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Abstract. To evaluate the performance of data-driven control meth-
ods applied to Unmanned Aerial Vehicles (UAVs), this work addresses
the implementation of these strategies, particularly the Data-enabled
Predictive Control (DeePC) algorithm. This strategy computes optimal
controls for unknown systems through real-time output feedback using
a receding horizon implementation. Moreover, this research investigates
the influence of different hyperparameters on the DeePC’s performance
and conducts a realistic comparison between this method and two model-
based control approaches: Linear Quadratic Regulator (LQR) and Model
Predictive Control (MPC). The simulation results validate the applica-
bility of DeePC algorithm and highlight its superior robustness to system
degradation and yaw calibration errors. However, it is less suitable for
complex nonlinear systems subject to aggressive trajectories.

Keywords: Data-driven Control, Data-enabled Predictive Control, Un-
manned Aerial Vehicles, Performance Evaluation

1 Introduction

Unmanned Aerial Vehicles (UAVs) have grown significantly in popularity and
notoriety in recent years, largely attributable to their enhanced stability and en-
durance in several military and civil operations [7]. The control of these systems
is conventionally tackled through model-based approaches, such as the well-
known Proportional-Integrative-Derivative (PID), Linear Quadratic Regulator
(LQR), and Model Predictive Control (MPC) techniques [1, 2, 4].

Nevertheless, with the increasing complexity of systems and the widespread
availability of data, there has been a recent trend in the literature where classical
model-based techniques have been superseded by data-driven methodologies [6].
These strategies, referred to as data-driven control methods, are particularly ad-
vantageous in complex systems where system identification is excessively time-
consuming and complex. In [3], the authors introduced the Data-enabled Predic-
tive Control (DeePC) method, which is based on the Fundamental Lemma [10]
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and does not require function learning or system identification. This algorithm
uses a finite collected dataset to learn the unknown system’s behaviour and then
applies real-time output feedback to compute optimal controls that guide the sys-
tem towards a desired path. Unlike other learning-based control methods that
use machine learning techniques, this approach does not need time-consuming
offline learning and can handle nonlinear systems in real time.

The main objective of this work is to evaluate the performance and key ele-
ments of data-driven control techniques applied to quadrotors. Thus, to achieve
this goal, the DeePC algorithm is implemented, adapted to the problem at hand,
and analysed in detail. Subsequently, the main contributions of this paper encom-
pass a performance evaluation of the DeePC method using realistic simulations
and a detailed comparison between this algorithm and two conventional model-
based control methods: LQR and MPC. This comparative analysis includes an
assessment of the algorithms’ response to a simple trajectory and their adapt-
ability to performance degradation of the system’s inner loop and yaw calibration
errors in the system measurements.

The remainder of this document is structured as follows. In Section 2, a
description of both the linear and nonlinear models of the quadrotor’s dynamics
is presented, followed by a brief review of the conventional model-based methods
relevant to this work. Section 3 formulates the DeePC optimisation problem.
Section 4 details the simulation setup and results, including the findings obtained
from the comparison of DeePC with the conventional control methods. Finally,
Section 5 provides some concluding remarks and suggestions for future work.

2 Theoretical Background

2.1 Quadrotor Model

The nonlinear dynamics are described in both the body-fixed reference frame
{B} and the inertial reference frame {I}, as illustrated in Fig. 1. The unit vectors
along the axis of the body-fixed frame {B} are labelled as {xB ,yB , zB}, while
the unit vectors along the inertial frame {I} axis are denoted by {xI ,yI , zI}. It
is assumed that the origin of the body-fixed frame {B} coincides with the centre
of mass of the quadrotor. The xB and yB axes are situated in the plane defined
by the four rotors, while the zB axis is perpendicular to this plane.

