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Abstract. This paper addresses the use of model predictive control
(MPC) for pursuit-evasion games, where a shuttle drone aims at cap-
turing a remotely piloted target drone. Several models for shuttle and
target vehicles are developed, considering different degrees of complex-
ity and reliance in inner-loop controllers. Based on these models MPC
strategies are defined for each vehicle, for joint tracking operation, as
well as for differential pursuit-evasion games between shuttle and tar-
get vehicles. Lastly the human-in-the-loop is added to the model and
respective MPC algorithms of the fixed-wing target. Simulation results
are provided, showing several scenarios where each vehicle has the ad-
vantage in terms of physical capabilities, or the disadvantage of being
remotely-piloted.
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1 Introduction

The interest in unmanned aerial vehicles (UAVs), or simply drones, has been
growing from a research and military standpoint. Drones are being increasingly
used for aerial surveillance, 3D mapping, among other things. Doing such tasks
autonomously requires reliable navigation from the drones, particularly in un-
known areas. One example of the usage of drones is in the event of natural
disasters, and in some cases the prevention of one. The authors in [13] show
various examples of how drones can be used in this scenario. Many industries
use drones in their day-to-day business, for example, the mining industry to do
ore control, 3D mapping, blasting management, etc [14]. However, these devices
aren’t used only in the research and industry fields, as many people have in-
corporated drones in their day-to-day lives, which raises concerns in safety and
privacy. A good example of that are airports, where the sighting of a drone
within the airport’s area can cause a temporary shutdown [6].

The focus of this paper is to consider the use of a shuttle drone, assumed to
be a rotary-wing unmanned aerial vehicle (RUAV), equipped with capture mech-
anism and able to model the typical human reaction times and predict the most
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probable motion of a remotely piloted target drone. The control of UAVs has
been constantly evolving, and lately departing from classical approaches, such
as the proportional–integral–derivative (PID) controller [15], nonlinear control,
adaptive control, or nonlinear model predictive control (NMPC) [3]. Model pre-
dictive control allows for the representation of complex and dynamic systems
with multiple inputs and outputs while taking into account sets of constraints
created by either the system itself or its surroundings [11,8].

Human behavior is complex and, often, unpredictable, yet simplified models
of the human sensori-motor reactions are available in the literature. In [1] a hu-
man works cooperatively with the controller or takes a more passive role, being
observed in driving scenarios. In [2] a compensatory control is studied, where the
human controller acts only on the error between the system output and the ref-
erence. For this type of control two models are shown, one is called the extended
crossover model that approximates linear controller dynamics. The last one is a
second order model that describes human dynamics in a wider frequency range
while also considering neuromuscular dynamics, called the simplified precision
model. When dealing with dynamical systems models, a simple way of incorpo-
rating the human-in-the-loop is to introduce a delay which is meant to stand
in as the reaction time (RT). Reaction time can be defined as the interval of
time between the appearance of the stimulus and the voluntary response given
by the subject, which is found to be typically between 250.12±18.50 ms and
229.80±16.73 ms, depending on the activity levels of the individuals [7].

Differential games allow us to generalize an optimal control problem as seen
from two conflicting perspectives. This is the case for the underlying pursuit-
evasion games (PEGs) addressed in this paper, where the pursuer shuttle drone
has the goal of capturing a target drone, whereas the target drone will try to frus-
trate this goal [16]. Alternatively, [12] focuses on cooperative differential games
where the players maximize the sum of their payoffs, and the game develops
along a cooperative trajectory. The authors of [17] combined PEGs with map
building in a probabilistic approach, whereas in [9] a distributed formation is
studied using differential game theory where UAVs are able to communicate
with one another by using a directed graph.

The contributions of this paper include the development of simple shuttle and
target models, including a basic human-in-the-loop behavior model for the latter,
the definition of PEGs differential game based on NMPC where the shuttle and
target drones are engaged in capturing of evading each other. Simulation results
for various scenarios are provided to validate the proposed approach.

