

i
i

xJ

xJ

∇
∇

= +α .  

Also, δk+1=1,1.δk. Let i=i+1, k=k+1, count=0, and go to STEP 1. 

 

STEP 3 

The iteration is a failure. Let count=count +1. 
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If count=K go to STEP 4. Otherwise let δk+1=
1+count

count δk with count=1, 2, …, K-1. 

Let k=k+1 and go to STEP 1. 

 

STEP 4 

Because the maximum number of successive failures is reached, take a Spacer 

Step. Use as direction the gradient of the present iteration, i.e.,  di = - ∇ J(xi). 

Reset δk+1= δk-K, that is, the value it had after the last success. By successively 

reducing the step size, let xi+1, be the first value that leads to a success for xi, 

using always direction di. Let p be the number of iterations within STEP 4. Let 

i=i+1, k=k+p, and go to STEP 2. 

 

A.6  TESTING THE SOFTWARE 

Several tests were made to the application to guarantee its stability, to 

understand its behavior under abnormal conditions, and essentially, to verify 

the code conformity with module equations and decision algorithms. Among 

those tests one can refer the following: 

i) Derivative Definition; 

ii) Cuts along gradient direction function; 

iii) Control routines and error messages; 

 
As an example and because of its relevance, the test referred in i) is based on 

the Taylor series development of the cost function J (not considering second 

order terms) and consists on perturbing by an infinitesimal amount ε one of 

the variables and running a simulation. The derivative of the cost function in 

order to the perturbed variable must verify the following relation: 

   

ε
alnoperturbed JJ

dZ
J min−

=∂
             (A.1) 

where Z can represent any system control variable. 
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SIMULGLASS USER-INTERFACE WINDOWS 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1 – The SimulGLASS Enter Window 

 

B 
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Figure B.2 – Products Parameters window 
 

Figure B.3 – System Cost Structure Window 
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Figure B.4 – Decision Variables Window  

Figure B.5 – Simulation and Optimization Parameters Window 
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APPENDIX  

 
 

THE SIMULGLASS PACKAGE 

 

 

The simulation software package – SimulGLASS – is enclosed with this 

thesis. Appendix A gives some insights in how to use the software. For 

installation, it is only necessary to put the cd-rom on the drive, click on the 

setup.exe file and follow the installation instructions. Before running the 

application, it is also necessary to create the following folder at the hard drive 

root: c:\simuldata\. 

A complete version of this thesis is also available on the cd-rom (see the 

MasterThesis.pdf file). 

 

C 



B I B L I O G R A P H Y  

 97

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BIBLIOGRAPHY 
 
[Akella and Kumar, 1986] Akella, R.and Kumar, P. R. (1986). Optimal 

Control of Production Rate in a Failure Prone Manufacturing System. IEEE 

Transactions on Automatic Control, AC-31(2) : 116-126. 

 

[Bai and Gershwin, 1994] Bai, S. X. and Gershwin, S. B. (1994). Scheduling 

Manufacturing Systems with Work-In-Process Inventory Control: Multiple-part-

type Systems. International Journal of Production Research, 32(2): 365-

385. 

 

[Bai and Gershwin, 1995] Bai, S. X. and Gershwin, S. B. (1995). Scheduling 

Manufacturing Systems with Work-In-Process Inventory Control: Single-part-type 

Systems. IIE Transactions, 27(5): 599-617. 

 



B I B L I O G R A P H Y  

 98

[Bai and Gershwin, 1996] Bai, S. X. and Gershwin, S. B. (1996). Scheduling 

Manufacturing Systems with Work-In-Process Inventory Control: Reentrant 

Systems. OR Sepctrum, 18(4): 187-195. 

 

[Bazaara and Shetty, 1979] Bazaara, M. S. and Shetty, C. M., (1979). 

Nonlinear Programming: Theory and Algorithms. John Wiley and Sons, New 

York. 

 

[Bispo, 1997] Bispo, C. F. (1997). Re-Entrant Flow Lines. Ph.D. Thesis, 

Graduate School of Industrial Administration and the Robotics Institute, 

Carnegie Mellon University, Pittsburgh, PA. 

 

[Cassandras and Ho, 1983] Cassandras, C. and Ho, Y. C. (1983). A New 

Approach to the Analysis of Discrete Event Dynamic Systems. Automatica, 

19(2): 149-167. 

 

[Clark and Scarf, 1960] Clark, A. and Scarf, H. (1960). Optimal Policies for a 

Multi-Echelon Inventory Problem. Management Science, 6: 474-490. 

 

[Cormen et al., 1997] Cormen, Thomas H., Leiserson, Charles E. and Rivest, 

Ronald L. (1997) Introduction to Algorithms. The MIT Press, Cambridge, 

Massachusetts. 

 

[Desrochers, 1990] Desrochers, A. A. (1990). Modeling and Control of 

Automated Manufacturing Systems. IEEE Computer Society Press, 

Washington, D.C. 

 

[Gerchak et al., 1988] Gerchak, Y., Vickson, R. G., and Parlar, M. (1988). 