Fig. 1. Illustration of the reference frames used.
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Let p = [x, y, z]T denote the position vector of the centre of mass of the
UAV in {I}. Let R represent the rotation matrix from {B} to {I}, which can be
parameterised by R(λ) with λ = [ϕ, θ, ψ]T , where the Euler angles ϕ, θ, and ψ
correspond to the roll, pitch and yaw angles, respectively. Consider ω = [p, q, r]T

as the angular velocity of {B} relative to {I}, expressed in {B}. Let the control
input to the system u comprise the total thrust T ∈ R+ and the body torques
τ = [τx, τy, τz]

T ∈ R3, both defined in {B}. Hence, by considering the state
vector x = [pT ,vT ,λT ,ωT ]T and the input vector u = [T, τT ]T , it is possible to
express the nonlinear dynamics of the quadrotor in the compact form ẋ = f(x,u)
as follows:

f(x,u) =


v

gzI − 1
mb

RTzI
Q(λ)ω

−J−1S(ω)Jω + J−1τ

 , (1)

where mb ∈ R+ represents the mass of the quadrotor, J ∈ R3×3 denotes the
inertia tensor described in {B}, the constant g corresponds to the Earth’s gravity,
S(·) denotes the skew-symmetric operator such that S(a)b = a× b, and

Q(λ) =

1 sin(ϕ)tan(θ) cos(ϕ)tan(θ)
0 cos(ϕ) −sin(ϕ)
0 sin(ϕ)sec(θ) cos(ϕ)sec(θ)

 .
To linearise the obtained model, it is assumed that the equilibrium point

corresponds to the quadrotor’s hover condition, at a particular position p0 and
for ψ = 0. From the Taylor series expansion, the linearisation of (1) around
this equilibrium point can be expressed in the form ẋ = Acx+Bcu. Thus, the
matrices Ac and Bc are given by

Ac =


03×3 I3×3 03×3 03×3

03×3 03×3 G 03×3

03×3 03×3 03×3 I3×3

03×3 03×3 03×3 03×3

 , Bc =


03×1 03×3

− 1
mb

zI 03×3

03×1 03×3

03×1 J−1

 , where G =

0 −g 0
g 0 0
0 0 0

 .
In addition to the linearised model deduced above, this work also utilises

another quadrotor model, whose state and input vectors are, respectively, given
by x =

[
pT vT λT

]
and u =

[
T ωT

]
. By employing an identical linearisation

process and considering the relevant formulations in (1), the ensuing matrices
can be obtained:

Ac =

03×3 I3×3 03×3

03×3 03×3 G
03×3 03×3 03×3

 , Bc =

 03×1 03×3

− 1
mb

zI 03×3

03×1 I3×3

 .
Finally, the discretisation of this linear system is necessary to allow the imple-

mentation of the subsequent proposed methods. Thus, using the zero-order hold
method, the linear system can be described in the following equivalent discrete
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state space representation

xk+1 = Axk +Buk,

yk = Cxk +Duk,
(2)

where A = eAcTs , B =
(∫ Ts

0
eAcτ dτ

)
Bc, C = Cc, D = Dc, and Ts is the

sampling period.

2.2 Linear Quadratic Regulator

In terms of model-based control approaches, the LQR is the first one to be
presented. This method is a modern control strategy that aims to determine
a feedback control law so that the system to be controlled can meet physical
constraints while also minimising a quadratic cost function [8].

Consider the discrete system described by (2), where x ∈ Rn is the vector
of state-space variables, y ∈ Rp is the system’s output, and u ∈ Rm is the
system’s input. The optimal regulator problem computes the gain matrix K of
the optimal control vector uk = −Kxk, in order to minimise the cost function

J =

∞∑
k=0

xT
kQxk + uT

kRuk, (3)

where Q ∈ Rn×n, denominated as state weighting matrix, is a positive semi-
definitive matrix and R ∈ Rm×m, designated as control weighting matrix, is a
positive definitive matrix. It is also important to note that since this is an infinite
time control problem, the control solution turns into a steady-state solution,
leading to a constant optimal gain matrix K that minimises (3), and can be
computed using the discrete-time Riccati equation.

