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Abstract— This paper presents a Distributed Model Predictive
Control (DMPC) algorithm for a scenario of spacecraft formation
flying, namely spacecraft platooning in a leader-follower formation.
This spacecraft formation application can be regarded as a cooper-
ative system composed of several spacecraft with a common goal,
for which a relative translational model is considered connecting the
different agents. A distributed algorithm is proposed that solves a
1-hop optimization problem in order to estimate the optimal control
action sequence, including also relevant constraints to protect and
deal with the overall system. The algorithm is then analyzed
in terms of uniqueness and convergence of the optimal control
action. The proposed methods are validated with realistic simulation
results, showing that all vehicles demonstrate reliable performance
following a given trajectory or goal in a formation, while satisfying
all the considered constraints.

Index Terms— Distributed control, Predictive control, Satellite
applications.

I. Introduction

SPACE exploration has been a much discussed topic
in recent years, due to the inherent curiosity of
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wanting to know more about how the Universe works,
and possibly to take Human society outside of planet
Earth. Within the immense complexity of planning and
implementing a spacecraft for space navigation, some of
the most important and difficult maneuvers to perform are
the rendezvous and docking maneuvers [1], which make
it possible to physically couple two spacecraft. These
maneuvers are essential to transport goods or people from
one spacecraft to another, for replenishment, assembly,
maintenance, repair [2], space debris collection [3], [4]
or even Earth observation. These tasks not only need to
be performed successfully, but also incorporate autonomy
into the systems, relying as little as possible in external
human aid.

Over the years, different methods were considered for
these proximity operations, but due to the computational
limitations in space [5], there has been a focus on simpler
and computationally lighter methods. Recently, with the
development of more robust and capable embedded sys-
tems, more complex controllers are being considered for
space operations, and among them is Model Predictive
Control (MPC). MPC was initially considered for indus-
trial applications, to control oil refineries, power plants
and chemical processes [6], but in recent years the MPC
has been vastly studied for flight control, docking and ren-
dezvous maneuvers [7]–[9]. Using MPC techniques can
bring important improvements to the overall performance
of autonomous vehicles in general, and spacecraft in
particular, at the cost of additional processing capabilities,
which may be mitigated with carefully crafted methods.
These techniques intrinsically enable the introduction of
input and state constraints into the control law, while
also being capable of accounting for future changes to
references and constraints, according to the vehicle and
mission requirements. For instance, in [10] and [11]
robust MPC algorithms considering system constraints
and disturbances are proposed for optimal time-varying
attitude tracking control and for reentry vehicles, respec-
tively.

Distributed techniques such as those proposed in this
paper enable the effective use of MPC in communication
restricted environments. One application of rendezvous
maneuvers is spacecraft formation flying [12], [13], that
consists in the cooperation of several spacecraft to achieve
a specific objective, instead of sending a single, more
expensive spacecraft. This topology allows to obtain a
distributed model [14] between all the spacecraft, but
sharing at the same time a common objective.

The proposed strategy is therefore a subset of the
spacecraft formation flying scenario, where several fol-
lower spacecraft converge to the leader spacecraft orbit
and establish a constant relative position between each
other in a spacecraft platooning [15] formation. This is
achieved using a Distributed Model Predictive Control
(DMPC) strategy, where the system model consists of
a coupled relative model between each spacecraft with
a V-bar orbital station keeping trajectory. A spacecraft
platooning system can have several uses, such as syn-
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chronization, position correction, spacecraft retention on
a specific orbit and also for Earth observation, where a
group of spacecraft can orbit around the Earth and retrieve
soil or meteorological information to be later analyzed
and compared.

Given the interaction needed between the agents for a
platooning scenario, it becomes important to reinforce the
cooperative component of this type of maneuver. There
are several distributed approaches that can be used, but
consensus based algorithms have proven over time to
be reliable tools for dealing with multiple agents sys-
tems [16], [17]. Therefore, the 1-hop local optimization
algorithm, presented in [18], is considered as the basis
for formulating the new distributed algorithm that will be
proposed. The concept of 1-hop refers to the interaction of
an agent with all its neighbors that are directly intercon-
nected, that is, to a first-order neighborhood. Furthermore,
a variety of network topologies are presented specifically
for the platooning and leader-follower formation.

