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Abstract—Our paper proposes a controller for global asymp-
totic stabilization of a nonlinear plant by combining multiple
model-predictive controllers with event-triggered control. Given
a collection of operating modes, the controller drives the state
of the closed-loop system to a target operating mode using
a sequence of optimal input trajectories. The computation of
optimal trajectories takes place at events which are triggered
either when the difference between the state of the closed-
loop system and the optimal state trajectory exceeds a given
threshold or when an internal timer expires. We demonstrate
the proposed controller through simulations by applying it to
the control of modular aerial vehicles.

Index Terms—Sampled-data control, Optimal Control, Hy-
brid Systems.

I. INTRODUCTION

Among the myriad of unmanned aerial vehicle (UAV) ap-
plications emerging in our society [1], [2], [3], modular aerial

vehicles are steadily capturing the interest of the academic

and industrial communities [4], [5]. They are composed of
independent flying modules that can be rearranged to meet

the requirements of a particular task. There are fundamental

reasons why it might be preferable to utilize modular aerial
vehicles over generic all-purpose UAVs, which include their

flexibility and redundancy. In addition to modules dedicated
to providing thrust, modular aerial vehicles can also provide

increased flexibility by having dedicated sensing and power

modules that can be swapped in and out as required. On
the other hand, their redundancy implies a level of ro-

bustness to unforeseen and adverse scenarios that a group

of non-modular UAVs cannot provide. Even though some
initial research on the control of modular aerial vehicles

has already been carried out (cf. [6]), there is still a long

way to go towards full autonomy. Achieving such a feat
would require: improved mechanical design, the synthesis

of trajectory tracking controllers for multiple configurations,

compliant control under human interaction, fast adaptation
for in-flight reconfiguration, among others. In this paper,

we are particularly focused on a very specific part of this
ensemble of problems: the design of docking controllers for

in-flight reconfiguration of modular aerial vehicles. Towards

that end, we propose a solution that combines Event-triggered
Control (ETC) and Model Predictive Control (MPC).
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Event-triggered Control (ETC) describes a control ap-
proach in which the sampling of the outputs of a plant

happens only if necessary to meet certain control objec-

tives, typically asymptotic stability. This approach unlocks
the possibility of achieving the desired performance with a

great reduction in the average sampling frequency. This is

particularly important in networked control systems, where
communication resources might be shared by many compo-

nents of the system, but also in computationally demanding

controllers, such as Model-Predictive Control (MPC).

A standard approach to MPC requires the choice of a

sampling frequency, the discretization of a system model at
that frequency and the computation of control signals in a re-

ceding horizon fashion (see. e.g. [7]). A more recent approach
to standard MPC is provided in [8] and it consists of the

reformulation of the control problem within the framework of

hybrid control, where discretization is not strictly necessary
and the control horizon is given in hybrid time. However,

the Hybrid MPC approach proposed in in [8] requires the

use of optimal control solvers for hybrid systems, which are
currently still under development.

The controller design presented in this paper follows
more closely the approach proposed in [9], where an MPC

controller is combined with a send-on-delta event-triggered

approach to achieve robust asymptotic stabilization of a
nonlinear plant. From a theoretical perspective our con-

tributions are as follows: 1) the use of hybrid dynamical
systems to extend the dual-mode MPC strategy of [9] to

a multi-mode MPC strategy with milder constraints on the

formulation of the optimal control problem; 2) the relaxation
of terminal time constraints in the optimal control problem

formulation; 3) the closed-loop system satisfies the hybrid

basic conditions, hence it is endowed with robustness to
state perturbations (cf. [10]); 4) the proposed controller does

not induce complete discrete solutions, hence the closed-loop

system is robustly non-Zeno (cf. [11]).

The general multi-mode MPC controller is then applied

to the control of independent flying modules of a modular
aerial vehicle. In particular, we assume that each flying

module has the dynamics of a multirotor vehicle and we

implement a dual-mode MPC controller that: 1) Implements
a minimum-time optimal controller away from the desired

setpoint; 2) Implements a locally stabilizing MPC controller
near the desired setpoint. It is worth noting that these choices

do not fit into the control design in [9], hence the need

to introduce a new set of assumptions that allow for the
realization of the desired goal. From another viewpoint, this

implementation may also be regarded as one of uniting global

and local controllers using a hybrid supervisor [12].