The remainder of the paper is organized as follows. The models of a target
fixed-wing drone and the shuttle rotary-wing drone are provided in Section 2,
followed by the explanation of the NMPC controller for each vehicle with and
without human-in-the-loop (HIL), in Section 3. Section 4 shows the results for
the Pursuit-Evasion Game (PEG) with and without HIL as well. Finally, some
concluding remarks and future work is provided in Section 5.
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2 Vehicles Models

This section starts by introducing the modeling concepts for the RUAV drone
and the fixed-wing UAV, defining the coordinate frames used to deduce these
models, followed by the modeling of the human being.

Before modeling any of the vehicles it is important to explain and categorize
the reference frames applied. In this case the mass center of the earth is con-
sidered as the origin of the frame, as the Earth-Centered Earth-Fixed (ECEF)
with the z-axis pointing towards the north pole and the x-y plane coinciding
with the earth’s equatorial plane, where the x-axis is aligned with the interna-
tional reference meridian. For aerospace vehicles the usual convention used is
the North-East-Down (NED), however given the fact that we have different ve-
hicles, the East-North-Up (ENU) was used as the inertial frame (I), represented

in Figure 1 with the axes xi =
[
1 0 0

]T
, yi =

[
0 1 0

]T
, and zi =

[
0 0 1

]T
. In

this convention the x-axis is pointing east, the y-axis is pointing north, and the
z-axis is pointing up. The body frame is attached to the vehicle, originating at
the center of mass of the object. The axes xBa and yBa are in the plane defined
by the center of the vehicle, while zBa is perpendicular to that plane pointing
upwards as seen in 1.
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Fig. 1: Inertial and body frame referential for the aerial vehicle.

The following models are continuous, and a discretization of our system is
needed considering the tools we have used to simulate the vehicles behaviors.
The generalized model equation is given by

ẋi(t) = fic(xi(t), ui(t)) (1)

where fic is the corresponding continuous model equations of the vehicle i, where
fac

is for the RUAV and ffwc
is for the fixed-wing UAV. As mentioned before

the next step is to discretize the non-linear model which is now

xi(k + 1) = fi(xi(k), ui(k)) (2)

where fi is obtained using the Euler forward method and is given by

fi(xi(k), ui(k)) = xi(k) + Tsfic(xi(k), ui(k)) (3)

where Ts is the sampling time of the simulation.
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Let pa and va be the linear position and velocity of the shuttle RUAV vehicle
in frame I, while its attitude in terms of Euler angles roll (ϕ), pitch (θ), and yaw
(ψ) is λa ∈ R3, and the angular velocity of the vehicle described in the shuttle
body frame A is ωa ∈ R3. Using the kinematic and Newton-Euler equations the
shuttle drone model can be written as:

ṗa = va

v̇a = m−1R(λa)(fe + fa)− gzi

λ̇a = Q(λa)
−1ωa

ω̇a = I−1(−ωa × Iωa + τe + τa)

(4)

where m is the mass of the drone, g is the gravity’s speed, I is the inertia
matrix of the vehicle, R(λa) ∈ SO(3) denotes the rotation matrix based on the
Z-Y-X Euler angles vector, representing the attitude of the body frame relative
to the inertial frame, whereas Q(λa) is the matrix that maps the Euler angle
rates into the angular velocities of the vehicle described in the body frame.
The aerodynamic force (fa ∈ R3) and torque (τa ∈ R3) produced by mainly
by the aerodynamic drag are, respectively, fa == −aTR(λa)T vair with vair =
va − vw where vw is the wind’s velocity vector in the inertial frame, and τa =
−aRωa, where aT and aR are the linear and rotational air friction coefficients,
respectively. For the external force (fe ∈ R3) and torque (τe ∈ R3) we have

that fe =
[
0 0 fez

]T
and τe ∈ R3. The values for these parameters are further

detailed in [10].

The shuttle RUAV model is highly non-linear and has a significant complex-
ity, which creates a need for high computational power. To circumvent this issue,
and since the objective is to control the RUAV movements so it follows the other
vehicle, the model for the NMPC was simplified. This is possible given that we
have a non-linear controller that allows for the combined control of the complete
system. This version of the RUAV model becomes

ṗa = va

ψ̇a = ωaz

(5)

where the states for the RUAV are now xa =
[
pa ψa

]T
and the inputs are

ua =
[
va ωaz

]T
. For this model the same discretization process was applied

except for the simplified version, fac
is found in Equation (5).