Some MPC distributed approaches for a multi-agent
system include [15] where the platoon problem is stud-
ied for a group of heterogeneous vehicles that follow
a unidirectional network topology with leader-follower
formation and in [19] where, in a simulation environment,
the distributed MPC is compared with the centralized
one for a group of UAVs in order to arrive at a given
flight formation, using a non-linear kinematic model and
allowing the exchange of information, such as its position,
to avoid collisions between agents. For the spacecraft
formation flying scenario, in [20] it is studied the main
concepts of cooperation, formation flying, fault recovery
and communication delays in a MPC-based design, and
comparing its performance to other configurations, such
as the centralized and decentralized models, where the
distributed outperformed in terms of minimizing the con-
trol effort and the necessary compensation for failures.

A preliminary version of this work [21] focuses
in two different cooperative spacecraft formation flying
strategies: spacecraft platooning and on-orbit spacecraft
servicing. For this spacecraft platooning system, the same
scenario is considered, where several follower spacecraft
converge to the leader spacecraft orbit and establish a
constant relative position between each other, but with
the condition that the topology must be unidirectional
and in series, which restricts the communication and in-
teraction capacity of the spacecrafts involved. Therefore,
the problem previously presented in [21] is expanded, by
proposing a second strategy that allows different network
topologies to be considered, through the use of Graph
Theory and Distributed MPC techniques. Also, instead of
considering all the relative states of every spacecraft, in
this case it is considered a neighborhood error for each
agent, which results in less mathematical calculation to be
made. And finally, the 1-hop interactive local optimization
algorithm proposed, results in a more trustworthy solu-
tion, when compared to the simple convex step distributed
algorithm used in [21], for this cooperative scenario. In
this 1-hop optimization algorithm, each agent uses its

neighborhood in order to converge to a optimal solution,
by incorporating a neighborhood dynamics error instead
of considering the state of every spacecraft involved. In
addition to that, it is shown that the proposed distributed
algorithm and optimization problem follows the condi-
tions of convergence and uniqueness respectively. The
proposed method is also validated through simulation
results, showing reliable performance for several network
topologies while satisfying all the considered constraints.

The remainder of this paper is structured as follows.
Section II contains a brief background of spacecraft
formation flying dynamics. Section III outlines the MPC
design for the spacecraft platooning system, including the
system model, the distributed optimal control problem,
the distributed algorithm and the constraints. Simulation
results for the proposed strategy are presented in Section
IV. Conclusions and future work are discussed in Section
V.

II. Spacecraft Relative Motion

This Section introduces the general notation and math-
ematical background for spacecraft formation flying start-
ing with the main coordinate reference frames, moving
on to the relative translational motion for spacecraft and
finally the Clohessy-Wiltshire (CW) equation.

Towards this end, we define three coordinate reference
frames. The Earth Centered Inertial (ECI) frame, denoted
as F i : {Oi, îi, ĵi, k̂i}, has its origin located in the center
of the Earth. The îi axis is directed towards the vernal
equinox, k̂i is directed along the rotation axis of the
Earth towards the celestial North Pole and ĵi completes
the right-handed orthogonal frame. The Spacecraft Orbit
reference frame, denoted as F so : {Os, îso, ĵso, k̂so}, is
a Local-Vertical-Local-Horizontal (LVLH) frame with its
origin located in the center of mass of the spacecraft. The
îso axis is directed along the radius vector irs ∈ R3 in the
F i frame, that goes from the center of the Earth to the
spacecraft, k̂so is pointing in the orbit normal direction,
parallel to the orbit momentum vector and ĵso completes
the right-handed orthogonal frame. For our application, s
denotes the spacecraft in question, e.g. s = l for the leader
and s = f for the follower. Finally, the Spacecraft Body
Reference frame, denoted as F sb : {Os, îsb, ĵsb, k̂sb}, has
its origin located in the center of mass of the spacecraft,
with the basis vectors aligned with the principal body
axes.

A. Relative Translational Motion

Consider a leader-follower spacecraft formation, com-
posed by a single passive leader spacecraft and more than
one active follower spacecraft, where the position vector
of the leader and the follower expressed in F i are defined
respectively as irl and irf , as seen in Fig. 1, and that the
leader spacecraft is in a circular orbit about the Earth.