Finally, we acknowledge that there exist some compet-

ing alternatives to the proposed solution. Regular planning



strategies that do not account for the docking of vehicles

can be used to obtain predefined trajectories that a separate
controller can follow [13], [14]. There are also recent plan-

ning approaches that consider the trajectories that can ensure

a docking point between vehicles [15], also considering a
separate controller to follow the planned trajectory, as well

as MPC strategies for integrated planning and control towards
docking or similar maneuvers [16]. These strategies merit a

full-fledged comparison that we do not pursue in the present

paper.

This paper is organized as follows. In Section II we
present some notation and the required preliminary material

on hybrid systems. In Section III we present the controller

design and the main results of this paper. In Section IV, we
demonstrate how the multirotor dynamical system can be cast

as a triple integrator by means of an input transformation and

we provide the details of the implementation of the proposed
controller for this particular case. In Section V, we present

some simulation results for both the triple integrator and the

multirotor vehicle. Finally, in Section VI we provide some
concluding remarks. The proofs in this paper were ommitted

due to space constraints, but they will appear elsewhere.

II. NOTATION & PRELIMINARIES

The Cartesian product Rn = R×. . .×R of n copies of the

real line together with scalar multiplication and component-

wise addition of vectors is known as n-dimensional Euclidean
space. The Euclidean metric topology is the one induced by

the metric x 7→ |x| :=
√
x⊤x with a basis of open balls

c+ δB := {x ∈ R
n : |x− c| < δ} for each c ∈ R

n and each

δ > 0. Given a set S, S denotes its closure. The Minkowski

sum of two sets A,B ⊂ R
n is given by A + B := {a+ b :

a ∈ A, b ∈ B}.
A set-valued map M from S ⊂ R

m to the power set of

some Euclidean space R
n is represented by M : S ⇒ R

n.

The domain of a set-valued map is given by domM := {x ∈
R

n : M(x) 6= ∅}. Given a subset S of Rm, a set-valued map

M : S ⇒ R
n is said to be outer semicontinuous (relative to

S) if its graph, given by gphM := {(x, y) ∈ S × R
n : y ∈

M(x)}, is closed (relative to S×R
n). The set-valued map M

is locally bounded at x ∈ S if there exists a neighborhood Ux

of x such that M(Ux) ⊂ R
n is bounded. It is locally bounded

(relative to S) if it is locally bounded at each x ∈ S. It is

convex-valued if M(x) is convex for each x ∈ S.

A hybrid system H with state space R
n is defined as

follows:
ξ̇ ∈ F (ξ) ξ ∈ C

ξ+ ∈ G(ξ) ξ ∈ D
(1)

where ξ ∈ R
n is the state, C ⊂ R

n is the flow set,

F : R
n

⇒ R
n is the flow map, D ⊂ R

n denotes the

jump set, and G : R
n

⇒ R
n denotes the jump map. A

solution φ to H is parametrized by (t, j), where t denotes

ordinary time and j denotes the jump time, and its domain

domφ ⊂ R≥0×N is a hybrid time domain: for each (T, J) ∈
domφ, domφ∩ ([0, T ]×{0, 1, . . . J}) can be written in the

form ∪J−1

j=0
([tj , tj+1], j) for some finite sequence of times

0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ , where Ij := [tj , tj+1] and the

tj’s define the jump times. A solution φ to a hybrid system

is said to be maximal if it cannot be extended by flowing nor

jumping and complete if its domain is unbounded.

The hybrid basic conditions provide a set of sufficient
conditions for well-posedness and they are as follows (cf. [10,

Assumption 6.5]):

(A1) C and D are closed subsets of Rn;

(A2) F : R
n

⇒ R
n is outer semicontinuous and locally

bounded relative to C, C ⊂ domF , and F (x) is convex

for every x ∈ C;

(A3) G : R
n

⇒ R
n is outer semicontinuous and locally

bounded relative to D, and D ⊂ domG.

A compact set A is said to be: stable for (1) if for
every ǫ > 0 there exists δ > 0 such that every solution

φ to (1) with |φ(0, 0)|A ≤ δ satisfies |φ(t, j)|A ≤ ǫ for

all (t, j) ∈ domφ; globally pre-attractive for (1) if every

solution φ to (1) is bounded and, if it is complete, then

also limt+j→+∞ |φ(t, j)|A = 0; globally pre-asymptotically

stable for (1) if it is both stable and pre-attractive. If every

maximal solution to (1) is complete then one may drop the

prefix “pre”.