The target fixed-wing vehicle is modelled considering similar state variables
as for the RUAV, denoting the 3-D position of the vehicle in the inertial frame
as pfw ∈ R3 and the 3-D linear velocity vector in the vehicle body frame FW as
vfw ∈ R3. Nonetheless, the angular motion is simplified to account for motion
constraints related to the air flow, defining the angular velocity as ωfw ∈ R2 =[
ωfwy ωfwz

]T
, and the angle vector λfw =

[
γ ψ

]T
, where γ is the flight-path
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angle and ψ is the yaw angle. The model is then defined as

ṗfw = Rfw(λfw)vfw

v̇fw = afw

λ̇fw = ωfw

(6)

where Rfw(λfw) is the rotation matrix between the wind frame and the inertial

frame. The vehicle state vector is then xfw =
[
pTfw vTfw λTfw

]T
, whereas the

input vector combines the linear acceleration vector, afw ∈ R3, and the angular

velocities. ωfw ∈ R2, as ufw =
[
aTfw ωT

fw

]T
.

Considering the human-in-the-loop (HIL) modeling, there are two fundamen-
tal models used throughout the literature: the extended crossover model and the
simplified precision model. While the extended crossover model accounts for the
delay in the reaction time, simplified precision model is a second order model that
accounts for the neuro-muscular dynamic. These two models are then connected
to form the full compensatory model [2].

In this paper, a simple human reaction model is achieved by introducing
a reaction time constant as a first order model, with continuous-time transfer
function given by

Xu(s)

U(s)
=

1

THs+ 1
(7)

where the value of TH represents the human reaction time. This is a simplistic
version of modeling the human reaction so that the NMPC has a straightforward
notion of the disadvantage of HIL, which can still be identified in the future with
real data of human piloting. When applied to our system, we define an additional
state variable xufw

=
[
aHfw ωH

fw

]
, resulting in the augmented model equations

given by

ṗfw = Rfw(λfw)vfw

v̇fw = aHfw

λ̇fw = ωH
fw

ẋufw
= − 1

TH
xufw

+
1

TH
ufw

(8)

3 NMPC for drone capture

In this section a NMPC strategy is developed, in a first stage for each vehicle
individually, and in a second stage, a PEG differential game based on NMPC is
proposed for the two vehicles.

3.1 Single vehicle NMPC

For a general vehicle, taking into account the output obtained at a given time
k, the controller predicts the future actions of the system over the prediction
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horizon and determines which input to apply to the next instance. The optimal
control problem for a given time horizon, N , consists of finding the optimal
state control sequence u∗k for k ∈ 0, ...., N − 1 that drives the system along
a state trajectory x∗k for k ∈ 0, ...., N according to the system dynamics and
within input and state constraints, such that the specified performance index J0
is minimized relative to a reference output signal ȳk, that is

min
u0,...,uN−1

J0 = (yN − ȳN )TP (yN − ȳN ) +

N−1∑
K=0

(yk − ȳk)
TQ(yk − ȳk) + uTkRuk

s.t xk+1 = f(xk, uk),∀k = 0, ..., N − 1

yk = Cxk

x0 = z0

where z0 is the initial condition, C is the output matrix, and f(xk, uk) is the
equality constraint. In order to accomplish this, we use the receding horizon
control strategy defined in Algorithm 1. The initial condition instantiates the
system model, given by x0(k) = x(k− 1), which is used to predict the behavior,
with the actual systems state at that sampling instant.

Algorithm 1 Receding horizon control

Require: Current state x
1: Consider the initial condition x0 is the current state xtk .
2: Obtain the optimal control sequence U∗ solving the non-linear optimal control

problem by minimizing the cost function over the prediction horizon.
3: If the problem is unfeasible then terminate the algorithm.
4: Apply the first control action from U∗ to the system, utk = u∗

0

5: Repeat from step 1.