Periodic Review Production Models with Variable Yield and Uncertain Demand. 

IEE Transactions, 20(2): 144-150. 



B I B L I O G R A P H Y  

 99

[Glasserman and Tayur, 1995] Glasserman, P. and Tayur, S., (1995). 

Sensitivity Analysis for Base-stock Levels in Multiechelon Production-inventory 

Systems. Management Science, (41(2): 263-281. 

 

[Graves et al., 1993] Graves, S. C., Rinnooy Kan, A. H. G. and Zipkin, P. 

H. (1993). Logistics of Production and Inventory, volume 4, chapter 1, 4, 6, 7 

and 11. Handbooks in Operations Research and Management Science. 

Elsevier Science Publishers B. V.. Amsterdam, The Netherlands. 

 

[Graves, 1996] Graves, S. C. (1996). A Multiechelon Inventory Model with Fixed 

Replenishment Intervals. Management Science, 42(1): 1-18. 

 

[Grosfeld-Nir and Gerchak, 1996] Grosfel-Nir, A. and Gerchak, Y., (1996). 

Production to order with random yields: single-stage multiple lot-sizing. IIE 

Transactions, 28: 669-676. 

 

[Henig and Gerchak, 1990] Henig, M. and Gerchak, Y. (1990). The Structure 

of Periodic Review Policies in the presence of Random Yield. Operations 

Research, 38(4): 634-643.  

 

[Ho et al., 1979] Ho, Y. C., Eyler, M. A., and Chien, T. T. (1979). A 

Gradient Technique for General Buffer Storage Design in a Production Line. 

International Journal of Production Research, 17(6): 557-580. 

 

[Ho, 1988] Ho, Y. C. (1988). Perturbation Analysis Explained. IEEE 

Transactions on Automatic Control, 33(8): 761-769. 

 

[Johnson and Jackman, 1989] Johnson, M. E. and Jackman, J. (1989). 

Infinitesimal Perturbation Analysis: A Toll for Simulation. Journal of the 

Operational Research society, 40(3): 243-254. 



B I B L I O G R A P H Y  

 100

 

[Karmakar and Lin, 1986] Karmakar, U and Lin S. (1986). Production 

Planning With Uncertain Yields and Demands. Working Paper, William E. 

Simon Graduate School of Business Administration, University of 

Rochester, N.Y.. 

 

[Kapuscinski and Tayur, 1999] Kapuscinski, R. and Tayur, S., (1996). A 

Capacitated Production-Inventory Model with Periodic Demand. Working 

Paper, Graduate School of Industrial Administration, Carnegie Mellon 

University. 

 

[Kimemia, 1982] Kimemia, J. G. (1982). Hierarchical Control of Production in 

Flexible Manufacturing Systems. PhD thesis, Mass. Inst. Technology, 

Cambridge, MA. 

 

[Kimemia and Gershwin, 1983] Kimemia, J. G. and Gershwin, S. B. (1983). 

An Algorithm for the Computer Control of a Flexible Manufacturing System. IIE 

Transactions, 15(4): 353-362. 

 

[New and Mapes, 1984] New, C. and Mapes, J., (1984). MRP With High 

Uncertain yield Losses. Journal of Operations Management, 4(4): 315-330. 

 

[Nunes et al., 1999] Nunes, C., Sofia, Isabel (1999). Controlo de Inventário 

para Múltiplos Produtos. Trabalho Final de Curso da Licenciatura em 

Engenharia Electrotécnica e Computadores, Instituto Superior Técnico. 

 

[Rao, 1996] Rao, Singiresu R., (1996). Engineering Optimization – Theory and 

Praactice, chapter 1, 2, 5, 6 and 12, third edition. John Wiley and Sons, 

New York. 

 



B I B L I O G R A P H Y  

 101

[Ross, 1990] Ross, Sheldon M., (1990). Introduction to Probability and 

Statistics for Engineers and Scientists, chapter 2, 3, 4, 8 and 12. John Wiley 

and Sons, New York. 

 

[Sharifnia, 1988] Sharifnia, A. (1988). Production Control of a Manufacturing 

System with Multiple Machine States. IEEE Transactions on Automatic Control, 

AC-33(7): 60-625. 

 

[Silver et al., 1998] Silver, E. A., Pyke, D. F., and Peterson R., (1998). 

Inventory Management and Production Planning and Scheduling. John Wiley 

and Sons, New York. 

 

[Suri and Zazanis, 1988] Suri, R. and Zazanis, M. (1988). Perturbation 

analysis Gives Strongly Consistent Sensitivity Estimates for the M/D/1 Queue. 

Management Science, 34(1): 39-64. 

 

[Tayur, 1996] Tayur, S. (1996). Recent Developments in Single Product, Discrete-

time, Capacitated Production-Inventory Systems. Working Paper, Graduate 

School of Industrial Administration, Carnegie Mellon University. 

 

[Yano and Lee, 1995] Yano, C. A. and Lee, H. L., (1995). Lot Sizing with 

Random yields: A Review. Operations Research, 43(2): 311-314. 

  

 

 

 