A directed graph G := (Q, E) is an ordered pair consisting
of two finite sets Q and E. The elements of Q are called

nodes and the elements of E are called directed edges. Each

directed edge e = (t, h) is an ordered pair consisting of a
tail t ∈ Q and a head h ∈ Q. A directed walk W on a graph

G is a sequence of nodes {qj}0≤j≤k ⊂ Q represented by

W = q0q1 . . . qk (2)

such that, for each j ∈ {1, . . . , k}, (qj−1, qj) is a directed

edge of G, i.e., (qj−1, qj) ∈ E. We say that a directed graph
G := (Q, E) is acyclic if, for each q ∈ Q, there are no

directed walks on G from q to q.

III. CONTROLLER DESIGN

Suppose that we are given the dynamical system

ẋ = f(x, u) (3)

where f : Rn × R
m → R

n, x ∈ R
n denotes the state and

u ∈ R
m denotes the input. The goal of the present work is

to develop a multi-mode event-triggered controller that drives
the state trajectories of (3) to a target operating mode for all

possible initial conditions.

To this end, we represent each operating mode with a label

q that belongs to a finite set Q ⊂ N and to each mode we
associate an open set Uq ⊂ R

n, so that the collection of

all such sets covers R
n, i.e.,

⋃
q∈Q Uq = R

n. Let Q0 ⊂ Q
denote the set of all possible end nodes that are associated
with the target operating modes. To achieve the desired goal

of steering the state trajectories of (3) to the target operating

modes, it is necessary to define the path (or paths) between
each operating mode q in Q\Q0 to the set Q0, and we choose

to do that using a directed acyclic graph G with the properties

specified in the following assumption.

Assumption 1. Given a set of nodes Q and edges E that

define a directed acyclic graph G := (Q, E) and a collection

of open sets {Uq}q∈Q satisfying
⋃

q∈Q Uq = R
n, the

following hold: 1) for each node p ∈ Q0 and for each node

q ∈ Q\Q0 there is a directed walk on G from q to p; 2) for

each q ∈ Q0, the set Uq is bounded.



Switching from a mode q ∈ Q to another mode p ∈ Q
requires that the state x moves from Uq to Up . In this
direction, let

S := E ∪ {(q′, p′) :∈ Q2
0 : q′ = p′} (4)

represent all the possible transitions between operating modes

for the closed-loop system, including the edges E of the graph
G and self-loops at the end nodes. Then, for each (q, p) ∈ S
and for each x̂ ∈ R

n, we generate the input trajectories that

drive the state of the system (3) from the initial condition x̂ ∈
Uq to Up by solving the following optimal control problem:

minimize Jq,p(x(.), u(.))

subject to ˙x(t) = f(x(t), u(t)), u(t) ∈ U
x(0) = x̂, x(T) ∈ Γq,p

(5)

where U ⊂ R
m represents input constraints, Γq,p denotes

the terminal constraints, T ≥ 0 is the terminal time (not

necessarily fixed), x(.) and u(.) denote admissible state and
input trajectories for (3)1, respectively, and

Jq,p(x(.), u(.)) := hq,p(x(T), T) +

∫ T

0

gq,p(x(t), u(t), t)dt

is the cost functional, where hq,p : R
n × R≥0 → R and

gq,p : R
n × R

m × R≥0 → R represent the terminal and

running costs for each (q, p) ∈ S, respectively.

Assumption 2. Given a graph G := (Q, E) and a collection

of open sets {Uq}q∈Q satisfying Assumption 1, let S be given

by (4) and let

Mp := R
n\

(
∪q′∈Q\{p}Uq′

)
(6)

for each p ∈ Q. For each (q, p) ∈ S and each x̂ ∈ Uq , there

is a unique solution

τ 7→
(
x⋆(τ; x̂, q, p)
u⋆(τ; x̂, q, p)

)
(7)

to (5) defined on [0, T] such that (τ; x̂, q, p) 7→ x⋆(τ; x̂, q, p)
is continuous. Moreover, given δ > 0, there exists a continu-

ous function (x̂, q, p) 7→ η(x̂, q, p) satisfying η(x̂, q, p) ≤
T, such that x⋆(τ; x̂, q, p) + δB ⊂ Mp for each τ ∈
[η(x̂, q, p), T].

