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Abstract: This paper presents a study on idling production policies in the context of periodic
review inventory control. The usefulness of these policies will be demonstrated by means
of two different numerical experiments from which we will be able extract some interesting
managerial insights, as well some structural properties of the solutions. In the first experiment,
the stabilization properties of these policies will be illustrated by means of the stabilization of
the Lu&Kumar network. In the second experiment, we will present a stable system for which
idling policies achieved a lower operational cost when faced with their non-idling counterparts.
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1. INTRODUCTION

In the context of industrial applications, inventory control
policies address the problem of splitting a finite amount
of capacity among a set of different products that need
processing. In the context of periodic review inventory
control, the base stock policy is known to be optimal
for single product, single machine systems (capacitated or
uncapacitated). Also, for uncapacitated machine flow lines
it is known that the Multi-Echelon Base Stock policies –
MEBSP – are optimal, (Clark and Scarf, 1960). However,
when machines are capacitated, little is known about the
structure of the optimal inventory policy, except that
the optimal final product inventory levels are bounded.
Despite knowing this, there are no closed form results when
it comes to determining the optimal policy nor these bound
values. When using MEBSP one still has to address how
to split capacity among the different products when their
requirements are above the capacity value. Many authors
have used variations of the MEBSP proposing different
dynamic rules to address the capacity split. Examples are
Priority, Linear Scaling, Equalize Shortfall, and Weighted
Equalize Shortfall, among others (See (Janakiraman et al.,
2009)). One particular feature of all these variations is the
fact that they all are non-idling. The production decisions
for a given decision period are solely limited by feeding
inventory and machine capacity.

We claim and show that tighter limits to the production
decisions may be needed to guarantee stability and to
achieve better performances. The main objective of the
work described here is to study idling policies for peri-
odic review inventory control and to establish a frame-
work where they can be compared with the non-idling
approaches.
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This paper presents an example of a stable system where
these tighter production bounds are used to achieve per-
formance improvements. The stabilization of an unstable
network similar to the one described in Lu and Kumar
(1991) using these production bounds to induce idleness
will also be presented.

This paper is organized as follows. We start by introducing
the theoretical model as well as its dynamic equations,
Section 2. The Infinitesimal Perturbation Analysis as well
as its applicability will be discussed in Section 3. Section
4 will present the stabilization of a network similar to the
one of Lu&Kumar using the proposed policies. In Section
5 we will present an experiment where, using IMEBSP,
we were able to improve operational cost over their non-
idling counterparts. The paper ends, in Section 6, with
some conclusions and references to future work.

2. THEORETICAL MODEL

In (Bispo, 1997), the author presents a framework to
study MEBSP, in the context of periodic review inventory
control, for simple re-entrant systems producing multiple
products.

The framework here presented is an extension of the one
introduced in (Bispo, 1997), which will now contemplate
non-acyclic layouts, as well as a set of production bounds
capable of inducing idleness in the production policies.
These bounds will directly impact equation (6) below. For
a more detailed description of the framework, we refer the
reader to (Santos, 2016), of which this paper constitutes a
synthesis.

2.1 Framework

Consider an eventually non-acyclic, multi-stage, multi-
product, capacitated production system facing random



demand, being a capacitated production system, a sys-
tem whose machines have a limited amount of capacity
available at any point of time. Each one of the P products
follows a specific routing pattern defined by a set Op of
operations. Every set of operations Op is indexed from
K to 1 being K the first operation (most upstream) and 1
the last. When analysing a given operation, the set Op will
always have the information of which are its upstream and
downstream operations. This information is what makes
possible the generalization of the model to non-acyclic
layouts.

2.2 Basic recursions

Inventory Dynamic Equation For the sake of simplicity,
in the following set of equations, Ikpn and P kp

n refer,
respectively, to the inventory and production values of
operation Op(k) at the decision period n respectively. dpn
represents the demand value for product p at the decision
period n.

Ikpn+1 =

{
I1pn − dpn + P 1p

n k = 1,

Ikpn − P (k)−p
n + P kp

n otherwise.
(1)

Equation (1) describes the evolution of the inventory levels
throughout the operation. The inventory level for the most
downstream operation (I1p), decreases by the the amount
of product p which leaves the system by means of the
demand process and increases by the amount produced
at this stage. The other production levels will see their
inventory levels decrease by the amount of product that
their downstream operations consume.