The relative position vector between the leader and the
follower can therefore be expressed in the orbital frame
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Fig. 1: Reference coordinate frames in a leader-follower
formation

F lo as
p = Rlo

i (
irf − irl) =

[
x y z

]T
(1)

and the relative velocity as v = ṗ, where Rlo
i ∈ SO(3) is

the rotation matrix from F i to the F lo frame and SO(3)
is the 3D rotation group defined as SO(3) = {R ∈ R3×3 :
RT R = RRT = I3, det(R) = 1} with I3 ∈ R3×3 as the
identity matrix.

Assuming that the distance between the spacecraft is
much smaller than the distance to the center of the Earth,
with a maximum relative position into the tens of kilo-
meters [22], the nonlinear relative translational dynamics
can be derived for circular orbits and linearized around
the origin of F lo to get the well known CW equation [23].
Following the CW assumptions, it is considered that all
the actuated follower spacecraft can keep connected with
the passive leader. As such, applying the Taylor series
expansion to nonlinear relative translational dynamics [22,
Appendix A] yields

ẍ− 3n2x− 2nẏ = ux

ÿ + 2nẋ = uy

z̈ + n2z = uz

, (2)

where n is the orbital rate given by n =
√

µ
∥irl∥3 and the

follower control acceleration is defined as

u =
1

mf
ff =

[
ux uy uz

]T
. (3)

III. Distributed MPC for Spacecraft Platooning

Consider a system composed of λ follower spacecraft
with masses mi, i = 1, 2, ..., λ, such that each spacecraft
f wants to follow spacecraft f − 1 in a V-bar station
keeping trajectory [24] with constant relative position and
is followed by spacecraft f + 1 the same way. Consider
the spacecraft 0 as the leader of the spacecraft formation.

A. System Model

For the distributed strategy, it is assumed that the
follower agents are able to exchange their information
via a communication topology restricted by a connected

directed graph G = (N , I) where N = {1, ..., λ} is
the set of agents representing the vertices of the graph
and I ⊆ N × N is the set of edges that connect the
vertices/nodes. It is further assumed that all the follower
agents are interconnected to the leader, in order to have a
common orbital frame, in this case the F lo frame. Some
relevant examples of network topologies for the platoon
scenario in a leader-follower formation are represented in
Fig. 2.

The CW equation, expressed in (2), for a follower f
relative to the leader can be rewritten as

ẋf (t) = Acxf (t) + Bcuf (t) (4)

where xf =
[
pT
f vT

f

]T ∈ R6 is the state vector, pf ∈ R3

is the relative position expressed in F lo, vf ∈ R3 is the
relative velocity expressed in F lo, t is the continuous time
variable and

Ac =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0

 , Bc =

[
03×3

I3

]

(5)
with n as the orbital rate of the leader. A Zero-Order Hold
(ZOH) discretization is performed for expression (4), as
suggested in [25], which yields

xf (k + 1) = Axf (k) + Buf (k) (6)

where

A = eAcTs , B = Bc

∫ Ts

t=0

eActdt (7)

with k as the discrete time variable and Ts as the sampling
time. Expression (6) can be also written as

x+
f = Axf + Buf . (8)

In order to study the synchronization problem it is
defined a neighborhood error for each agent f , given by

Ef =
∑
i∈Nf

(xf − xi) + gfxf (9)

…

…

…

Fig. 2: Examples of network topologies for the platoon
scenario in a leader-follower formation, adapted from
[15]. a) predecessor-leader following (PLF), b) bidirec-
tional with leader (BDL), c) two-predecessor-leader fol-
lowing (TPLF)
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and from expressions (8) and (9) the error dynamics can
be defined by

E+f = AEf + (gf + df )Buf − B
∑
i∈Nf

ui (10)

where Nf ⊂ N is the set of neighbors of agent f , df =
∥Nf∥ is the degree of agent f and gf = 1 if the agent f
is connected to the leader or gf = 0 if not.

