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University of Lisbon, Lisbon, Portugal

E-mails: dmd.sousa@campus.fct.unl.pt, bj.guerreiro@fct.unl.pt

Abstract. The ability for a robot to be able to construct a map of the
environment and recognize its position on it was one of the biggest de-
velopments in robotics. Simultaneous localization and mapping (SLAM)
framework builds onto the perception of the robot, giving it the possi-
bility to online calculate its trajectory and avoid obstacles. Moreover,
the continuous development of processing units has given the possibility
for previously hardware exhausting solutions to be considered as an op-
tion for the localization and mapping problem. With this in mind, this
work is focused on developing a SLAM solution for a 6 DoF vehicle op-
erating on a 3-D environment using moving horizon estimation (MHE).
Throughout the paper it is tested the applicability of the proposed so-
lution in a simulation environment of two loop square-shaped corridors
with stationary landmarks, whilst comparing the obtained results with
another probabilistic approach, the EKF, which is commonly used but
loses stability on extremely nonlinear dynamics. Each of the algorithms
is simulated in MATLAB.
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1 Introduction

Simultaneous localization and mapping (SLAM) is a well-known robotics prob-
lem for, as the name implies, the simultaneous effort of mapping a not previously
known environment and localizing the robot on the constructed map. The core
of the problem, firstly introduced in [4], is still a relevant issue with no defi-
nite solution, as there have been a continuous research, for over three decades,
on how to solve it considering distinct types of robot applications and environ-
ments. This is specially the case for vehicles with nonlinear system dynamics,
like satellites and unmanned aerial vehicles (UAVs), which in some cases can be
deployed in urban 3-D environments, and are characterized by having nonlinear
motion and observation models.

There are several distinct algorithms to solve the SLAM problem of vehicles
with non-linear dynamics. The better-known are the Kalman filter (KF) and



2 D. Sousa and B. Guerreiro

its nonlinear versions, such as the extended Kalman filter (EKF) and unscented
Kalman filter (UKF), but also the particle filter and graph-based algorithms.

The Moving horizon estimation (MHE) is defined as a constrained, nonlin-
ear optimization problem [16], that unlike the KF and EKF, does not assume
the noise to be Gaussian [18]. Similarly to the Full Information filter, the MHE
has in consideration the measured data at the current and previous steps. How-
ever, it uses a small window of measured data to make its’ estimations, which
makes it a more efficient and less exhaustive estimator as the Full Information
filter considers every past estimation. Changing the size of the horizon creates
a compromise between the computational requirements and the performance of
the method. In spite of that, the MHE still has a high computational cost [17].
Moreover, the stability of the MHE for linear and nonlinear systems has been
studied in [12], [15] and [14], where it is showed that this technique is an asymp-
totically stable observer in a nonlinear deterministic modeling framework. In
addition to that, [13] found that the MHE for nonlinear detectable systems with
bounded disturbances is robust and GAS. There is still a limited number of work
done regarding the use of MHE on SLAM. Moreover, there are not many appli-
cations of this technique on a vehicle with complex dynamics, such as vehicles
with 6 DoF. In [10] it’s considered the effectiveness of a MHE approach to the
SLAM of a tricycle in a crowded environment, and in [11] the MHE is applied
on multi-robot SLAM. Other relevant applications include hybrid systems [6] or
distributed estimators [5].

This work addresses the performance and viability of a SLAM algorithm
based on moving horizon estimation (MHE) applied to a rigid body, whilst hav-
ing in consideration the high needs of computational power that the algorithm
requires. The advantage of this method is its applicability on nonlinear systems,
since it does not have the linearity constraints imposed by other commonly used
solutions, such as the extended Kalman filter (EKF), which needs a local lin-
earization. The performance of the proposed solution will then be compared to
a SLAM based EKF approach.

The remainder of this paper presents the system motion dynamics in Section
2, and the MHE filter in Section 3. A comparison of the proposed algorithm
with the EKF is given in Section 4. Final remarks and future work directions
are provided in Section 5.

2 System Dynamics

The system dynamics was designed in order to model the behavior of any vehicle
in 3-D space, as it considers it as the movement of an abstract rigid body.