Note that P
(k)−p
n represents the amount of product p

produced at decision period n for operation Op(k − 1).

Echelon Inventory Dynamic Equation The echelon in-
ventory of Op(k) at decision period n is defined as:

Ekp
n =

k∑
x=1

Ixpn . (2)

Locally, a stage has usually no visibility over the down-
stream inventory levels and, for that matter, equation (2)
is not applicable. The dynamic evolution of the echelon
inventory may be described by means of an alternative
equation:

Ekp
n+1 = Ekp

n − dpn + P kp
n . (3)

Analysing the previous equation, the echelon inventory
will grow with the amount of production at that cor-
responding stage and will decrease with the amount of
products leaving the system.

Shortfall Dynamic Equation The shortfall is defined as
the difference between the echelon base stock and the
echelon inventory:

Y kp
n = zkp − Ekp

n . (4)

It is possible to write a dynamic equation for the shortfall
similar to the one for echelon inventory given by:

Y kp
n+1 = Y kp

n + dpn − P kp
n . (5)

Production net needs Production net needs represent
the production quantities that the system needs when
there are no capacity bounds. In order to ensure that the
capacity of the machines is not exceeded, production rules
will be applied to the production needs in a posterior step.
The production net needs may be bounded by upstream
inventory or by the forced bounds imposed to the system.
Let us define Īkp the production bound imposed to product
p at operation k. When there are no bounds, the system
will always try to produce the sufficient amount to take the
shortfall of the buffers to zero. The production net needs
for a given product and operation are defined by:

fkpn =

{
min

{
(Y Kp

n + dpn)+, ĪKp
}

k = K,

min
{

(Y kp
n + dpn)+, I(k)

+p
n , Īkp

}
otherwise.

(6)

where (x)+ = max {0, x}. Note that the first machine of
a production line will never be limited by inventory, since
raw material is assumed to be always available.

The echelon base stock variables must respect the following

rule zkp ≥ z(k)−p. As discussed in Bispo (1997), instead of
continuously compare two consecutive multi-echelon base
stock levels throughout the optimization procedure, it is
preferable to use an alternative set of variables where this
rule is simplified.

∆kp =

{
zkp k = 1

zkp − z(k)
−p otherwise.

During the optimization procedure it is much easier to
enforce that every ∆kp ≥ 0 instead of making sure that the
base stock variables are always non increasingly ordered.

Priority Rule Assuming that, every machine m =
1, ...,M has a set of operations Jm and that Jm(x) ,
for x = 1, ..., Xm, is the operation that comes in the
xth position on the priority list. That is, Jm(1) is the
operation with the highest priority and Jm(X) has the
lowest priority. The production decision for machine m
will be:

P (Jm(1))
n = min

{
f (J

m(1))
n ,

Cm

τ (Jm(1))

}
,

... (7)

P (Jm(x))
n = min

{
f (J

m(x))
n ,

Cm −
∑x−1

j=1 τ
(Jm(j))P

(Jm(j))
n

τ (Jm(x))

}
.

Note: τ (J
m(x)) is the capacity required to produce one

product unit on operation Jm(x) in the machine m.

Linear Scaling Rule Product decision rule for operation
x of machine m:

P Jm(x)
n = fJ

m(x)
n gmn , (8)

gmn = min

{
Cm∑X

j=0 τ
Jm(j)f

Jm(j)
n

, 1

}
, (9)

Operational Cost The operational cost refers to the cost
of stocking inventory and being penalized by backlogs. Let
a single stage cost be defined as



Cn =

P∑
p=1

Cp
n, (10)

where Cp
n is given by

Cp
n = (I1pn )−bp + (I1pn )+h1p +

Kp∑
k=2

Ikphkp, (11)

and Kp represents the number of operations from the set
Op. bp and hkp are the standard backlogging and holding
costs.

With the single period cost established in 10, one is
now capable of calculating the finite horizon average
operational cost taking into account N simulated periods:

CN =
1

N

N∑
n=1

Cn. (12)

Initial conditions The state variables will be set to their
base stock variables, that is Ikp0 = ∆kp. The echelon

inventories will be set according to Ekp
0 =

∑k
i=1 ∆ip. The

forced bounds Īkp will be set to a value in the interval
between the machine load and its total capacity. All other
initial variables are set to zero.