The graph G is defined by an augmented Laplacian
matrix L̄ ∈ Rλ×λ given by

L̄ = G + D−Ad (11)

where G = diag(g1, · · · , gλ) ∈ Rλ×λ is the matrix
that represents the connection to the leader and D =
diag(d1, · · · , dλ) ∈ Rλ×λ is the degree matrix. There
is still the adjacency matrix Ad = [aij ] ∈ Rλ×λ which
describes the directional communication between the fol-
lower agents, with each entry expressed as

aij =

{
1, if i ̸= i and {j, i} ∈ I
0, else

(12)

where {j, i} ∈ I means that there is a directional edge
from node j to node i (j → i). In order to obtain L̄ and its
respective matrices, one can observe the communication
relationship between each agent in Fig 2.

B. Distributed Model Predictive Control (DMPC)

For each agent f ∈ N it is intended to determine the
optimal control sequence U∗

f that solves the 1-hop local
optimization problem

min
Uf

Vf (Uf ; Ef ,U−f1)

s.t. expression (10), ∀k=0,...,N−1,

Ef ∈ Xf , ∀k=0,...,N ,

uf ∈ Uf , ∀k=0,...,N−1

(13)

such that
Vf (Uf ; Ef ,U−f1) =

αf

[
N−1∑
k=0

(
ÊTf QÊf + uT

f Wuf

)
+ ÊTf (N)PÊf (N)

]
,

(14)

Êf = Ef − (gf + df )Ed (15)

and where N is the prediction horizon, α is the cost
function weight always different from zero, Ed ∈ R6 is
the desired tracking error, P ∈ R6×6 the final output error
penalty, Q ∈ R6×6 the output error penalty and W ∈ R3×3

the control action penalty, all positive definite. There is
also the set of linear constraints for state variables X and
the set of linear constraints for control variables U . Error
Ed, in expression (15), is also multiplied by (gf + df ),
in order to have a desired error that is proportional to
the number of neighbors of the agent, leader included,
which is an approach different from the one proposed
in [18] in order to achieve a better separation between
agents. For the optimization problem, Uf is considered

as the optimization variable for the local problem, but the
solution depends on the local error Ef and on the sequence
U−f1 which is associated with the 1-hop neighbors of f .
In addition to that, Ed can be declared as a constant value
that the vehicles have to maintain throughout their mission
or create a variable error function that takes into account
the proximity with the rendezvous target, and decreases
the inter-vehicle distance as the formation approaches the
target.

Converting to the batch format, the model dynamics
of each agent f ∈ N (10) can be rewritten as

E+:N
f = AEf + (gf + df )BUf − B

∑
i∈Nf

Ui (16)

with

A =


A
A2

...
AN

 , B =


B 0 · · · 0

AB 0 · · · 0
...

...
. . .

...
AN−1B AN−2B · · · B


(17)

such as the cost function, which yields

Vf (Uf ; Ef ,U−f1) = UT
fWUf+[

E+:N
f − (gf + df )Ēd

]T
Q

[
E+:N
f − (gf + df )Ēd

]
+[

Ef − (gf + df )Ed
]T

αfQ
[
Ef − (gf + df )Ed

]
(18)

where

• Q = αf diag(Q, · · · ,Q,P) ∈ R6N×6N ;
• W = αf diag(W,W, · · · ,W) ∈ R3N×3N ;
• Ēd =

[
ETd · · · ETd

]T ∈ R6N .

By incorporating the expression (16) into (18) the cost
function can be rewritten as

Vf (Uf ; Ef ,U−f1) = UT
f SfUf + 2sTf Uf + cf (19)

with

Sf = (gf + df )2BTQB +W ,

sf = (gf + df )BTQ

AEf − B ∑
i∈Nf

Ui − (gf + df )Ēd

 ,

cf = 2

B ∑
i∈Nf

Ui + (gf + df )Ēd

T

QB
∑
i∈Nf

Ui+

− 2

B ∑
i∈Nf

Ui + (gf + df )Ēd

T

QAEf+

ETf [ATQA + αfQ]Ef − 2αf (g
f + df )ETf QEd+

(gf + df )2αfETd QEd + (gf + df )2ĒTd QĒd.