Assumption 2 imposes several regularity properties on the
solutions to (5) that are very important to the controller

design.2 Uniqueness of solutions for each (x̂, q, p) allows

us to define the optimal control and state trajectories unam-
biguously. The continuity of x⋆ not only as a function of τ
but also as a function of (x̂, q, p) and the continuity of η
are used to prove that the closed-loop hybrid system satisfies
the hybrid basic conditions. Finally, and most importantly,

we assume that each optimal state trajectory is able to drive

the state from the initial mode Uq to the target mode Up ,
and that this is achieved robustly, in the sense that there is

a margin δ > 0 between the tail end of each state trajectory
and all the operating modes that are not the target mode p.

The controller design relies on the computation of the

optimal state and input trajectories given in (7) at events,

1An admissible input trajectory u(.) is a piecewise continuous function
and an admissible state trajectory x(.) is an absolutely continuous function
that satisfies (3) almost everywhere.

2In practice, Assumption 2 imposes constraints on the algorithm that
computes the solution to (5).

which we split into two separate kinds: send-on-delta and

time-triggered. The timer associated with the time-triggered
approach is denoted by τ ∈ R≥0 and it has the hybrid

dynamics τ̇ = 1 if τ ∈ [0, η(x̂, q, p)], and τ+ = 0 if

τ ≥ η(x̂, q, p), where η is given in Assumption 2. The flow
and jump sets associated with the time-triggered events are

given by:

Cτ := {ξ ∈ Ξ : τ ≤ η(x̂, q, p)} (8a)

Dτ := {ξ ∈ Ξ : τ ≥ η(x̂, q, p)}, (8b)

respectively, where ξ := (x, x̂, q, p, τ) represents the state of

the closed-loop system and Ξ := R
2n × S ×R≥0 represents

the state space.
The flow and jump sets associated with the send-on-delta

event-triggered mechanism are given by:

Cδ := {ξ ∈ Ξ : |x − x⋆(τ; x̂, q, p)| ≤ δ} (9a)

Dδ := {ξ ∈ Ξ : |x − x⋆(τ; x̂, q, p)| ≥ δ} (9b)

respectively, with δ > 0 given in Assumption 2. Combining

the (8b) with (9), we obtain the closed-loop hybrid system

H := (C,F,D,G), given by:

ξ̇ ∈ F(ξ) := (f(x, u⋆(τ; x̂, q, p)), 0, 0, 0, 1) ξ ∈ C

ξ+ ∈ G(ξ) := {ξ′ ∈ Ξ : x′ = x̂′ = x, x ∈ Uq′ , τ
′ = 0}

ξ ∈ D
(10)

where ξ′ := (x′, x̂′, q′, p′, τ ′), C := Cδ ∩ Cτ and D :=
Dδ ∪Dτ are the flow and jump sets, respectively.

The hybrid basic conditions [10, Assumption 6.5] guar-
antee that a hybrid system is endowed with robustness to

small perturbations as discussed in [10, Chapter 7] and this
motivates the following assumption and subsequent lemma.

Assumption 3. The flow map F in (10) satisfies (A2).

Lemma 1. Suppose that Assumptions 2 and 3 hold. Then,

the hybrid system H := (C,F,D,G) in (10) satisfies the

hybrid basic conditions.

Remark 1. It is the case in Section IV (and in optimal control

problems more generally) that the set of admissible input

trajectories is piecewise continuous, thus the flow set F does

not necessarily satisfy Assumption 3. In that case, we may

consider the regularization F̂(ξ) :=
⋂

δ>0
conF((ξ+δB)∩C)

as introduced in [10, Definition 4.13], where con(S) denotes

the closure of the convex hull of a set S. However, it must

be demonstrated that each solution to H := (C,F,D,G)
in (10) is also a solution to the regularized hybrid system

Ĥ := (C, F̂,D,G).