2.3 Model Predictive Control

The fundamental principle of model predictive control (MPC) is to predict the
future behaviour of the controlled system over a specified time horizon and
compute an optimal control input that minimises a chosen cost function while
ensuring the satisfaction of the system constraints.

The classical MPC algorithm uses a receding horizon approach to solve the
following reference tracking optimal control problem:

min
u,x,y

Tf−1∑
k=0

(yk − yk)
TQ(yk − yk) + (uk − uk)

TR(uk − uk)

s.t. xk+1 = Axk +Buk,∀k ∈ {0, . . . , Tf − 1},
yk = Cxk +Duk,∀k ∈ {0, . . . , Tf − 1},
x0 = x̂t,
uk ∈ U ,∀k ∈ {0, . . . , Tf − 1},
yk ∈ Y,∀k ∈ {0, . . . , Tf − 1},
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where t is the current time, k is the temporal instance of the predictive horizon
window, Tf ∈ N is the time horizon, u,x,y are the decision variables, U ⊆ Rm

is an input constraint set, Y ⊆ Rp is an output constraint set, u(k) ∈ Rm and
y(k) ∈ Rp are, respectively, the desired input and output reference calculated for
each iteration of the algorithm, Q ∈ Rp×p is the output cost matrix, R ∈ Rm×m

is the control cost matrix, and x̂t is the estimated state at time t.

3 Data-enabled Predictive Control

3.1 Algorithm

Consider an unknown deterministic discrete-time LTI system represented by
(2). Assuming that (2) is given in its minimal realisation, it is possible to ensure
controllability and observability properties of the represented system. The lag
of the system (2) is defined by the smallest integer ℓ ∈ Z≥0 for which the
observability matrix Oℓ(A,C) := [C,CA, ...,CAℓ−1]T has rank n.

Definition 1 (Persistency of excitation [10]). Let L, T ∈ Z≥0 such that
T ≥ L. The sequence of signals u = {uk}Tk=0 ∈ RmT is persistently exciting of
order L if the Hankel matrix

HL(u) :=


u1 u2 . . . uT−L+2

u2 u3 . . . uT−L+2

...
...

. . .
...

uL uL+1 . . . uT


has full row rank.

The term persistently exciting refers to an input signal that is sufficiently
rich and long to excite the system and produce an output sequence that is
representative of its behaviour. Note that the DeePC algorithm is based on the
following fundamental result.

Theorem 1. [10] Consider (2) and let Td, L ∈ Z≥0. Let the sequences of col-

lected input/output data (ud,yd) = {ud,k,yd,k}Td

k=0 be a trajectory of (2) of
length Td, assuming that ud is persistently exciting of order L. Hence, (u,y) =
{uk,yk}LK=0 is a trajectory of (2) if and only if there exists g ∈ RTd−L+1 such
that [

HL(ud)
HL(yd)

]
g =

[
u
y

]
.

Note that, in this particular case, considering that ud is persistently exciting
of order L, it implies that the condition Td ≥ (m+ 1)L− 1 must be satisfied.

Therefore, the Hankel matrices composed by input/output collected data,
are divided into two parts,[

Up

Uf

]
:= HTini+Tf

(ud),

[
Yp

Yf

]
:= HTini+Tf

(yd),
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where Up consists of the first Tini block rows of HTini+Tf
(ud) and Uf consists

of the last Tf block rows of HTini+Tf
(ud) (similarly for Yp and Yf ). Hence, the

data in Up and Yp are used to estimate the initial conditions, whereas the data
in Uf and Yf are used to predict future trajectories.

From Theorem 1, (u,y) = {uk,yk}
Tf−1
k=0 is a possible future trajectory of (2)

if and only if there exists g ∈ RTd−Tini−Tf+1 such that
Up

Yp

Uf

Yf

 g =


uini

yini

u
y

 . (4)

In order to uniquely fix the initial condition from which the future trajectory
departs, it is necessary to ensure that Tini ≥ ℓ. Therefore, this condition also
implies that the predicted trajectory calculated by y = Yfg is unique.