Considering the stacked state, output, and input sequences defined respec-

tively asX =
[
xT0 · · · xTN

]T
, Y =

[
yT0 · · · yTN

]T
= HX, and U =

[
uT0 · · · uTN−1

]T
,

the optimal problem can be rewritten in batch notation as

min
U

J = (Y − Ȳ )T Q̄(Y − Ȳ ) + UT R̄U

s.t F (X,U) = 0

Y = HX

(9)

where the function for the model equality constraint is given by

F (X,U) =


x0 − z0

x1 − f(x0, u0)
...

xN − f(xN−1, uN−1)

 . (10)
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Stability of these strategies is analyzed through the initial feasibility of the
optimal control problem, in other words, the input trajectory exists, and all the
constraints are satisfied [4]. One of the big advantages for this type of control is
that it is versatile.

Considering the RUAV shuttle and FW target vehicles introduced in the pre-
vious section, we define the model equality constraint using the models defined in
Equations (6) and (5), respectively. Furthermore, considering a sampling time of
0.1 seconds and the prediction horizon of 15 samples (or 1.5 seconds), Algorithm
1 is applied to each of the individual vehicles.

The results for tracking a trajectory can be seen for each vehicle, respectively,
in Figures 2a and 2b, which show that both vehicles are able to effectevely follow
a reference trajectory. For the FW target drone, both the regular model and the
augmented model considering HIL are considered, from where we can clearly
identify the delayed response of the latter case.
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-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y(
m

)

xy in function of t

x
a
 (real)

x (desired)
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Fig. 2: Trajectories of RUAV and FW individual NMPC.

3.2 Differential game for drone capture

For the PEGs each player will have an objective and apply control towards that
goal. Considering players A and B, the joint dynamical system can be given by

xk+1 = f(k, xk, A,B)

with initial condition x0 = x(t0) and payoff P (A,B) that can be described as

P (A,B) = g(N, xN ) +

N∑
k=0

h(k, xk, A,B)

where A has the goal to maximize the P (A,B) while B wants to minimize it.
The difficulty is that in a given instant k both players are aware of their previous
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Algorithm 2 Pursuer controller

1: procedure Solve maxmin J(E,Up, Ue)
2: Maximize Je(E,U∗

p , Ue) to obtain U∗
e , considering the previously calculated U∗

p .
3: Minimize Jp(E,Up, U

∗
e ) to obtain U∗

p

4: Repeat the steps 2 and 3 k times, with k being the level of thinking
5: Set final U∗

p as the optimal input trajectory
6: end procedure
7: Set up(1) as the current pursuer input

control actions as well as their opponents, but don’t know what the future control
of the adversary is going to be [5]. It is important to describe the optimization
problem again since it changes slightly from the one described before. There are
now two types of cost for the differential game. For the pursuer the specified cost
Jp must be minimized while considering a defined value for the control action
of the evader. In the case of the evader, the cost Je must be maximized while
considering a fixed control from the pursuer. Using batch notation, where the
state, output, and input variables for the complete horizon are stacked together,
the optimal control problem for the pursuer can be described as

U∗
p = argmin

Up

Jp := (Yp − Ye)
T Q̄p(Yp − Ye) + UT

p R̄pUp

s.t Fe(Xe, U
∗
e ) = 0 , Ye = HeXe

Fp(Xp, Up) = 0 , Yp = HpXp

(11)

where the function for the equality constraints, FE , can be defined by the stack-
ing of both vehicles’ equality constraints, or FE =

[
Fp Fe

]
, and the input se-

quence for the evader, U∗
e , is that of the previous iteration of the algorithm. In

a similar fashion, the evader optimal control problem can be defined as

U∗
e = argmax

Ue

Je = (Yp − Ye)
T Q̄e(Yp − Ye) + UT

e R̄eUe

s.t Fe(Xe, Ue) = 0 , Ye = HeXe

Fp(Xp, U
∗
p ) = 0 , Yp = HpXp

(12)

The evader and the pursuer have two separate algorithms. Similarly to the
cost, the algorithms are mirrors of each other, where for the evader steps 2 and
3 are switched and the previous optimal control is considered in the opposite
vehicles’ optimization. To solve these algorithms fmincon was once again used,
this time each controller runs it twice, once to minimize the pursuer, and once
to maximize the evader, and vice-versa.