The objective of the proposed controller is to globally
asymptotically stabilize the set

A := {ξ ∈ Ξ : x = x⋆(τ; x̂, q, p), x̂ ∈ Mq ,

τ ≤ η(x̂, q, p), q ∈ Q0, q = p} (11)

with Mq given in (6), using an event-triggered multi-mode
MPC approach with the following properties: 1) regardless of

the initial condition x0 ∈ R
n there exists a path through the

graph G that corresponds to the application of a sequence of
optimal controllers which take the state of the system from

the initial condition x0 to Uq for some q ∈ Q0; 2) the control

signal operates in open-loop between updates, which occur



either when the state deviates from the expected trajectory

by at least an amount δ or when the timer expires, i.e.,
when τ = η(x̂, q, p); 3) the controller drives state trajectories

to the solution of (5) for a collection of possible target

modes q ∈ Q0; 4) the event-triggered mechanism allows
for corrections in the initialization of the controller and it

protects against the influence of disturbances and unmodeled
dynamics by triggering the computation of new optimal

control signals when the tracking error exceeds δ. Under the

previous assumptions, it is possible to prove the following
theorem.

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold. If

there exists µ > 0 such that x⋆(τ; x̂, q, q)+δB ⊂ Uq for each

τ ∈ [0, η(x̂, q, p)], each x̂ ∈ Mq + µB and each q ∈ Q0,

then, the set A in (11) is globally asymptotically stable for

H in (10).

Note that, since the image of the jump set of (10) through

the jump map does not intersect the jump set, each maximal

solution to (10) has a positive lower bound to the time
between jumps (cf. [17]). In the next section, we demonstrate

the application of the proposed controller to the stabilization

of multirotor vehicles.

IV. APPLICATION TO MULTIROTOR CONTROL

In this section, we apply the multi-mode MPC strategy
that was presented in Section III to the control of multirotor

aerial vehicles. This class of vehicles can be described by the

following dynamical system:

ṗI = vI , v̇I = Rrµ + g, Ṙ = RS(ωB), (12)

where S : R3 → R
3×3 is the unique skew-symmetric matrix

such that S(a)b = a×b for all a, b ∈ R
3, g ∈ R

3 is the gravity

vector, r ∈ S2 := {x ∈ R
3 : |x| = 1} is a constant unitary

vector that represents the direction of the thrust in body-
fixed coordinates, pI ∈ R

3 denotes the position with respect

to an inertial reference frame, vI ∈ R
3 denotes the linear

velocity of the vehicle with respect to the inertial frame, R ∈
SO(3) := {R ∈ R

3×3 : R⊤R = I3, det(R) = 1} is a

rotation matrix that maps vectors in a body-fixed frame to

the inertial frame, µ ∈ R represents the specific thrust and
ωB ∈ R

3 is the angular velocity of the vehicle in the body-

fixed frame (cf. [18]) Letting

aI := Rrµ + g (13)

we transform the dynamical system (12) into

ṗI = vI , v̇I = aI , ȧI = u (14)

where

u := R
[
r −S(rµ)

]
︸ ︷︷ ︸

M(µ)

[
u̇
ωB

]
. (15)

The kernel of M(u) is given by

kerM(µ) =




{0} × R

3 if µ = 0

span

{[
0 r⊤

]⊤}
if µ 6= 0

,

which implies that the component of the angular velocity

ωB that is aligned with r has no influence over the value

of µ. Additionally, the matrix M(µ) has full row rank for

each µ 6= 0, therefore it is invertible to the right with right

inverse given by M(µ)† =
[
r −S(rµ−1)⊤

]⊤
for each

u 6= 0. The assignment
[
µ̇ ω⊤

B

]⊤
= M(µ)†R⊤u is a

solution to (15) for each u 6= 0 and it is in fact the solution

to (15) with the lowest norm. We conclude that (13) allows

us to transform the problem of stabilizing the position of a
multirotor vehicle with dynamics (12) into one of stabilizing

three triple integrators corresponding to the three spatial

coordinates, while avoiding the condition µ = 0. To achieve
this goal, we start with the design of a dual-mode MPC

for the triple integrator and, subsequently, we present the

simulation results for the stabilization of multirotor vehicles
using the transformation outlined above.

A. Dual-Mode MPC for Global Asymptotic Stabilization of

a Triple Integrator

Motivated by the application of multirotor control, par-

ticularly the realization of docking maneuvers between two
modules of a modular aerial vehicle and following the

controller design outlined in Section III, we propose a dual-
mode MPC that combines a minimum-time controller with

finite-time linear quadratic regulator. In this direction, we

consider that the logic variable q has one of two possible
values, i.e., q ∈ Q := {1, 2}, and we define the domains in

which each mode operates as follows:

U1 := {x ∈ R
3 : x⊤Px > ǫ}, (16a)

U2 := {x ∈ R
3 : x⊤Px < ǫ}, (16b)

for some 0 < ǫ < ǫ and a positive definite matrix P ∈ R
3×3.