3. INFINITESIMAL PERTURBATION ANALYSIS

To show validity of IPA it is necessary to demonstrate
that the expected value and derivative are interchangeable
operators. If one takes into account the finite horizon
average cost equation (12), if the system is simulated
during an amount of decision periods long enough, for i.i.d.
demands, so that it can cover in time the same amount
information that it would cover for all sample paths, the
following approximation is valid due to the Law of Large
Numbers:

CN =
1

N

N∑
n=1

Cn −→ C̄N =
1

N

N∑
n=1

E[Cn] for N >>, (13)

where E[.] is the expected value over all sample paths.

The main result concerns the cost derivatives. When IPA
is valid, the following relationship holds:

∂

∂θ
C̄N =

1

N

N∑
n=1

∂

∂θ
E[Cn] =

1

N

N∑
n=1

E[
∂

∂θ
Cn]. (14)

For the same reasons as (13), it holds that:

1

N

N∑
n=1

∂

∂θ
Cn −→

1

N

N∑
n=1

E[
∂

∂θ
Cn] for N >> . (15)

Therefore, we can get estimates of the derivatives by sim-
ply using one long enough sample path. The consequence
being that the simulation based optimization is more ef-
ficient, given that one single simulation suffices to obtain
gradient estimates, (Glasserman, 1991). The left side of
(15) is obtained by direct derivation of the equations
presented in section 2. Resorting to a single sample path is
also advantageous from the variance reduction stand point,
as discussed in L’Ecuyer (1994).

4. PROXY OF THE LU&KUMAR SYSTEM

In (Lu and Kumar, 1991), in the context of Queuing
Networks, the authors show that not all priority policies
are stable. In fact, the authors present an example where
a specific choice of priorities will induce instability in a
system.

As stated in (Bispo, 1997), IPA is not valid for re-entrant
systems working under the priority rule when the values
of τ are not all equal. For this reason, the classical
Lu&Kumar system cannot be studied with our model.

In (Dai and Weiss, 1996), the Lu&Kumar system is widely
studied in the context of fluid models. In the mentioned pa-
per, the authors propose a proxy layout for the Lu&Kumar
system which, under the same conditions, is unstable, and
it is not a re-entrant system, see Figure 1. The numeri-
cal study here presented was conducted using this proxy
layout.

Fig. 1. Lu&Kumar proxy layout.

In this layout, at machine 1 priority is given to operation
O1(2) over O2(1), while at machine 2 priority is given to
operation O2(1). The mean demand rate considered is 8/7
while each machine has a total capacity of 10 (80% load).
The τ values considered in this example are given in Table
1.

Table 1. τ values structure.

τ11 τ21 τ12 τ22

Value 1 6 1 6

Figure 2, displays the inventory paths for the system of
(Dai and Weiss, 1996) under the mentioned conditions,
when using MEBSP.

Fig. 2. Inventory paths for the Lu&Kumar proxy system.

The presented behaviour is similar to the one of Lu&Kumar
as one can observe that the system inventory buffers
present the same cyclic growth as the ones of the previous
example.



Dai and Weiss (1996) propose a stability condition for this
system which can be translated to the inventory control
paradigm notation:

Remark 1. Assume that
E[d1]τ21 + E[d2]τ12

C
< 1 and

E[d1]τ11 + E[d2]τ22

C
< 1.

There exists an unstable policy for the model if and only
if

E[d1]τ21 + E[d2]τ22

C
> 1

where C is the machine capacity.

In the example of Figure 2, as we can see in Table 1, the
values of τ21 and τ22 along with the expected demand rate
for both products are in violation of the stability condition.

With the application of IMEBSP to the system, we were
in fact capable of achieving stability as we show in Figure
3.

Fig. 3. Inventory paths for the stabilized proxy system.

Under IMEBSP, the inventory buffers are able to regen-
erate to their initial conditions multiple times throughout
the simulation, with finite expected time between regen-
eration points. Also, the operation O2(2) is now working
under a local base stock policy. We must stress that the
system setup is the same as the presented in the previous
unstable examples.

Table 2. Optimal production bound parame-
ters.

Ī11 Ī21 Ī12 Ī22

Production Bound Value 1.43 1.42 1.43 1.43

Analysing the optimal bound parameters registered in
Table 2, we can extract two very interesting conclusions.
The first being the fact that the production bounds are in
fact making a weighted division of the machines capacities
among their operations using the τ parameters as weights:

τ11 ∗ Ī11 + τ21 ∗ Ī21

C
=

1 ∗ 1.42 + 6 ∗ 1.43

10
= 1.00,

τ12 ∗ Ī12 + τ22 ∗ Ī22

C
=

1 ∗ 1.43 + 6 ∗ 1.43

10
= 1.01.