Considering the first-order optimality condition for vehi-
cle f given by

∇Uf
Vf (Uf ; Ef ,U−f1)|Uf=U∗

f
= 0 (20)
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the result is

SfU∗
f − (gf + df )(BTQB)

∑
i∈Nf

Ui+

(gf + df )2(BTQ)Ēd − (gf + df )(BTQA)Ef = 0.
(21)

Considering all agents, the optimal control sequence
U can be found by solving the unconstrained optimization
problem given by

min
U

V(U; E) =
∑
f∈N

Vf (Uf ; Ef ,U−f1) (22)

for which the first-order optimality condition, obtained
combining expression (21) for each f , is given by

SU∗ +
[
(G + D)⊗ BTQA

]
E−[

(G + D)2 ⊗ BTQ
]
(Ēd)×λ = 0

(23)

where

S = (G + D)L̄⊗ BTQB + Iλ ⊗W . (24)

The combined optimal control action sequence is then

U∗ = −KE + Kd(Ēd)×λ (25)

with

K = S−1
(
(G+D)⊗BTQA

)
, (26)

Kd = S−1
(
(G+D)2⊗BTQ

)
. (27)

The operator ⊗ refers to the Kronecker product, which is
an operation on two matrices of arbitrary size resulting
in a block matrix, such that, if N ∈ Rn1×n2 and H ∈
Rn3×n4 , then N⊗H ∈ R(n1n3)×(n2n4). In order to study
the uniqueness of U∗, consider the following Lemma 1.

LEMMA 1. The augmented Laplacian matrix, given by
L̄ = G + D− Ad = G + L, is positive definite.

Proof:
First, it is necessary to prove that the Laplacian matrix
L = D−Ad is positive semi-definite. For any e ∈ Rn0 , the
Laplacian matrix is in quadratic format, more specifically

eT Le = eT
 ∑

(i,j)∈I
Li,j

 e
∑

(i,j)∈I
eT Li,je =

=
∑

(i,j)∈I
(ei − ej)2 ≥ 0

(28)

therefore L is positive semi-definite, or L ⪰ 0. In addition
to that, since all the follower agents are interconnected
to the leader, the matrix G will always have positive
elements on its diagonal, making G positive definite.
Therefore, since L is positive semi-definite the expression
G + L is positive definite, or L̄ ≻ 0.

PROPOSITION 2. The optimal control action sequence U∗

is a unique global minimum of (22).

Proof:
If the expression S is invertible, then U∗ exists and
is unique. The proof will follow by showing that S is
positive definite, and, therefore, invertible.

Let υ and φ be an arbitrary eigenvector and eigenvalue
pair of (G + D)L̄, then

(G + D)L̄υ = φυ ⇔

L̄υ = φ(G + D)−1υ ⇒ υT L̄υ
υT (G + D)−1υ

= φ.
(29)

Since L̄ and (G + D)−1 are both positive definite

υT L̄υ > 0, υT (G + D)−1υ > 0 (30)

which results in φ > 0 and proves that (G + D)L̄ is
positive definite. For L̄(G + D) the result is the same.

Knowing that the cost function penalties are con-
sidered as positive definite, it can be concluded that
(BTQB) ≻ 0 and (Iλ ⊗W) ≻ 0 and therefore S is also
positive definite. Note that constraints are disregarded in
this case.

C. Distributed Algorithm

This cooperative approach is based on a distributed
communication algorithm for 1-hop neighbors, resorting
to the local optimization problem (13). At each instant
of time, each agent f determines its solution and shares
this same solution several times with its neighbors until
it converges to an optimal control action sequence, of
which only its first value is used. Then the algorithm is
processed for the next instant of time. Consider Ûf (γ) as
the estimate of U∗

f computed at iteration γ, as presented
in Algorithm 1. In a practical implementation, a commu-
nications delay is considered as part of the model, and
the time thus saved is used to transfer the data between
vehicles.