In other words, the controller corresponding to q = 1 is se-
lected away from the origin and the controller corresponding

to q = 2 is selected in a neighborhood of the origin. The

sets {Uq}q∈Q are open, and the difference between ǫ and

ǫ guarantees that
⋃

q∈Q Uq = R
3. Under this construction,

the directed acyclic graph that determines the sequence of
controllers to be employed is composed of two nodes and a

single edge (1, 2) that emphasizes the fact that the optimal

controller of q = 1 drives the state to q = 2. In this case
Q0 = {2} and U2 is bounded, which completes the proof of

Assumption 1.

The minimum-time controller is selected when q = 1, and
the minimum-time control signal for a particular initial con-

dition x̂ is obtained by solving the optimization problem (5)

with J1,2(x(.), u(.)) = T , x(T) = 0, |u(t)| ≤ 1 for all
t ∈ [0, T], free terminal time T and f(x, u) = Ax + Bu,

where

A =



0 1 0
0 0 1
0 0 0


 B =



0
0
1


 .

It follows from [19, Theorems 6.6-8] that the solution to
minimum-time optimal control problem is not singular, thus

it is unique and has a control signal u⋆(.; x̂, 1, 2) that is
piecewise constant and satisfies u⋆(τ; x̂, 1, 2) ∈ {−1, 1}
for each τ ∈ [0, T]. We set the value of the function

η for each x̂ ∈ U1 and (q, p) = (1, 2) to be the ter-
minal time T of the corresponding solution to (5). Since

x⋆(T; x̂, 1, 2) = x⋆(η(x̂, 1, 2); x̂, 1, 2) = 0 by design, then

the reachability condition in Assumption 2 is satisfied for



any δ > 0 satisfying δ ≤ min{|x| : x⊤Px = ǫ}. As

explained in [19], there exists a state-feedback law x → κ(x)
such that τ 7→ κ(x⋆(τ; x̂, q, p)) = u⋆(τ; x̂, q, p), where

(x⋆(.; x̂, q, p), u⋆(.; x̂, q, p)) is the unique continuou solution

to (5). Using the previous definition of κ given in [20], one
could compute x⋆ by determining the unique solution to the

initial value problem
{
ẋ = Ax +Bκ(x)

x(0) = x̂
. (17)

This concludes the verification of the requirements in As-

sumption 2 for (q, p) = (1, 2).
It is important to note that the flow map F as defined

in (10) does not satisfy (A2) because τ 7→ u⋆(τ; x̂, 1, 2) is

not continuous. Therefore, we consider the Krasovskii reg-
ularization of F for the sake of satisfying Assumption (A2)

which, as pointed out in Remark 1, does not influence the

analysis because maximal solutions to (10) with and without
regularization of the flow map coincide.

When q = 2, the linear quadratic regulator is used instead

of the minimum-time controller. The control signal and state

trajectories (x⋆, u⋆) are obtained from the solution to the
optimization problem (5) subject to the input constraints

|u(τ)| ≤ 1 for each τ ≥ 0 and with cost functional given

by: J2,2(x(.), u(.)) :=
∫ +∞

0
x(τ)⊤Qx(τ) + u(τ)⊤Ru(τ)dτ

where Q ∈ R
3×3 is a positive definite matrix, R > 0,

and x(T) = x(∞) is free. The solution to the optimization
problem is the solution to the initial value problem

{
ẋ⋆(τ) = Ax⋆(τ) +Bu⋆(τ)

x⋆(0) = x̂
τ ≥ 0 (18)

with u⋆(τ) = −R−1B⊤Px⋆(τ) for each τ ≥ 0, where P ∈
R

3×3 is the solution to the Riccati equation

0 = PA+A⊤P +Q − PBR−1B⊤P. (19)

Considering that P in (16) is also the solution to the Riccati
equation, we have that U2 is strongly forward invariant for

the closed-loop system (10) and, for small enough ǫ > 0, the

input u⋆ satisfies the input constraints |u⋆(τ; x̂, q, p)| ≤ 1
for each x̂ ∈ U2 and q = p = 2. It is also the case that

(τ, x̂, q, p) 7→ x⋆(τ; x̂, q, p) is continuous and unique, since

it is the solution to (18). Choosing x̂ 7→ η(x̂, 2, 2) to be
equal to a constant τ that satisfies τ > λ−1 log

(
ǫǫ−1

)
, λ :=

λmin(Q)/λmax(P) we have that η is continuous and that

the reachability requirement in Assumption 2 is satisfied for
some δ > 0. In fact, the LQR controller associated with

q = 2 also meets the assumptions of Theorem 1 for some
δ > 0 due to the forward invariance of the sublevel sets of

x 7→ x⊤Px.