The second conclusion comes from the fact that the opti-
mal solution, under an idling policy, manages to stabilize
the system working in a region where (Dai and Weiss,
1996) does not guarantee stability for non-idling policies.
Given that the Lu&Kumar system respects the traffic
condition, it is stable under IMEBSP.

Table 3. Percent of decision periods where
idleness occurs.

IMEBSP MEBSP

Machine 1 61.23% 60.07%
Machine 2 100.00% 31.96%

As we can observe from the percent of periods where
idleness occurs under each policy presented in Table 3, the
IMEBSP resorts to the inclusion of additional idling peri-
ods in order to induce stability. In fact, under IMEBSP,
it will be optimal to never let machine 2 to use its full
capacity.

5. THE CRISS CROSS SYSTEM

The Criss Cross system has been widely studied in the
queuing networks literature (See (Harrison and Wein,
1989) and (Budhiraja et al., 2005) for some examples
of these studies). This is a system where the optimal
scheduling policy may be idling.

The Criss Cross layout consists of a system with two
machines and two product lines, as shown in Figure 4.
The system will be tested using two different production
rules at machine 1:

• Linear Scaling Rule - LSR
• Priority Rule - PR

Fig. 4. Criss Cross manufacturing layout.

Note that the priority rule will be tested twice, giving
priority to each of the products on machine 1. In order to
clarify the used notation, the priorities will be identified
in the following manner:

• P12 - Product 1 has priority over Product 2
• P21 - Product 2 has priority over Product 1

This experiment used the holding cost structure presented
in Table 4, while the backlog penalty costs were set to 20.

Table 4. Holding cost structure.

Holding Costs h11 h21 h12

Cost 10 4 10

Machine 1 has an overall load of 80% and the load of
machine 2 varies between 30% and 80%. Moreover, the
load imposed by each product in machine 1 is 40% (a 50%
load split). The mean demand values are fixed to 10 and
the coefficients of variance are equal to 1.



Fig. 5. Mean cost evolution of the Criss Cross system -
PR:P12.

In Figure 5 we present the optimal average operational
cost as a function of the second machine load for both
IMEBSP and MEBSP. This experiment was conducted
using P12. Observing the mean cost evolution presented
in Figure 5, one can conclude that, for high loads, the
IMEBSP is able to achieve close to a 19% cost reduction
margin when compared to MEBSP.

The figure also shows the 95% confidence intervals of the
obtained results. It is important to state that these confi-
dence intervals, given their size, show that the simulation
length is long enough, ascertaining the validity of equation
(13) and (15).

Observing Figure 6, we can conclude that product 2 does
not need to be bounded since the optimal value of its
bound converges to the same value as the full capacity of
machine 1. This means that, at any given period, product
2 will be allowed to use all of this machine capacity.

Fig. 6. Optimal production bound levels for the Criss Cross
system - PR:P12.

Analysing the bound applied to machine 2 there are two
different observations to make. Before this machine reaches
the mark of 60% load, the value of its bound is always
placed under the value of both machines total capacity.
This means that, under these conditions, this machine may
be forced into idleness in some decision periods. When the
load of machine 2 is raised above 60%, the bound applied
to this machine converges to its full capacity and, in this

case, the production at this level will only be limited by
the upstream inventory and/or shortfall.

The bound applied to the first operation of product 1
shows a very interesting behaviour. When the load of
machine 2 is low, machine 1 is the bottleneck for product
1. The optimal value of the Ī21 will nonetheless always
be below machine 1 capacity. This bound will induce an
alteration of machine 1 strict priorities. In machine 1,
working under the IMEBSP, product 1 only has priority
until the bound value is produced. All the capacity that
is left will be available for product 2 and/or wasted.
This phenomena will act like as a “relaxation” of the
priority rule that will never let the high priority product
monopolise the machine capacity.

When machine 2 has high load, it becomes the bottleneck
for product 1. In this case, Ī21 will converge to the value of
the second machine capacity. This means that, for a given
period, the first machine will never produce an amount
of product 1 that is above the value of the bottleneck
capacity.