Algorithm 1: 1-hop optimization algorithm for
the agent f ∈ N at instant k

Input: tolerance σ > 0 and local error Ef
Output: optimal control action sequence Ûf (γ)

1 begin
2 γ ← 0
3 if (k = 0) then
4 Ûf (0)← random value
5 else
6 Ûf (0)← U∗

f (k − 1)
7 end
8 repeat
9 broadcast Ûf (γ) to neighbors

10 Ûf (γ + 1)←
argmin

Uf

Vf

(
Uf ; Ef , Û−f1(γ)

)
subject to

the dynamics in (10)
11 error ← ∥Ûf (γ + 1)− Ûf (γ)∥
12 γ ← γ + 1
13 until (error ≤ σ)
14 return Ûf (γ)
15 end

PEREIRA ET AL.: DISTRIBUTED MPC METHOD FOR S/C FORMATION FLYING IN A LEADER-FOLLOWER FORMATION 5



At each iteration of the Algorithm 1, the following
expression is satisfied

Sf Ûf (γ + 1)− (gf + df )(BTQB)
∑
i∈Nf

Ûi(γ)+

(gf + df )(BTQA)Ef − (gf + df )2(BTQ)Ēd = 0
(31)

which can be expanded to include all the agents of the
system[
(G + D)2 ⊗ (BTQB) + Iλ ⊗W

]
Û(γ + 1)−[

((G + D)Ad)⊗ (BTQB)
]

Û(γ) +
[
(G + D)⊗ (BTQA)

]
E

−
[
(G + D)2 ⊗ (BTQ)

]
(Ēd)×λ = 0.

(32)

PROPOSITION 3. Consider Algorithm 1 defined by the
dynamics (32). Then, the local estimates of the optimal
control Û converge to (25).

Proof:
The expression (32) can be rewritten as a discrete system
given by

Āx̄(γ + 1)− B̄x̄(γ)− c̄ = 0 (33)

where x̄, c̄ ∈ Rn0 and Ā, B̄ ∈ Rn0×n0 . Let υ and φ be an
arbitrary eigenvector and eigenvalue pair of (Ā−1B̄), then

(Ā−1B̄)υ = φυ ⇔

B̄υ = φĀυ ⇔ υT B̄υ
υT Āυ

= φ⇒ υT (B̄ + B̄T
)υ

υT 2Āυ
= φ.

(34)

In order to have an asymptotically stable system, such
that the state converges asymptotically to x̄∗ := (Ā −
B̄)−1c̄, it is necessary that |φ| <1. Thus, from expression
(34) it is possible to conclude that, for the system to be
asymptotically stable, it is necessary that Ā ≻ 0 and 2Ā±
(B̄ + B̄T

) ≻ 0.
Knowing that

Ā =
[
(G + D)2 ⊗ (BTQB) + Iλ ⊗W

]
(35)

and
B̄ =

[
((G + D)Ad)⊗ (BTQB)

]
(36)

it can be concluded that Ā is positive definite, since (G+
D)2 ≻ 0, (BTQB) ≻ 0 and (Iλ⊗W) ≻ 0. Regarding the
second condition,

2Ā− (B̄ + B̄T
) =[

L̄(G + D) + (G + D)L̄
]
⊗ (BTQB)

+ 2Iλ ⊗W ≻ 0

(37)

and

2Ā + (B̄ + B̄T
) =

[(G + D + Ad)(G + D) + (G + D)(G + D + Ad)]

⊗ (BTQB) + 2Iλ ⊗W ≻ 0

(38)

since, when defining an unsigned Laplacian matrix given
by Ls = D + Ad which is positive semi-definite [26], it
is possible to extrapolate that (G + D + Ad)(G + D) =
(G + Ls)(G + D) ≻ 0 and (G + D)(G + Ls) ≻ 0. This
proves that the system in (32) is asymptotically stable
and converges to (25), if input and state constraints are

not considered. The recursive feasibility and convergence
of the optimization problem with further input and state
constraints are left for future work.

D. Constraints

Although not considered in [18], constraints play a
big part on the overall safety of the system, especially
when dealing with multiple vehicles interacting with each
other in their vicinities. With regard to the constraints
considered in expression (13), control action constraints
were included in order to restrict the fuel used by the
thrusters, given by

umin ≤ uf ≤ umax. (39)

Relative velocity constraints are also important for
spacecraft proximity operations and passive security, in
order to better react to emergencies, unforeseen scenarios
that may happen or to prepare for docking,

(gf + df )vmin ≤ vf ≤ (gf + df )vmax. (40)

Finally, minimum tracking error constraints were
added for security and collision avoidance, given by

∥Ef∥2 ≥ ((gf + df )rf )
2 (41)

that is linearized around the point located at

(gf + df )rf
∥Ef∥

pf (42)

and where rf is the radius of the sphere representing
the follower. This linearization is performed because the
constraint (41) is non-convex.