2.1 Notation

In order to better comprehend the mathematical expressions throughout this
document some abbreviations were taken into account. Every vector is written
in a bold lower case and each matrix on a bold higher case, like v and M ,
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respectively, whilst the scalar values are represented by plain letters. H defines
the quaternions group, and Hp the group of pure quaternions Hp = {q ∈ H | q =
(0, qv)}, qv ∈ R3. The sympletic group, Sp(1), is the orthogonal group formed
by the unitary quaternions, which is isomorphic to the unit sphere in R4, S3 =
{q ∈ H | |q|= 1} [7]. The special orthogonal group in 3-D space is defined
as SO(3) := {R ∈ R3×3 | RTR = I3, det(R) = 1}, where (.)T is the transpose
superscript. S[.] is a map from R3 to the space of three-by-three skew-symmetric
matrices, so(3), defined as

S[a] =

 0 −a1 a2
a3 0 −a1
−a2 a1 0

 ,a =
[
a1 a2 a3

]T ∈ R3 (1)

such that S[a]u = −S[u]a, whereas S′[.] is given by

S′[a] =


0 −a1 −a2 −a3
a1 0 a3 −a2
a2 −q3 0 a1
a3 a2 −a1 0

 . (2)

Also consider that W
BR ∈ SO(3), or simply R, is the rotation matrix from B,

the Body frame, to W , the World frame, whereas the position of origin of the
body frame described in the world frame is simply denoted as p ∈ R3, which
can be defined as a vector with x, y, and z coordinates.

2.2 Motion Model

For the purpose of the motion model it was opted to view it as a simple rigid
body. This decision enables the use of this filter to any type of vehicle, as long as
the velocities at play on the rigid body are available. The proposed model works
by considering the measurements of the vehicle’s linear and angular velocities
applied to the body, vm(t) and ωm(t) respectively, which can be defined as the
sum of the actual value and the noise associated with the environment, sensor
and system, as follows

vm(t) = v(t) + ξv(t) (3)

ωm(t) = ω(t) + ξω(t) (4)

Therefore, the vehicle motion model can be defined as{
ṗ(t) = R(q(t))vm(t)
q̇(t) = S′[ωm(t)]q(t)

(5)

in whichR(q(t)) ∈ SO(3), is the transformation of the quaternion q to a rotation
matrix and S′ is a the skew-symmetric matrix defined in (2). In addition to the
vehicle motion, it is assumed that the landmarks are static, resulting in the ith

landmark motion model
ṗi(t) = 0. (6)
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The decision of defining the vehicles orientation by a quaternion representa-
tion over other options like the rotation matrices and Euler angles was derived
by two factors. One of them was the number of variables in each option. While
the quaternion is represented by a 4-by-1 vector, the 3-D rotation matrices are
represented by a 3-by-3 matrix which has nine elements, instead of the four ele-
ments of the quaternion. This is relevant due to the number of variables in the
vector state that the MHE would have to consider and estimate, which would
demand a bigger work load on the algorithm that minimizes the cost function.
As this method is known for its computational cost the most wise option is to
make its life easier and choose the quaternion representation. The Euler angles,
which are able to define the attitude of an object with only three variables, were
also considered but as they have a singularity whenever the angle of the second
rotation is equal to 90 degrees (or 270 degrees) they were not used.

Considering that within a sampling period ∆t the linear and angular veloc-
ity measurements are constant or slowly variable, the discretization of the first
equation of (5), representing the position kinematics, uses the forward Euler
method [3], whereas the second equation, describing the rotation kinematics us-
ing unit quaternions, was discretized considering the exponential map, so that
it is possible to guarantee that the updated quaternion is still a unit quaternion.
Thus, the resulting vehicle and landmarks discretized motion model is given

pk+1 = pk +∆tR(qk)vmk

qk+1 = e∆tS
′[ωmk]qk

pik+1 = pik , ∀i∈IL

(7)

where the set IL = {1, 2, . . . , nL} accounts for all landmarks in the state vec-

tor. Consider also the state vector defined as xk =
[
xT
V k xT

Lk

]T
, where xV k =[

pT
k qT

k

]T
denotes the vehicle related states, and xLk =

[
pT
1k · · · pT

nLk

]T
the land-

marks related states. Further considering the input vector uk =
[
vT
mk ωT

mk

]T
,

we can define the motion dynamics as xk+1 = f(xk,uk) or in more detail as{
xV k+1 = fV (xV k,uk)
xLk+1 = fL(xLk)