In the following section, we present simulation results

that illustrate the behavior of the closed-loop system for
the stabilization of the triple integrator and of a multirotor

vehicle.

V. SIMULATION RESULTS

To illustrate the behavior of the closed-loop system result-

ing from the interconnection of the triple integrator with the
controller proposed in Section III, we present the simulation

results in Figure 1 which represent the evolution of the state

of the system and of the error between the state and the

expected trajectory for varying levels of input-matched per-

turbations, i.e., u ≡ u(τ; x̂, q, p) + ρ sin(0.2πt) for all t ≥ 0
and for ρ ∈ {0, 0.01, 0.1} . In particular, the simulations

represented in Figure 1 are obtained for a randomly selected

initial condition:

x(0, 0) =
[
−0.2949 0.1868 0.1704

]⊤
(20)

with controller parameters τ = 1, δ = 0.05, ǫ = 0.1 and

ǫ = 0.5ǫ. In addition, we correctly initialize the memory
variable x̂ to match the initial condition x(0, 0) in (20), the

timer variable τ starts at 0 and the initial mode is q(0, 0) = 1.

This initialization improves the transient response, because
it prevents the controller update that would be necessary

in order to trigger the correct mode of operation. The star

shaped markers in Figure 1 identify the events of the closed-
loop system (10), while the vertical dashed lines identify

the subset of events where the controller switches from the

minimum-time controller to the linear quadratic regulator and
vice-versa.

As expected, the tracking error increases with the mag-
nitude of the disturbances. When ρ = 0, it is possible to

verify that the difference between the actual trajectory and

the expected trajectory remains zero for all t ≥ 0. When
ρ = 0.01, the state trajectory does not deviate significantly

from the state trajectory of the nominal case and, in particular,

it does not come close to triggering the δ = 0.05 threshold. In
both of these cases the switch of the controller mode happens

at t = η(x̂(0, 0), 1, 2) ≈ 1.6, that is, when the timer expires.
However, when ρ = 0.1, the behavior of the closed-loop

system is very different. In this case, there are several viola-

tions of the δ threshold which trigger updates to the control
signal, but we should point out that: 1) mode switching can

be mitigated by careful selection of the controller parameters;

2) this simulation demonstrates that the closed-loop system
is resilient to the influence of input-matched perturbations

with a maximum magnitude of 10% of the actuator saturation

level, since the tracking error remains bounded in all cases;
3) the average sampling frequency remains small despite the

influence of perturbations.
To illustrate the application of the proposed controller

to the stabilization of multirotor vehicles, we carry out

two separate simulation runs of three triple integrators in
accordance with the dynamics (14). The initial conditions

have been selected at random from a uniform distribution.
Figure 2 illustrates the position of two multirotor vehicles

which are steered into each other’s proximity in order to
perform a docking maneuver. Due to the saturation of the

controllers the maneuvers are not very aggressive which

can be seen by the fact that none of the vehicles deviates
significantly from a leveled configuration (cf. 3). The reader

may find the source code of the simulations presented here

at https://github.com/pcasau/ACC2023.

VI. CONCLUSIONS

In this paper, we have presented a controller design that

combines a multiple mode approach to Model Predictive

Control (MPC) with event-triggered control, in order to attain
global asymptotic stabilization of a target operating mode for

the closed-loop system. Under the proposed approach, events

are triggered when a timer state expires or sooner than that if
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the state of the system deviates from the expected trajectory

by a predefined amount. In either case, the event triggers the
computation of a new control signal for the given mode, and

resets the timer to zero. We demonstrate the application of

this controller to the control of multirotor vehicles and we
resort to simulation results in order to illustrate the behavior

of the closed-loop system.

REFERENCES

[1] M. Giles, “Zipline Launches the world’s fastest commercial delivery
drone,” 2018.

