Railway Traffic Management

The Meet & Pass Problem

Pedro A. Afonso & Carlos F. Bispo Instituto de Sistemas e Robótica **Instituto Superior Técnico** Lisbon, Portugal

Outline

- Introduction
- <u>Overview</u>
- <u>The approach</u>
- <u>Results</u>
- <u>Conclusions</u>

- Railway companies aim to achieve regular and reliable train services.
- Daily schedules are produced offline to meet such objectives.
- During execution, events may disturb the original schedule.
- Such disturbances are more dramatic in the context of single track lines for outbound and inbound trains.

8 - 11 June, 2011

- For such lines, the original schedule accounts for Meet and Pass points at sidings or stations.
 - Two trains *meet* while traveling in opposite directions;
 - A faster train needs to **pass** a slower train ahead.
- A disturbance during the schedule execution may compromise one or many such points.
- Whenever that happens, an alternative has to be produced in real time.

- A conflict is said to occur whenever two trains are bound to share the same track segment.
 - By definition of a track segment, at most one train may travel it;
 - Meet conflict If two trains approach each other on a single track segment, traveling in opposite directions;
 - Pass conflict If a faster train catches a slower train traveling in the same direction on the same track segment.

- Typpically, conflicts are solved by human operators.
- Decisions have to be produced in a timely manner, instructing each of the conflicting trains with what to do.
- A given conflict resolution may induce future conflicts.
- Train priorities is usually the criterion to decide on each conflict.

Beijing Jiaotong University, China

8 - 11 June, 2011 Logistics, Informatics and

- The quality of these decisions may not be the best.
 - Operators rely on experience;
 - Operators have no decision support system;
 - Operators may only forecast the impact of their decisions on a relatively small time frame with very simple graphic applications.
- Therefore, there is an opportunity to develop a Decision Support System.

Overview

The approach

- The focus of this presentation will be on the "Conflict Resolution" box.
 - Formulating a mathematical model;
 - <u>Charaterizing the conflict detection problem;</u>
 - Identifying conflicts and their solutions;
 - Implementation

The approach - Mathematical formulation

- Objective function $\min Z = \sum_{i=1}^{n} w_i \max\{0, (a_i^m - \alpha_i^m)\}$
- Subject to:
 - Free running time constraints $r_i^k \ge \tau_i^k, \forall i \in I, k = 1, 2, ..., m - 1$
 - Consecutive departure and arrival constraints

$$f_i^k \ge s_i^k + \tau_i^k, \forall i \in I, k = 1, 2, \dots, m-1$$

The approach - Mathematical formulation

• Subject to (continued):

8 - 11 June, 2011

- Minumum dwell time constraints $s_i^u \ge \omega_i^u, \forall i \in I, u = 1, 2, ..., m$
- Headway constraints on arrival times to stations
 a^u_i ≥ a^u_i + g_u ⊕ a^u_i ≥ a^u_i + g_u, ∀i, i['] ∈ I, i ≠ i['], u∈U

 Meet condition

$$d_i^{u+1} \geq a_{i^{'}}^{u+1} + g_u \oplus d_{i^{'}}^{u} \geq a_i^u + g_u, \forall u \in U, i \in I_i, i^{'} \in I_o$$

The approach - Mathematical formulation

• Subject to (continued): Pass condition $(d_i^u \leq d_i^u + h^k \wedge a_i^{u+1} \leq a_i^{u+1} + h^k)$ \oplus $(d_{i'}^{u} \leq d_{i}^{u} + h^{k} \wedge a_{i'}^{u+1} \leq a_{i}^{u+1} + h^{k}),$ $\forall u \in U, \{i, i'\} \in I_o$ • Meetpoint capacity limits* $S^u \leq C^u, \forall u \in U$

The approach - Conflict detection

• Theorem 1

If train *i* does not collide with train *i*+1 and train *i*+1 does not collide with train *i*+2, then train *i* cannot collide with train *i*+2.

Theorem 2

If there is a conflict between train *i* and train *p*, with *p* ≥ *i* +2, there there is also a conflict between trains *i* and *p*-1 or between trains *p*-1 and *p*.

The approach - Conflict detection

Corollary

In order to conclude about the existence, or nonexistence of conflicts, in a given track segment, it is only necessary to check for conflicts between consecutive trains, in terms of their entering order.

Concluding:

8 - 11 June, 2011

 The conflict detection is linear, instead of quadratic, in the number of trains.

Meet Conflict

Station 3

Pass Conflict

delay

Safety intervals at stations Conflict

• Capacity Conflict – example for 3 trains with a 2 train capacity

8 - 11 June, 2011

Heuristic Solution

- Applies train priorities, as a human controller would do, until it produces a conflict free schedule.
- When trains have the same priority, uses the FOFI dispatching rule.
 - First Out First Serve;

8 - 11 June, 2011

 Also known as First Leave First Serve.

Flowchart

Logistics, Informatics and Service Science

Search-based solution

- Performs a Depth First Search.
 - Produces complete conflict free schedules fast.
- Improves over them, using best known schedule to bound the search.
 - Branch-and-bound.

8 - 11 June, 2011

- Has a computation time budget, after which it returns the best solution found.
- May produce optimal schedules.

Flowchart

Logistics, Informatics and Service Science

11 June, 2011

- The first time a conflict is detected, priority is given to produce one first conflict free schedule.
 This is not much different from what human operators do.
- After that, knowing how much time is has until the first decision has to be enforced, uses that time to improve over the first solution.
 - When time expires, either it produces a better solution or the first is executed.