(8)

2.3 Observation Model

The observation model consists of the position of the observed landmarks, de-
scribed in the frame of the vehicle’s visual sensor, or for simplicity, in the body
frame, Bpik. As a result, the observation model can be defined for a given land-
mark i, by converting the landmark position from the world frame to the vehicle
frame, using

yik = hi(xV k,pik) := RT (qk)(pik − pk) . (9)

Further consider the partition of the landmark states into the set of observed
or measured landmarks, IO and the set of unobserved landmarks, IU , such that
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IL = IO ∪ IU . These sets can change in each iteration, and for simplicity are
defined as IO = {1, 2, . . . , nO} and IU = {nO + 1, . . . , nL}, which can be used

to further decompose the landmark state vector into xLk =
[
xT
Ok xT

Uk

]T
. Using

this definitions, we can define the measurement vector as

yk :=
[
yT
1k yT

2k · · · yT
nOk

]T
= h(xV k,xOk) (10)

3 Moving horizon estimation SLAM filter

Conversely to the EKF, the MHE considers the previous robot states, pk, in
each iteration, in a similar manner to the full information estimator, but with
a restricted discrete-time horizon H of past samples. As such, the estimated

state vector, x̂H , of the MHE is given by x̂Hk =
[
x̂T
V k · · · x̂T

V k−H x̂T
O

]T
, which

is comprised of vehicle states, x̂V k, and the observed landmarks positions, x̂O,
over the estimation horizon H. This definition assumes only one estimate for
the observed landmarks, as they are static. The general structure of the MHE
optimal estimation problem can be defined as the minimization of a stage cost
for each horizon instant, lk of the estimation errors associated with the vehicle
motion model and landmark observation model, wk and nk, respectively added
to first equation of (8) and to (10), and the arrival cost lk0 [9], as defined by

min
xHk0

,wk,nk

J := lk0
(xHk0

) +

k0∑
k=k0−H

lk(wk,nk)

s.t. xV k+1 = fV (xV k,uk) +wk , ∀k=k0−H,...,k0

yk = h(xV k,xOk) + nk , ∀k=k0−H,...,k0

(11)

in which k0 is the current SLAM time instant and the cost functions lk0(.) and
lk(., .) are usually quadratic functions of their arguments. This minimization
problem can be regarded as an unconstrained optimization problem with opti-
mization variable xHk0

by redefining the cost function J as

(12)
J = ∥x̂Hk0 − x̂−

Hk0
∥2
Σ−1

k

+

k0∑
k=k0−H

∥x̂V k+1 − fV (x̂V k,uk)∥2Q−1
k

+
∑

i∈IOk

∥(yi,k − hi(x̂V k, p̂i))∥2R−1 ,

where IOk
is the set of observed landmarks at time k, x̂Hk0

is the current state
vector estimation and x̂−

Hk0
the previous state vector estimation. The second

term in equation (12) has in consideration the error of the vehicles motion dy-
namics, while the third term evaluates the error related to the measurements
taken of each observed landmark. The first term is the arrival cost, which has in
account the previous estimation.

Additionally, the weightsR,Qk,Σk are the measurement noise, process noise
and system EKF covariances, respectively. These matrices will be calculated
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before each iteration of the MHE, as an EKF algorithm will run in series with
it. This interaction is depicted in Figure 1, in which it is noted that both filters
receive sensor and measurement data and propagate their own estimation, whilst
the MHE waits for the covariance matrices of the EKF. The choice of designing
a probabilistic MHE, thus using the covariances matrices as weights, was made
having in account the robustness of this approach. The execution speed of the
EKF is considerably faster than the MHE.

EKF

MHE

Q k ,R ,∑k

uk ,yk

Fig. 1: MHE+EKF Algorithm

3.1 Simulation

Using the simulation environment shown in Figure 2 it was possible to test the
effect of the window size and number of landmarks on the computing time. On
Figure 2, the true landmark positions and trajectory are represented in purple,
whilst their estimated values are in blue.