Given a reference input ur ∈ Rm, a reference trajectory yr ∈ Rp, past
input/output data [uini,yini]

T , an input constraint set U ⊆ Rm, an output con-
straint set Y ⊆ Rp, an output cost matrix Q ∈ Rp×p, and a control cost matrix
R ∈ Rm×m, it is possible to formulate the following data-driven optimisation
problem:

min
g,u,y

Tf−1∑
k=0

(yk − yr)
TQ(yk − yr) + (uk − ur)

TR(uk − ur)

s.t. (4)
uk ∈ U ,∀k ∈ {0, . . . , Tf − 1},
yk ∈ Y,∀k ∈ {0, . . . , Tf − 1}.

(5)

3.2 Regularised Algorithm

To implement the DeePC algorithm on a nonlinear system corrupted by process
noise, such as a real-world quadrotor, it is necessary to include some regularisa-
tions in the optimal control problem (5), resulting in the following regularised
optimisation problem:

min
g,u,y,σy

Tf−1∑
k=0

c(uk,yk) + λg∥g∥2 + λy∥σy∥2

s.t.


Up

Yp

Uf

Yf

 g =


uini

yini

u
y

+


0
σy

0
0


uk ∈ U ,∀k ∈ {0, . . . , Tf − 1},
yk ∈ Y,∀k ∈ {0, . . . , Tf − 1},

(6)

where c(uk,yk) = (yk−yr)
TQ(yk−yr)+(uk−ur)

TR(uk−ur), σy ∈ RpTini is
an auxiliary slack variable, and λg, λy ∈ R>0 are regularisation parameters. The



Data-Driven Control Strategies 7

inclusion of a two-norm penalty of the slack variable σy is primarily intended to
always ensure the feasibility of the constraint equation. Moreover, it is intended
to choose λy sufficiently large, in such a way that the condition σy ̸= 0 is only
verified in cases where the constraint is infeasible. Furthermore, the inclusion of
the two-norm regularisation on g is a common technique in a distributionally
robust problem formulation.

Finally, the DeePC method, in which (6) is implemented in a receding horizon
approach, is summarised in Algorithm 1.

Algorithm 1 Regularised DeePC [5]

Input: Td, Tf , Tini, H = [UT
p ,Y T

p ,UT
f ,Y T

f ]T , input and output references (ur,yr),
constraint sets U and Y, performance matrices Q and R, regularisation parameters
(λg, λy), and past input/output data (uini,yini).

1. Solve (6) for g⋆.

2. Compute the optimal input sequence u⋆ = Ufg
⋆.

3. Apply inputs (uT
t , . . . ,u

T
t+s)

T = (u⋆
0
T , . . . ,u⋆

s
T )T for some s ≤ Tf − 1.

4. Set t to t + s and update uini and yini to the Tini most recent past input/output
measurements.

5. Return to 1.

3.3 Data Collection

As mentioned above, the input signal used to fill the Hankel matrices must be
persistently exciting of sufficient order. Therefore, it is imperative to carefully
collect the data for the successful implementation of this data-driven control
algorithm. To ensure the repeatability of results, this data was collected by
applying a Pseudorandom Binary Sequence (PRBS) added to an existing simple
hover controller.

In this work, the PRBS excitation signal was generated using MATLAB with
the following steps:

1. A PRBS is generated as the basis for creating the excitation signals used for
each system input.

2. Select only the first Td elements of the generated PRBS.

3. Determine the desired amplitude for the excitation signal of the first input
of the system.

4. To generate the excitation signal linked with the subsequent system input,
execute a circular shift of the positions of the original PRBS elements before
performing the amplitude multiplication.

5. Repeat the previous step for the remaining system inputs.
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4 Implementation and Results

This section presents the setup, evaluation, and discussion of the simulation re-
sults, which are obtained using a realistic model implemented in MATLAB/Simulink,
employing a 3DR® Iris+ quadrotor, based on [5]. The results were obtained us-
ing a computer with an Intel Core i7-1165G7 CPU 2.80GHz, and 16GB of RAM,
whereas the optimisation problems of the DeePC algorithm were solved using
the OSQP solver [9].