Using the model and OCP described before we can obtain results for the
simulation of the NMPC with a human-in-the-loop. The gains were kept the
same in order to compare the control in the two cases. For this the time TH
considered was 0.2 seconds in accordance with the literature mentioned, where
we consider a slightly faster human then the ones studied.The 3D plot can be
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seen in Figure 2b, We can see that when the HIL is applied the fixed-wing UAV
is slower to arrive at the reference, having a similar value than the simulation
without HIL, only a few instances later, as was expected.

4 Results and Analysis

For the Shuttle drone vs. Fixed-wing Target with Acceleration Control sce-
nario there will be two tests, one where the fixed-wing has the advantage,
and one where the RUAV has the advantage, which will be done by chang-
ing the RUAV’s velocity bounds. The target vehicles’ input constraints will be

±
[
8 8 8 2π 2π

]T
for both scenarios. For a faster fixed-wing the RUAV’s con-

straints will be±
[
10 10 10 2π

]T
and for a faster RUAV they are±

[
16 16 16 2π

]T
.

The output matrix, which until now was the identity matrix, changes so that
only the four states are chosen, the three position states and the yaw angle.
Figure 3 shows the XYZ plot of the simulations. We can see that the fixed-wing
UAV moves less erratically, making less jagged lines, when compared with the
behavior of the RUAV.

(a) Faster fixed-wing (b) Faster RUAV

Fig. 3: Trajectories of RUAV vs. FW

It is also important to analyze the runtime of each simulation. For the dif-
ferential game for a faster fixed-wing UAV the total runtime is 2574 seconds
(accounting for all iterations), which when compared to the NMPC of the same
vehicle is 411 seconds, which is 6 times bigger. As expected, the more complex
the system model and the scenario (following a reference vs. differential game)
the more computational weight the simulation has and the more time it takes
to process.

With the human-in-the-loop, and considering the same matrix values as the
simulation without it where the fixed-wing won, we can see that the human
controlled fixed-wing gets caught almost immediately, as seen in Figure 4a. To
test the algorithm with HIL in the case where the human controlled vehicle



10 P. Rodrigues and B. Guerreiro

(a) Faster fixed-wing lost. (b) Even faster fixed wing wins.

Fig. 4: Trajectories of RUAV vs. FW-HIL

escapes, another simulation scenario is considered where the input of the fixed-

wing drone has two times less constraints, which are now ±
[
4π 4π 15 15 15

]T
.

In Figure 4b we can see that RUAV follows the fixed-wing very closely but
that around the halfway point it manages to escape in the z-axis. In Figures 5a
and 5b we can see the position states of the differential game with and without
HIL, respectively. We can see that the vehicle shows the same behaviors in
each simulation, with different results. Without HIL we see the fixed-wing UAV
focusing on escaping in the x-axis, having an effect on its yaw rotation. With
HIL the target vehicle escapes in the z-axis instead.

Finally, Figures 5c and 5d show the CPU time for each iteration for each case.
We can see that overall the scenario with the human-in-the-loop takes longer to
calculate its values at each iteration, since it also has more variables to consider.
It is also of note that iteration takes more time than the sampling time be-
cause Simulink waits for the calculation to be done. This can be improved with
more efficient libraries. It is important to note that with different optimization
libraries, such as YALMIP, CASADI, or ACADOS, this problem will be able to be
optimized and implemented in real-time.

5 Conclusion

This paper presents a differential game strategy based on NMPC to enable a
shuttle drone to capture a target drone eventually piloted by a human operator.
After defining the models for each vehicle, considering also a basic human de-
layed reaction time for the target drone, NMPC algorithms for each vehicle are
developed. Then, a pursuit-evasion game between the target and shuttle drone
is proposed, which is validated through simulation results. These results con-
firm the expected outcome, in which when the shuttle drone has an advantage
in terms of its capabilities, it catches its target easily, whereas when the target
vehicle has the advantage, it can escape. Nonetheless, when the human reaction
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Fig. 5: Position and CPU time evolution.

time is considered, for the fixed-wing to escape it is necessary to diminish the
input constraints roughly 100%.

Based on these conclusions there are some areas that can be further inves-
tigated. Firstly, additional work should be developed so that the control is able
to work with the complete nonlinear models. In the same vein, the modeling of
the human being should be further studied so that both the behavior and the
resourcefulness of people are fully represented. Finally, one should consider more
efficient and scalable optimization libraries.
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