Figure 7 shows the inventory tracking for the optimized
system working at 80% load on both machines as well as
the optimal ∆ values for which the system converged.

Fig. 7. Inventory path of I21.

The bound value in machine 1 completely changes the
way inventory is handled at the I21. Given that the Ī21

is set to the same value as machine 2 capacity and that
∆21 converges to the same value, this buffer will have zero
variance on the stock level at all times.

At any decision period, machine 2 will consume a maxi-
mum value of the buffer I21 which is equal to its capacity.
Given that both the optimal Ī21 and the optimal ∆21 are
set to the same value as machine 2 capacity.

Table 5. Registered variance at the inventory
buffers.

Inventory Variance IMEBSP MEBSP

I11 28,17 28,17
I21 0 24,63
I12 19,66 24,79

Table 5 presents the variance of the inventory levels
throughout the simulation. As a reduction in the oper-
ational costs is directly correlated with a reduction of



the overall variance level at the buffers, this result serves
as a justification on how the IMEBSP achieves a better
performance when faced with its non-idling counterpart.

At this point one question remains to be answered: how
much idleness are the bounds forcing? This information
will help us conclude if the IMEBSP is in fact behaving
as a non-idling policy or if the application of the bounds
is simply regulating the priority rule. Table 6 registers the
percent of decision periods where capacity was not fully
used, while both machines worked at 80% load.

Table 6. Percent of decisions where the ma-
chines do not use their full capacity.

Idle Periods IMEBSP MEBSP

Machine 1 54.10% 44.84%
Machine 2 36.66% 38.19%

As noted before, when both machines are working at 80%
load, the only bound having an impact in the system
operation is Ī21 which is applied in the first machine.
Analysing Table 6 one can conclude that the idling policy
results in a substantial increase of the amount of periods
that machine 1 does not use all of its capacity.

On the other hand, the second machine registered a smaller
amount of periods where capacity was not fully used. This
behaviour may be justified by the reduction of the stock
variance at this machine entrance. Given that this machine
will always have an amount of stock at its entrance that is
equal to its capacity, its production will never be limited by
the upstream stock level and, for that matter, it will run in
a much smoother manner. What Table 6 shows is that the
extra idleness incurred by machine 1 benefits machine 2,
which is more utilized, and consequently the whole system
gains.

Table 7 presents the comparison of the results achieved by
the three different decision methods when both machines
were working at 80% load.

Table 7. Cost benchmark for high load opera-
tion.

Rule IMEBSP Cost MEBSP Cost Cost Improvement

P12 577.97 707.95 18.4%
P21 625.23 633.73 1.5%
LSR 590.61 600.44 1.6%

When it comes to the evaluation of these results it is
important to notice that all the production rules showed
an overall cost improvement while under an idling policy.
Nevertheless, it should be pointed that the priority rule
P12, which was the one with the worst performance in the
MEBSP policy, was able to beat both the LSR and the
Priority rule P21 in IMEBSP.

6. CONCLUSIONS

We presented two distinct systems, which have been widely
studied in the context of Queuing Networks, and addressed
them in the context of Periodic Review Inventory Con-
trol. While it was not expected that a change in model
paradigm would modify these systems behavior, we argue
that the framework of Periodic Review Inventory Control
is more amenable to the definition and usage of idling
policies.

We proposed a new class of policies, the IMEBSP, which
are a generalization of the classical MEBSP, and presented
some numerical experiments showing two main features of
these policies:

• The performance of IMEBSP was never worse than
the performance of the MEBSP;

• IMEBSP is able to stabilize systems that may be
unstable under their MEBSP counterparts.

Under MEBSP there are only two situations that may
prevent a machine to use its full capacity: shortfall is below
machine capacity, feeding inventory is insufficient. By
using IMEBSP we add a third situation that prevents the
full capacity to be used: the production bounds. Whereas
the first two situations can be considered as passive
idleness, this third situation is clearly active idleness. That
is, active idleness is a choice of the decision maker while
passive idleness is simply a consequence of the demand
path. The numerical results show that the possibility
of choosing idling periods results into a more balanced
utilization of all resources and an overall reduction on the
inventory buffer variances, in the sense that it works as
filter on the burstiness of the demand process. It is well
known that performance costs are negatively influenced by
the variance of the inventories.

The validation of the IPA approach was out of the scope
of the present paper. This is an issue that will have to be
addressed in the future.
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