This work implements a different control architecture relative to the one
presented in [5], which addresses some problems associated with the use of body-
rate commands for system actuation. Fig. 2 depicts the block diagram of the
implemented cascade control architecture for the nonlinear case.

Outer
Controller

Angle
Controller

Body Rates
Controller

Nonlinear
Quadrotor
Dynamics

Quadrotor System

T

λd

λ ω

ωd

Ref

(p, v)

Fig. 2. Schematic of control architecture for nonlinear quadrotor dynamics (1).

Furthermore, to successfully implement the regularised DeePC method, it
is crucial to tune the following hyperparameters: Td, the total number of data
points used to build the Hankel matrices; Tini, the time horizon used for initial
condition estimation; Tf , the prediction time horizon; λy, the weight on the regu-
larisation of the initial condition constraint; λg, the weight on the regularisation
of g; Q, the tracking error cost matrix; and R, the control effort cost matrix. In
addition to these hyperparameters, the excitation amplitudes employed in the
PRBS generation are fundamental parameters in the data collection phase, thus
having a significant influence on the performance of the DeePC algorithm. The
subsequent results are obtained using the following hyperparameters: Tini=5;
Td=900; Tf = 50; λg = 500; λy = 7.5×108; Q = diag(40, 40, 500, 0, 0, 0, 0, 0, 40);
and R = diag(0.5, 20, 20, 2). For these hyperparameters, the DeePC algorithm’s
average computing time was 12.4 ms, which compares with the sampling time
of 40 ms for the outer loop.

Finally, regarding constraint sets, the control input constraint set U is given
by T ∈ [7.906, 30.094]N, ϕd, θd ∈

[
−π

4 ,
π
4

]
rad, whereas the the output constraint

set Y is denoted by x, y, z ∈ [−5, 5] m.

4.1 Influence of Hyperparameters

To study the impact of each hyperparameter on the performance of the DeePC
controller, series of experiments were conducted, changing only the value of a
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single hyperparameter at each time. Subsequently, the performance of the DeePC
controller in each scenario is evaluated by analysing the average overshoot S,
maximum settling time ts, average algorithm computation time tc, and average
static error e.

Tini : An increase of this hyperparameter tends to directly increase both S
and tc parameters. However, it should be noted that the selected value was not
the minimum possible option, taking into account that the settling time does not
evolve as the other parameters. Corroborating this observation, it is important
to emphasise that this particular hyperparameter determines the time horizon
used for initial condition estimation and consequently, choosing an excessively
small value would fail to expose certain nonlinearities inherent in the system’s
response to the controller.

Td : For an excessively low value of this hyperparameter, the system stabilises
in a position with an average static error of 0.40m. In addition, an increase in Td
leads to an unequivocal increase in tc. This finding was already expected since
Td is directly associated with the dimension of the Hankel matrices used by the
algorithm in the optimisation problem, defined in (6). Thus, a higher value of
Td implies a larger size of the Hankel matrices, which consequently leads to a
higher computation time of the DeePC algorithm.

Tf : For low values of this parameter, the obtained responses are charac-
terised by a high value of S and ts. However, there is a threshold beyond which
augmenting Tf does not improve the performance of the DeePC controller. In-
stead, only the significant increase of tc is verified.

λg : Assuming a null value for this regularisation parameter results in a static
error of 1.03m. Moreover, an increase in λg produces a softer but significantly
slower response. On the other hand, low values of this parameter lead to an
oscillatory response.

λy : The non-utilisation of this regularisation parameter leads to an infeasible
optimisation problem and consequently, the DeePC controller fails to stabilise
the system. Additionally, there is a threshold from which the results obtained
are similar. This observation reinforces the notion that the crucial factor is to
select a value of λy sufficiently high to render the optimisation problem feasible,
regardless of its precise tuning.