(a) Custom view (b) XY plane

Fig. 2: Scenario 1 - Simulation result with the MHE method
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During the simulation system disturbances were considered and defined as
zero-mean white Gaussian noise with the following standard deviations for the
components of the linear velocity, angular velocity and observation readings,
respectively, σξv = 0.015m/s, σξω = 1deg/s, and σξy = 5cm, which during the
simulation period resulted on the values displayed at Figure 3a for the linear
velocity, and Figure 3b for the angular velocity.
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Fig. 3: Input values of linear and angular velocities

Considering a fewer number of landmarks makes the MHE algorithm simpler,
and as result more efficient. However, this might result on a worse estimation
if the noise regarding the sensors is relatively big. Besides that, the size of the
horizon is also a big factor on the computational complexity as it introduces
more constraints and estimation variables into the cost function. With that in
mind, Table 1 displays the influence of the size of the horizon, H, and number
of observed landmarks, nO, in the average computational time that each step
takes using the MATLABs fmincon SQP optimization algorithm, t̄CPU and total
vehicle position estimation error, defined as p̃V =

∑kend

k=0 11×3|p̂k−pk|. Analyzing
the Table it is possible to note that the bigger the horizon and the number of
landmarks at each step, the better for the MHE to adapt to abrupt dynamics
such as the rotation at each edge of the square-shaped corridor.

The optimization algorithm can also have an influence on how fast it reaches
a solution. To understand which one would be best suited for this specific ap-
plication, it was considered an horizon of H = 10 and compared the total po-
sition estimation error, p̃V , total landmark position estimation error, p̃LM =∑

i∈IL

∑kend

k=0 11×3|p̂ik−pik|, average computation time and the maximum com-
putation timep for MATLABs’ fmincon using active-set, SQP and interior-point
algorithms, as demonstrated in Table 2. Other solvers were also included, such as
the bnb and bmibnb, which were integrated in MATLAB using the yalmip pack-
age [1]. The algorithms Gurobi and Mosek, which have free access for academia,
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Table 1: Scenario 1 - Influence of horizon and number o landmarks vs. CPU time
and estimated position error (using SQP method).

H nO p̃V t̄CPU

3 4 0.4789 m 2.086 s

3 8 0.4592 m 4.271 s

5 4 0.4501 m 3.525 s

5 8 0.4445 m 10.803 s

10 4 0.4429 m 22.106 s

10 8 0.4429 m 36.237 s

15 4 0.4429 m 35.004 s

15 8 0.4429 m 47.938 s

Table 2: Scenario 1 - Optimization algorithm influence on position error, sum of
landmarks error, and CPU time (nO = 4 and H = 10).

Method p̃V p̃LM t̄CPU tCPUmax

Active-set 0.4429 m 19.7292 m 30.2316 s 42.2277 s

SQP 0.4429 m 20.1721 m 22.106 s 29.2181 s

interior-point 0.4429 m 19.7292 m 30.527 s 42.3698 s

bnb 0.4429 m 19.923 m 35.342 s 43.4451 s

bmibnb 0.4429 m 19.923 m 38.782 s 45.2945 s

and KKTQP could not deal with the polynomial characteristics of the cost func-
tion. The Table 2 shows that the SQP algorithm has not only a lower average
processing time per step, but also a lower peak processing time per step, in re-
lation to the other approaches, whilst maintaining an equal or similar error on
the estimated final position.

Considering the data displayed at Tables 1 and 2, it is considered that the
SQP algorithm with a limit of 4 landmarks at each iteration and an horizon of
3 steps is sufficient to our considered scenario, since the lost in performance to
other sets of parameters is not relevant enough.

It was also tested the design of the EKF algorithm in order to guarantee
that it was working correctly and as expected. For that, the error and respective
3-sigma bound covariance matrix values at play on the filter were plotted, as
displayed in Figure 4. It can be observed that the estimated position error is
always within the respective bounds defined, which corroborates that the filter
was well designed.