IV. Simulation Results

This Section describes the simulation details and
presents the results of the proposed control strategy for the
three different communication scenarios presented in Fig.
2, followed by the discussion of these results. All simu-
lations have been performed in MATLAB® R2019A with
the help of the CasADi [27] library and the solver(.)
method in order to get the optimal solution based on
the current state, upper and lower bounds of the state
and control constraints, initial and desired conditions.
Simulating the same dynamics that were used to formulate
the MPC proposed and disregarding the use of noise or
sensors. To demonstrate the capabilities of the MPC that
was formulated, a test scenario is simulated for each of
the presented topologies, namely PLF, BDL and TPLF,
and considering a system composed of four follower
spacecrafts with the aim to achieve a V-bar station-
keeping trajectory to each other at a constant relative
position, like in a platoon scenario. Furthermore, it is
considered that each spacecraft is close enough that the
CW conditions are respected and the connection to the
leader is maintain. The simulation parameters used to
obtain these results are presented in Table I. In order to
better illustrate the scenario that is being simulated here,
an example is presented in Fig. 3 for the PLF topology.
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The results for the three topologies considering four
spacecrafts are presented in Fig. 4, 5, 6, 7, and 8. In these
figures, besides validating that with any of the considered
topologies the vehicles are able to achieve their objectives
in the formation using a distributed framework, we can
also see that vehicles that are at the tail of the formation
have to adapt to the reactions of the other vehicles in the
formation. This can be seen in the control effort variations
that are more prominent in spacecrafts 3 and 4 relative
to those of 1 and 2. Nonetheless, the convergence of
their trajectories to the desired goals does is not visibly
affected, as the time the relative velocities reach zero is
almost the same.

Table II is composed by the RMSE (Root Mean
Square Error), RMSEE (Root Mean Square of Energy
Expended, in ms−2), and FOE (Final Output Error)
parameters, which are respectively defined as

RMSE =

√√√√ 1

nk

nk−1∑
k=0

∥E(k)− Ed(k)∥2,

RMSEE =

√√√√ 1

nk

nk−1∑
k=0

∥u(k)∥2,

FOE = ∥E(nk)− Ed(nk)∥.
This table also supports the conclusion that all considered
topologies yield overall convergence results of the same
order of magnitude. Yet they provide further insight, as
for most cases the best values are obtained for the PLF
topology.

In all scenarios the proposed strategy manages to
successfully converge the error to the desired values,
while respecting the constraints that were imposed for
each topology and with a behavior that goes according
to the considered penalties. Since the four spacecraft
were tested for the three network topologies, there is
a disparity of behaviors that occurs in each situation
depending on the number of agents connected to a given
spacecraft and its distance from the leader. However, the
goal was to have the same parameters for all topologies,
since the objective is to complement the theoretical tests
with a numerical validation of the proposed Algorithm.

Fig. 3: Simulation illustration considering the PLF topol-
ogy and 3 follower spacecraft

TABLE I: Simulation parameters of the DMPC for space-
craft platooning

Symbol Value Unit
µ 3.986 004 41× 1014 m3 s−2

∥irl∥ 6621000 m

p1(0)
[
30 −35 40

]T
m

p2(0)
[
15 −46 −30

]T
m

p3(0)
[
−49 −43 −20

]T
m

p4(0)
[
−29 −23 37

]T
m

vf (0)
[
0 0 0

]T
ms−1

Ed
[
0 −8 0 0 0 0

]T
Ts 0.1 s

nk 180

N 30
P 25I6
Q 13I6
W 0.1I3
σ 0.5

[α1 α2 α3 α4]
[
2 1.5 1 1

]
umax 6 m s−2

vmax 20 m s−1

rf 3 m

TABLE II: Simulation performance of the DMPC for
spacecraft platooning

f Network RMSE RMSEE FOE
PLF 19.781 4.930 3.262× 10−6

1 BDL 41.506 4.697 7.180× 10−6

TPLF 19.980 5.064 3.783× 10−6

PLF 36.932 4.807 4.873e× 10−6

2 BDL 44.486 4.682 5.385× 10−6

TPLF 36.829 4.840 4.727× 10−6

PLF 40.557 4.884 6.726× 10−6

3 BDL 50.787 4.346 1.035× 10−5

TPLF 71.448 4.665 1.419× 10−5

PLF 31.953 3.985 4.670× 10−6

4 BDL 33.542 4.836 7.941× 10−6

TPLF 58.155 4.214 8.990× 10−6

The linearized version of the minimum tracking error
constraint is also satisfied, as seen in Fig. 8.