- The final package possesses a series of parameters, which affect its performance.
 - Initial schedule
 - offline schedule for the day;
 - Time horizon
 - no conflicts up to the horizon;
 - Number of solutions
 - solutions presented to the human operator as alternatives;
 - Cost function
 - metric used to evaluate the effects of delays for trains;
 - Maximum search time
 - computational budget;
 - Upper bound

8 - 11 June, 2011

heuristic schedule

Initial Schedule

• Evaluating performance as a function of the initial schedule's complexity and number of conflicts.

Input Schedules		2	licts	CPU Time (s)		Weighted Tardiness		Limits	
	Trains	Meetpoints	Initial Conflicts	Heuristic Solution	Optimal Solution	Heuristic Solution	Optimal Solution	Time Horizon	Upper Bound
1	6	3	8	2,63	2,58	37,35	23,80	79	429
2	12	6	11	2,52	3,97	101,55	44,30	10	353
3	12	24	22	3,01	944,89	46,54	43,72	62	141694
4	20	24	38	2,73	1800*	52,91	52,14	330	250591
5	40	24	240	6,09	1800*	321,9	382,27	669	205350

Logistics.

Number of solutions

and Service Science

• Number of solutions provided to the human dispatcher as alternative solutions for the same conflict.

Input Schedules	Number of Solutions	CPU Time (s) Optimal Solution
	1	27,88
3	5	30,78
	10	32,79
	1	29,67
4	5	33,39
	10	35,16

Beijing Jiaotong University, China

Time horizon

- How far in time does the search provide a conflict free schedule.
- How does that affect performan-ce.

8 - 11 June, 2011

Input	T' II ·	CPU T	ime (s)	Weighted Tardiness		
Schedules	Time Horizon (h)	Heuristic Solution	Optimal Solution	Heuristic Solution	Optimal Solution	
	2	2,62	2,44	1,754	1,754	
3	5	2,81	2,74	9,822	9,822	
3	10	3,72	27,88	25,30	24,61	
	24	3,01	944,89	46,54	43,72	
	2	2,90	2,42	1,762	1,762	
- A	5	2,63	2,73	11,734	11,734	
4	10	3,09	29,67	29,53	26,72	
	24	2,73	1800*	52,91	52,14	
	2	3,17	2,9	0,438	0,438	
5	5	2,93	1800*	70,42	64,31	
S	10	3,53	1800*	152,64	186,80	
	24	6,09	1800*	321,90	382,27	

1st Internati

Conference

Logistics, Informatics and Service Science

on

Cost function

• Sets of weights for the weighted tardiness function

	Priority 1	Priority 2	Priority 3
Set 1	0.7	0.2	0.1
Set 2	0.6	0.3	0.1
Set 3	0.5	0.4	0.1
Set 4	0.5	0.3	0.2

1st International

Logistics, Informatics and Service Science

Conference on

Comparison

Input	Cost Function	Sets of Weights	Solution Cost		
Schedules	Cost Function	Sets of Weights	Optimal	Heuristic	
		Set 1	23,97	24,66	
	Weighted	Set 2	29,97	31,27	
4	Tardiness	Set 3	31,76	37,88	
		Set 4	27,23	30,00	
	Total tardiness		69,47	94,52	
		Set 1	182,07	169,92	
	Weighted Tardiness	Set 2	170,94	174,50	
5		Set 3	158,93	179,14	
		Set 4	161,52	209,23	
	Total tardiness		433,75	771,02	

Maximum search time

• Performance achieved with progressively larger computational budgets.

Input Schedules	Maximum Search Time (s)								
	15	30	60	300	600	1800			
3	49,73	49,22	48,12	46,29	46,29	43,72*			
4	59,79	56,22	55,72	54,12	54,12	52,14			
5	386,22	386,12	385,84	385,62	382,27	382,27			

Logistics, Informatics

and

Service Science

Maximum search time

• Ratio* to optimal solution

Beijing Jiaotong University, China

Initial upper bound

• Effect of using the heuristic solution as starting upper bound for the search.

Input Schedules	Initial	Maximum Search Time (s)							
	Upper Bound	15	30	60	300	<mark>600</mark>	<mark>1800</mark>		
3	Infinite	49,73	49,22	48,12	46,29	46,29	43,72 (944s)		
	Heuristic Solution = 46,54	46,54	46 <mark>,</mark> 54	46 <mark>,</mark> 54	46 <mark>,</mark> 54	46 <mark>,</mark> 54	43,72 (903s)		
4	Infinite	59,79	56,22	55,72	54,12	54,12	52,14		
	Heuristic Solution = 52,91	52,91	52,91	52,91	52,91	52,91	51,95		

on

Logistics, Informatics and Service Science

Beijing Jiaotong University, China

Conclusions

8 - 11 June, 2011

- Presented a Decision Support System for Railway Traffic Management.
 - Combines what human operators do with a complementary search engine;
 - Provides more than a solution to be chosen;
 - Takes advantage of the time to the next conflict to improve over a first heuristic solution;

Beijing Jiaotong University, China

Always produces a solution fast.

Conclusions

- Caracterized the computational complexity for conflict detection.
- Conflicts addressed
 - The meet conflict;
 - The pass conflict;
 - Safety intervals conflict;
 - Capacity conflict;

11 June, 2011

• Presented a series of numerical results to evaluate main features.

Conclusions

• Future work

- Need to address networks of lines, instead of a single line;
- Move from single track to multiple tracks;
 - There are no meet points in multiple tracks.
 - But there may be connecting trains that need to be synchronized at given stations

Thank You

谢谢您