4 Comparative results and discussion

To evaluate the performance of the MHE solution, it was considered the EKF,
which is a well-known algorithm for this type of problem, as a solution to the
estimation. It was used Scenario 2, as in Figure 5 and it was considered the same
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Fig. 4: Scenario 1 - EKF position estimation error (estimate and 3σ bounds).

standard deviations for the disturbances of the linear velocity, angular velocity
and observation readings.

The results of the two algorithms are discussed regarding this new Scenario.
The estimated trajectories of both algorithms, MHE and EKF, are depicted in
Figures 5 and 6, respectively. On Figure 7 it is displayed the vehicle estimated
position and orientation error using the MHE and the EKF algorithms. The
orientation error was calculated following

eR =
1

2
S−1

[
Rq(q)

TRq(q̂)−Rq(q̂)
TRq(q)

]
(13)

where S−1[.] is the inverse operation of S[.], as S−1
[
S[ω]

]
−→ ω.

Through these simulations it is possible to analyze that overtime the esti-
mation of the MHE algorithm gets worse than the estimation of the EKF. This
can be explained by the capability of the EKF algorithm to do close loops, as
it identifies that the landmarks at the end of the first loop are the same as the
ones it started the simulation with, which have a smaller covariance associated
to them, and corrects the positioning of the vehicle and the previous landmarks.
This also happens to an extent in MHE, but it is only able to correct estima-
tions of the previous landmarks that are still on the horizon and gets a worse
performance with the increase of the horizon H. Since, the bigger the window is,
the less relevance a single landmark will have in the optimal solution for the cost
function J , resulting in a tenuous effect on the estimation. However, in the step
previous to the close loop event, which happens at step 194, the MHE algorithm
has a lower total positional error than the EKF solution. At that moment the
sum of the MHE ABS error along the simulation time is 37.77 m, whilst the
EKF is 57.45 m. After the complete trajectory these values are 223.85 m and
130.15 m, respectively, as summarized in Table 3. This result shows that the
MHE algorithm has a better estimation than the EKF, but it also demonstrates
its inability to deal with loop closure (LC) events.

Lastly, the average computation time for each iteration and the total position
estimation error before and after the EKF loop closure is presented in Table
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(a) Custom view (b) XY plane

Fig. 5: Scenario 2 - MHE-based SLAM method

(a) Custom view (b) XY plane

Fig. 6: Scenario 2 - EKF-based SLAM method
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Fig. 7: Scenario 2 - Comparison of the vehicle positional and orientation error
between the MHE and EKF algorithms
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3 for both SLAM estimation approaches in Scenario 2. As expected, we can
observe that the computation time of the MHE is much bigger when compared
to the EKF solution, as the former involves solving an optimization problem for
each iteration. Nonetheless, it is expected that using more efficient optimization
libraries and development environments, the proposed MHE algorithm can be
implemented in real-time.

Table 3: Average CPU time and total position error of EKF and MHE.
Algorithm t̄CPU p̃V (before LC) p̃V (end)

EKF 0.0218 s 37.77 m 223.85 m

MHE 2.974 s 57.45 m 130.15 m

5 Conclusion

This addresses the use of MHE algorithm as a solution to the SLAM problem
of vehicles in 3D space with six DoF. Regarding the performance of the MHE it
was possible to conclude that the MHE is heavily constrained by the time that it
takes to solve its cost function. The best result was achieved with the MATLAB’s
SQP algorithm, as it not only guaranteed a smaller average processing time, but
it also displayed the smallest maximum processing time. Moreover, it was also
stated that the size of the considered past data window H, as well as the number
of landmarks, also have a big impact on the estimation time, as it introduces
more variables and constraints to be estimated, which might result in a stronger
non-convex optimization problem. On Scenario 2 it is possible to recognize the
importance of the loop closure capability, specially of the EKF, as it is possible
to see the correction of its position and landmark estimations. This capability is
almost nonexistent on the probabilistic approach to MHE. However, according
to the results obtained, it is possible to conclude that the MHE displayed a
better estimation when there are no loop closures.

One of the aspects that should be considered in future work is the inability of
the probabilistic MHE to correct past estimations when it reaches a loop closure
event. A backwards approach to the MHE could be triggered in such events as
it is done in other SLAM algorithms. Lastly, a real-time experiment with real
data and optimized libraries would be an interesting information to corroborate
the results found throughout this work.
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