Analyzing the individual results of the follower 1 in
the different network topologies, presented in Fig. 4, it
can be concluded that the error position continuously
converges without oscillation to the desired value. This
desired value and initial condition will vary for each
topology, since it depends on the number of neighbors to
which it is connected, explaining the difference between
the BDL topology and the others. The same can be said
for the error velocity where there is an absolute increase
in the initial velocity until it reaches a peak maximum,
and then converges to zero, with a significant difference
in slopes depending on the topology. Comparing the PLF
and TPLF for follower 1, which present the same initial
conditions and the same desired value, it can be concluded
that the PLF has slightly superior results, especially when
observing the control action and results of Table II. It is,
however, a minor difference of performance.

For the follower 2, the results presented in Fig. 5,
show that the PLF and TPLF topologies have very similar
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Fig. 4: Simulation results of the DMPC for spacecraft platoon (Follower 1)

Fig. 5: Simulation results of the DMPC for spacecraft platoon (Follower 2)

behaviors, the most significant difference being in the
control action at x where the PLF topology shows more
oscillation. From Table II it can also be concluded that
the PLF has sightly worst results than TPLF.

Moving on to the results of follower 3, presented in
Fig. 6, it is already possible to observe three different
trajectories for each of the topologies, highlighting the
overshoot in the z error position for the PLF topology. In
the control action, the BDL presents significantly more
oscillation than the other topologies.

Finally, for the results of follower 4, presented in
Fig. 7, it can be observed that, despite the PLF and
BDL topologies having the same initial condition and the
same desired position, they follow different trajectories.

Of these two topologies, the PLF is faster and with less
overshoot. This comparison is also seen in Table II, where
PLF performs better on all criteria. Supporting the idea
that the PLF topology is better suited for this specific
situation under this parameters.

In summary, the presented results validate the pro-
posed methodology for several scenarios involving differ-
ent network topologies, considering multiple spacecraft
and accounting for input and state constraints. We can
also see that the farther a spacecraft is from the leader,
a greater degradation of performance is present in the
system response, more visible for Follower 4. It can also
be seen that the TPLF has in general better performance
in the transient networks response.
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Fig. 6: Simulation results of the DMPC for spacecraft platoon (Follower 3)

Fig. 7: Simulation results of the DMPC for spacecraft platoon (Follower 4)

V. Conclusion

The goal of this paper was to design and rethink the
spacecraft formation flying problem, in a more cooper-
ative and optimal solution for the spacecraft synchro-
nization scenario. It was considered for that a distributed
platooning algorithm that solves an 1-hop optimization
problem with relevant constraints in order to generate bet-
ter and safer trajectories for station-keeping trajectories.
In a second stage, the proposed strategy was validated
through simulated tests in MATLAB®, where different
maneuvers are efficiently performed while satisfying all
the constraints considered.

It was also showed that each optimization problem
is solved within a sampling period, which includes the

vehicle model constraint, has a unique feasible solution,
and that solving the distributed optimization problem at
each agent, considering the 1-hop distributed algorithm,
converges to the global centralized solution. Adding fur-
ther input and state constraints, if not carefully validate,
can obviously disrupt the feasibility of the optimization
problem. On the other hand, feasibility at each sampling
period may not be enough to ensure a sufficient decrease
of the cost functional between sampling periods when
working outside nominal conditions. Therefore, there are
techniques that can be considered to address both the
addition of constraints and the recursive feasibility, which
are considered outside the scope of the paper and left for
future work. Besides that, there are some work directions
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Fig. 8: Simulation results of the DMPC for spacecraft platoon considering the minimum tracking error constraint

that can be pursued, for example a relative rotational
motion could be added in order to control the spacecraft
attitude and more network topologies could be considered
and analyzed.
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