[2] C. Huang, F. Gao, J. Pan, Z. Yang, W. Qiu, P. Chen, X. Yang, S. Shen,
and K. T. T. Cheng, “ACT: An Autonomous Drone Cinematography
System for Action Scenes,” in Proceedings of the 2018 IEEE Interna-
tional Conference on Robotics and Automation, pp. 7039–7046, IEEE,
2018.

[3] S. Weeks, R. M. Osorno, B. Prestwich, L. Sanford, and A. Amin,
“Additive Manufacturing Drone Design Challenge,” 2020 Intermoun-
tain Engineering, Technology and Computing, IETC 2020, 2020.

[4] M. D. Patterson, J. R. Quinlan, W. J. Fredericks, E. Tse, and I. Bakhle,
“A modular unmanned aerial system for missions requiring distributed
aerial presence or payload delivery,” in AIAA SciTech Forum - 55th
AIAA Aerospace Sciences Meeting, no. January, 2017.

[5] M. A. Ferreira, M. F. T. Begazo, G. C. Lopes, A. F. Oliveira,
E. L. Colombini, and A. Simões, “Drone Reconfigurable Architecture
(DRA): a Multipurpose Modular Architecture for Unmanned Aerial
Vehicles (UAVs),” Journal of Intelligent and Robotic Systems: Theory
and Applications, vol. 99, no. 3-4, pp. 517–534, 2020.

[6] D. Saldana, B. Gabrich, G. Li, M. Yim, and V. Kumar, “ModQuad:
The flying modular structure that self-assembles in Midair,” in IEEE
International Conference on Robotics and Automation, pp. 691–698,
2018.

[7] H. Chen and F. Allgöwer, “A quasi-infinite horizon nonlinear model
predictive control scheme with guaranteed stability,” Automatica,
vol. 34, no. 10, pp. 1421–1426, 1998.

[8] B. Altin and R. Sanfelice, “Asymptotically stabilizing model predictive
control for hybrid dynamical systems,” in Proceedings of the American
Control Conference, vol. 2019-July, pp. 3630–3635, 2019.

[9] H. Li and Y. Shi, “Event-triggered robust model predictive control
of continuous-time nonlinear systems,” Automatica, vol. 50, no. 5,
pp. 1507–1513, 2014.

[10] R. Goebel, R. Sanfelice, and A. Teel, Hybrid Dynamical Systems:
Modeling, Stability, and Robustness. Princeton University Press, 2012.

[11] P. Casau, R. Sanfelice, and C. Silvestre, “On the Robustness of
Nominally Well-Posed Event-Triggered Controllers,” IEEE Control
Systems Letters, vol. 6, 2022.

[12] R. G. Sanfelice, A. R. Teel, and R. Goebel, “Supervising a family
of hybrid controllers for robust global asymptotic stabilization,” in
47th IEEE Conference on Decision and Control, pp. 4700–4705, IEEE,
2008.

[13] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, pp. 477–483, IEEE, 2012.

[14] J. Tordesillas and J. P. How, “MADER: Trajectory Planner in Multi-
agent and Dynamic Environments,” IEEE Transactions on Robotics,
vol. 38, no. 1, pp. 463–476, 2022.

[15] J. Pinto, B. J. Guerreiro, and R. Cunha, “Planning Parcel Relay
Manoeuvres for Quadrotors,” in 2021 International Conference on
Unmanned Aircraft Systems,, pp. 137–145, 2021.

[16] F. Matos and B. Guerreiro, “Model predictive control strategies for
parcel relay manoeuvres using drones,” in 2021 International Young
Engineers Forum, pp. 32–37, IEEE, 2021.

[17] J. Chai, P. Casau, and R. G. Sanfelice, “Analysis and design of event-
triggered control algorithms using hybrid systems tools,” International
Journal of Robust and Nonlinear Control, vol. 30, no. 15, pp. 5936–
5965, 2020.

[18] T. Hamel, R. Mahony, R. Lozano, and J. Ostrowski, “Dynamic
Modelling and Configuration Stabilization for an X4-Flyer.,” IFAC
Proceedings Volumes, vol. 35, no. 1, pp. 217–222, 2002.

[19] M. Athans and P. L. Falb, Optimal Control: An Introduction to the
Theory and Its Applications. Dover Books on Engineering, Mineola
NY: Dover Publications, 2007.

[20] L. Y. Pao and G. F. Franklin, “Proximate time-optimal control of third-
order servomechanisms,” IEEE Transactions on Automatic Control,
vol. 38, no. 4, pp. 560–580, 1993.