4.2 Comparison of the Performance of Control Methods

After a detailed study of the DeePC algorithm, this subsection aims to compare
the performance of the DeePC controller with two conventional model-based
controllers: the LQR and MPC controllers. In this paper, these traditional con-
trollers were implemented according to the information presented in Sections
2.2 and 2.3. Fig. 3 shows the system responses to a unit step employing the
DeePC, LQR, and MPC controllers. It is important to highlight that the results
presented were obtained using the same inner-loop controllers of the nonlinear
control architecture B. The initial analysis shows a satisfactory performance of
all controllers. It can also be inferred that, in general, the DeePC responses are
characterised by a longer settling time when compared to the others. Neverthe-
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Fig. 3. Comparison of the performance of DeePC, LQR, and MPC controllers.

less, these results allow the conclusion that the DeePC algorithm exhibits simi-
lar performance to the other two conventional model-based control approaches,
when the quadrotor system is subjected to simple trajectories.

The next step is to study the robustness of the implemented methods to
performance degradation of the inner-loop controllers. Hence, the gains of these
controllers were modified to slow down their response. Starting with the inner
angle controller, its gains were obtained through the multiplication of the original
values by 1

3 . Regarding the inner body rates PID controller, only the proportional
gains were modified in the same proportion as for the inner angle controller.

Figs. 4 and 5 depict, respectively, the effect of the degradation of the inner
angle controller and the inner body rates controller on the performance of the
DeePC, LQR and MPC controllers. In summary, it can be concluded that the
DeePC controller is the least influenced method by the performance degradation
of the inner loop controllers. This robustness demonstrates the adaptive proper-
ties of this data-driven control method, which is one of the advantages of DeePC
over conventional model-based methods.

Finally, the effect of the presence of a bias in the system measurements
was evaluated. Considering that it is not always possible to obtain accurate
measurements of the yaw angle in a real-world experiment, it was decided to
simulate a yaw miscalibration, by introducing a 25◦ offset between the true and
measured yaw angles. It should be noted that this value is excessively high, but
it was selected to highlight the differences between the results of the different
controllers. Moreover, it can be concluded that the presence of this yaw error in
system measurements yields a deterioration in the LQR and MPC performance.
Concerning the DeePC method, it is possible to note that this algorithm provides
robustness to this bias error. Thus, it can be concluded once again that the
DeePC algorithm has the ability to adapt to the unknown operating conditions
of the system, in contrast to the other model-based control methods.
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Fig. 4. Comparison of the controllers’ performance facing inner angle controller degra-
dation.
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Fig. 5. Comparison of the controllers’ performance facing inner body rates controller
degradation.

5 Conclusions

The main goal of this paper was to develop a data-driven control technique
suitable for the control of a quadrotor system. The implementation of the DeePC
algorithm was first proposed and a realistic simulation was conducted to evaluate
the method on models of different complexity. Finally, a detailed comparison
between the DeePC and other model-based methods was performed, to situate
this framework in relation to conventional control methods.

The implementation of the DeePC controller proves that it does not require
access to full-state measurements, unlike traditional control methods. Further-
more, the simulation results show that the DeePC algorithm performs similarly
to MPC and LQR approaches when the quadrotor system is subjected to simple
trajectories. This data-driven method also demonstrates greater robustness to
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the performance degradation of inner-loop controllers and the presence of a yaw
calibration error than the conventional approaches. Nevertheless, it is important
to note that the implementation of the DeePC method becomes impractical
when tracking aggressive trajectories, whereas the data collection step may fail
to capture the essential dynamics of nonlinear systems, and the dimension of the
Hankel matrices may significantly increase in the computational time.

For future work, the presented algorithms could be validated through Software-
in-the-Loop (SITL) simulations and experimental results, which would provide
more guarantees of the performance of the proposed algorithm. Additionally,
to increase the applicability of the DeePC method, the data collected for the
Hankel matrices could be updated online, resulting in an algorithm that is more
adaptable to various unexpected scenarios.
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